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Abstract: Identifying the most optimal wearable health technology devices for hospitals is a crucial
step in emergency decision-making. The multi-attribute group decision-making method is a widely
used and practical approach for selecting wearable health technology devices. However, because of
the various factors that must be considered when selecting devices in emergencies, decision-makers
often struggle to create a comprehensive assessment method. This study introduced a novel decision-
making method that took into account various factors of decision-makers and has the potential to be
applied in various other areas of research. First, we introduced a list of aggregation operators based
on Pythagorean hesitant fuzzy rough sets, and a detailed description of the desired characteristics
of the operators under investigation were provided. The proposed operators were validated by a
newly defined score and accuracy function. Second, this paper used the proposed approach to
demonstrate the Pythagorean hesitant fuzzy rough technique for order of preference by similarity to
ideal solution (TOPSIS) model for multiple attribute decision-making and its stepwise algorithm. We
developed a numerical example based on suggested operators for the evaluation framework to tackle
the multiple-attribute decision-making problems while evaluating the performance of wearable health
technology devices. In the end, the sensitivity analysis has confirmed the performance and reliability of
the proposed framework. The findings indicated that the models being examined demonstrated greater
reliability and efficacy compared to existing methodologies.
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1. Introduction

There are numerous complementary fields, such as medical, social, and economics and management
that necessitate the execution of substantial decision-making (DM), that is, determination of enterprise
location, evaluation of scientific research, assessment of employees, selection of initiatives and
projects, evaluation of investments, allocation of resources, and wide-ranging economic advantage
classification. Prudent DM is the cornerstone of modern management and is essential for evaluating the
overall effectiveness of management initiatives. Several multi-attribute DM (MADM) approaches have
been implemented and their applications have been discussed in various fields of DM. For example,
Gou et al. [1] developed two types of linguistic preference orderings for representing experts’s opinions
in the evaluation of resource allocation for medical health in public health emergencies, and they
developed a new (Rangement Et Synthese De Ronnees Relationnelles) ORESTE method utilizing
linguistic preference orderings to address MADM problems. The ORESTE method was proposed
to address the actual MADM problem related to the allocation of medical health resources during
public health emergencies. They analyzed the results of the ORESTE method and compared them
to other existing methods in a double-hierarchy linguistic environment. Zhang et al. [2] introduced
a novel method for comparing double hierarchy hesitant fuzzy linguistic elements (DHHFLEs). This
method represents an advancement over existing comparison methods for DHHFLEs. Furthermore,
they addressed a gap in the current research by proposing a cosine similarity measure for DHHFLEs,
which takes a geometric perspective rather than relying solely on algebraic approaches. The proposed
method is applied to solve an MADM problem in the performance evaluation of financial logistics
enterprises. Gou et al. [3] introduced a new and comprehensive concept called the probabilistic double
hierarchy linguistic term set (PDHLTS). They suggested some additional practical operations and a
method to measure the distance between PDHLTSs. They enhanced the traditional (VIekriterijumsko
KOmpromisno Rangiranje) VIKOR method by developing an extended probabilistic double hierarchy
linguistic VIKOR method. In addition, the proposed method showcases its benefits and practicality
through its application in solving a real-world MADM problem in the field of smart healthcare.
Decision-makers frequently employ MADM approaches, which encompass the application of various
logical methods to evaluate and prioritize a set of alternatives according to a set of interconnected
criteria. Several MADM approaches employ different logical frameworks (for detailed information,
see [4–8]). Typically, DMs consist of individuals who possess expertise in the particular issue being
evaluated. They commonly favor the use of fuzzy numbers when conducting precise evaluations. This
is because of the qualitative scoring that experts may introduce subjectivity and personal presumptions
into their assessments. This implies an ambiguous and vague evaluation from the expert. Dealing
with uncertainty and inaccurate information is a major difficulty. Optimal performance of traditional
mathematical models often requires precise data, which is not always achievable in implementation.
Rough set theory, developed by Pawlak [9] in the early 1980s, is a mathematical approach that
addresses the challenges of dealing with vagueness and uncertainty. It acquired recognition as a
widely-used framework for processing uncertain knowledge. The rough set theory stipulates a strong
framework for handling uncertainty and imprecision in information. Through its emphasis on the
approximation of sets using indiscernibility relations, this approach provides a distinct method for
analyzing and interpreting complicated information without requiring additional details. It is often
compared to fuzzy set (FS) theory, introduced by Zadeh [10] in 1965, and is sometimes used in
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combination with it as the fuzzy-rough approach, as established by Dubois and Prade [11]. Rough
set (RS) theory has garnered global attention from numerous professionals and researchers who
have made significant contributions to its advancement and practical implementations. RS theory
is characterized by its overlapping nature with various other theories. However, RS theory can be
perceived as a distinct discipline in its own regard. The RS theory has been widely utilized in
diverse domains, particularly in research areas including artificial intelligence, cognitive sciences,
machine learning, intelligent systems, inductive reasoning, pattern recognition, computational image
processing, signal assessment, knowledge discovery, expert systems, data mining, knowledge
discovery, feature selection and reduction, classification, clustering, decision support systems, medical
diagnosis, and analyzing medical data to assist in diagnosis and treatment planning. Therefore, RS
theory proves to be a valuable tool in the field of data analysis and decision support, especially in
situations where data is incomplete or ambiguous. The framework enables the approximation of
imprecise or incomplete information by utilizing the concepts of lower and upper approximations.
Recently, there has been significant development in data analysis methods, particularly in the context
of big data and the internet of things (IoT). The majority of references pertain to the stimulating works
on hybrid models that are created by combining RS theory concepts within the suggested framework,
which is considered a crucial element. RS theory is an emerging theory that addresses the handling
of inadequate data (see [12–15] for detail information). Over the past few decades, researchers have
proposed numerous generalizations and extensions of the classical RS theory. The applications of
RSs in a fuzzy environment has gained significant attention in recent years. The study of Pei [16]
focused on the challenges of approximating fuzzy sets within fuzzy information systems, leading to the
development of the theory of fuzzy RSs. Jiang et al. [17] introduced a new methodology for utilizing
a fuzzy similarity-based RS algorithm in the context of feature weighting and reduction for a case-
based reasoning system. The algorithm is utilized in the process of tool selection for die and mould
machining. Ding et al. [18] conducted a study on three-way group decisions using evidential reasoning
in incomplete hesitant fuzzy information systems for liver disease diagnosis. Zhang et al. [19]
designed an incomplete three-way MADM using adjustable multi-granulation Pythagorean fuzzy
probabilistic RSs. They discussed two case studies involving mine ventilator fault diagnosis and air
quality evaluations. They also conducted various comparative experiments and sensitivity analyses
to demonstrate the effectiveness of their theoretical methodology. Wang [20] provided an overview
of the properties of fuzzy RSs based on triangular norms. These norms do not necessarily need
to be continuous. The purpose of this description is to provide generalization results for fuzzy RS
theory from a mathematical perspective. The study conducted by Qi et al. [21] focused on the
Fermatean fuzzy covering-based RS and its applications in MADM. This study aims to showcase
the decision-making processes involved in selecting electric vehicle charging stations in an Indian city
using innovative methodologies. The DM results were compared to other conventional techniques
employing the Spearman ranking correlation coefficient and Pearson correlation coefficient methods to
verify the effectiveness of the novel approaches. The investigation carried out by Theerens et al. [22]
was centered around specific examples within the broader category of fuzzy quantifier-based fuzzy
RSs (FQFRS). The lower and upper approximations in these models are evaluated using binary and
unary fuzzy quantifiers, respectively. In addition, they presented a counterexample to support the
claim that other FQFRS models are not granularly representable. However, these approaches are
still effective in addressing inconsistencies in real-life datasets. Zhou et al. [23] introduced the
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concept of single granulation hesitant Pythagorean fuzzy RSs for the first time. Then, considering
the multi-granulation framework, two types of multi-granulation hesitant Pythagorean fuzzy RSs are
introduced, known as the optimistic and pessimistic multi-granulation hesitant Pythagorean fuzzy RSs.
The relationships between serial hesitant Pythagorean fuzzy relations and hesitant Pythagorean fuzzy
approximation operators are established. We provide a real-life instance to illustrate the applicability of
the proposed method in MADM. Zhang et al. [24] presented an integrated DM framework that utilizes
the hesitant fuzzy RS model across two universes and explores various properties of this model. An
idea is made for the union, intersection, and composition of hesitant fuzzy approximation spaces,
along with an investigation into their properties. In addition, they introduced a novel method for
making decisions in uncertain environments by utilizing hesitant fuzzy rough sets across two different
universes. Finally, two real-world MADM problems are provided to demonstrate the effectiveness of
this approach. The development of an explainable prediction method that combines fuzzy RSs and
the TOPSIS approach (developed by Hwang and Yoon [25]) was reported by Gaeta et al. [26]. The
findings possess the potential to aid analysts and decision-makers in acquiring more comprehension
of the phenomenon known as information disorder. The results are derived from authentic data and
exhibit encouraging possibilities for future research. Hesitancy represents an inherent aspect of the
natural world. Determining the superior alternatives that share identical characteristics in routine
presents a complex challenge. Expert professionals are finding it challenging to deal with DM because
of the ambiguity and hesitation about the outcomes. In addressing the issue of hesitancy, Torra [27]
introduced the notion of hesitant fuzzy sets (HFS). The hesitant fuzzy sets effectively capture the
uncertainty of intricate scenarios and the imprecision of perceptions among individuals. Since their
establishment, HFSs have made notable progress in both practical and theoretical aspects. This
framework can be applied to resolve a diverse array of DM challenges. A broad range of authors
have merged the idea of HFS with other frameworks of fuzzy sets and employed them to address
real-world challenges through the application of Dombi aggregation operators (introduced by Dombi
in 1982) and the TOPSIS methodology within the context of group DM. Dombi aggregation operators
and the TOPSIS approach gained significant recognition as an essential tool for addressing real-world
DM complications. A number of researchers have employed the aforementioned concepts across
various domains of DM challenges. Xia and Xu [28] explored various hesitant fuzzy aggregation
operators (AOPs) and discussed their applications. Liu et al. [29] performed a study on the Dombi
AOPs of the interval-valued HFS, with a specific focus on the Dombi t-norm and t-conorm. Akram et
al. [30] introduced and explained several averaging and geometric AOPs that utilize the Dombi t-norm
and t-conorm. They also discussed the practical applications of these techniques in DM environments.
Tehreem et al. [31] developed Dombi AOPs in spherical cubic fuzzy information and discussed their
applications in MADM. These approaches were presented to demonstrate their validity, practicability,
and efficacy. Shi and Ye [32] have broadened the idea of Dombi operation to include neutrosophic
cubic sets and have effectively applied it to the DM problem. Lu and Ye [33] initially established the
Dombi AOPs for linguistic cubic variables to assist in the DM problem. Umer et al. [34] enhanced
the TOPSIS approach by integrating a distance technique that incorporates interval type-2 trapezoidal
Pythagorean fuzzy numbers. They thoroughly examined the applications of this approach in addressing
MADM problems, diligently considered the viewpoints and insights of decision-makers throughout the
evaluation process. A novel approach for determining the ranking order in group DM was proposed by
Kacprzak et al. [35], which utilizes ordered fuzzy integers and the TOPSIS strategy. Rezaei et al. [36]
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developed an approach to address the issue of sustainable global partner selection by utilizing DM
experts who were previously unidentified. Jun et al. [37] developed the hybrid TOPSIS methodology
based on interval Pythagorean FS (PyFS) and explored its application in MADM. Zhang and Dai [38]
were the first to develop the TOPSIS approach, which combines decision-theoretic rough fuzzy sets.
They demonstrated the effectiveness and reliability of the technique through detailed analysis and
evaluation of parameters. In addition, they accomplished simulated experiments to further confirm the
effectiveness of the proposed DM approach.

In the aforementioned research initiatives, hybrid models incorporating a PyFS and an RS are
rarely accomplished. In addition, the Pawlak RS has been effectively integrated with other uncertainty
theories, such as soft set theory, which has enabled the development of several innovative RS models.
In order to deal with unclear and reluctant information while making decisions for real-world problems,
the concept of Pythagorean hesitant fuzzy rough sets (PyFRSs) is also crucial. The aforesaid literature
aroused our interest to put forward a novel notion known as PyHFRSs. The goal of our research is
to integrate HFSs with PyFRSs to explore potential applications in tackling MADM challenges in a
hesitant fuzzy environment. The main contributions of the manuscript are as follows:
(1) To assemble a list of AOPs based on Dombi t-norm and t-conorm, namely, PyHFR Dombi weighted
averaging (PyHFRDWA), PyHFR Dombi ordered weighted averaging (PyHFRDOWA), and PyHFR
hybrid weighted averaging (PyHFRHDWA), and investigate their key operating laws. Additionally,
describe their related properties.
(2) To introduce and implement the score and accuracy functions employing PyHFRSs.
(3) To provide a DM technique for combining uncertain information employing prescribed aggregation
operators.
(4) The initiated operators are employed for a real-world DM challenge involving the selection of
wearable health technology devices (WHTDs) for hospitals.
(5) The effectiveness and rationality of the suggested framework were confirmed by sensitivity and
comparative analysis with the PyHFR-TOPSIS approach. The obtained results are shown graphically.

1.1. Structure of the article

The remaining part of this research is outlined as follows: Section 2 summarizes the basic
information required for fundamental ideas. In Section 3, we explain the basic operations of the
Domi t-norm and t-conorm in detail based on PyHFRS, which will be useful for the subsequent
analysis. In Section 4, we introduce the MADM strategy under the PyHRFR information section.
Section 5 implements the real-life application of the suggested approach for the selection of WHTDs
for hospitals. Sections 6 and 7 present the sensitivity and comparative analyses, respectively. Section 8
concludes the study and presents future recommendations.
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2. Preliminaries

In this section, we will briefly go through the crucial concepts that are essential to having a thorough
understanding. These ideas include FS, HFS, intuitionistic FS (IFS), PyHFS, RS, intuitionistic fuzzy
RS (IFRS), PyHFRS, and other operational laws that are inescapably interconnected. These key notions
will assist and simplify the suggested framework.

Definition 2.1. [10] Let X =
{̃̃
%1, %̃2, %̃3, ..., %̃n

}
be a nonempty set. By fuzzy set F, we mean a structure

of the form
F = {〈̃%i,HF (̃%i)〉 |̃%i ∈ X},

whereHF (̃%i) ∈ [0, 1] is known to be membership grade (MG).

Definition 2.2. [39] Let X = {̃%1, %̃2, %̃3, ..., %̃n} be a nonempty set. By HFS H; we mean a structure:

H = {
〈
%̃i,HhH (̃%i)

〉
|̃%i ∈ X},

whereHhH (̃%i) ∈ [0, 1] is the MG and a set of values, andHhH (̃%i) is referred to as the HF element.

Definition 2.3. [40] Let X = {̃%1, %̃2, %̃3, ..., %̃n} be an nonempty set. An IFS z over %̃i is structurally
defined as:

F̃ =
{
〈̃%i,HF̃ (̃%i),UF̃ (̃%i)〉|̃%i ∈ X

}
,

and for each %i ∈ X, the functions HF̃ : X → [0 ,1] and UF̃ : % → [0, 1] show the MG and
nonmembership grade (NMG), respectively, which must satisfy the property 0 ≤ HF̃(%i) +UF̃(%i) ≤ 1.

Definition 2.4. [41] Let X = {̃%1, %̃2, %̃3, ..., %̃n} be a nonempty universal set. By intuitionistic hesitant
FS (IHFS) E over X, we mean a structure as follows:

E = {
〈
%̃i,HhE (̃%i),UhE (̃%i)

〉
|̃%i ∈ X},

where HhE (%i) ∈ [0, 1] and UhE (%i) ∈ [0, 1] are sets of some values, which shows the MG and NMG
respectively, with the property for all η(̃%i) ∈ HhE (̃%i) and ν(̃%i) ∈ UhE (̃%i) such that (max (η(̃%i))) +

(min (ν(̃%i))) ≤ 1 and (min (η(̃%i))) + (max (ν(̃%i))) ≤ 1.

Definition 2.5. [9] Let X = {̃%1, %̃2, %̃3, ..., %̃n} be a nonempty universal set and Z be any relation on
X. Define a set valued mapping Z∗ : X → M(X) by Z∗(ξ) = {a ∈ X|(%i, a) ∈ Z}, for %i ∈ X, where
Z∗(%i) is called a successor neighborhood of the element %i with respect to relationZ. The pair (X,Z)

is known as a crisp approximation space. Now, for any set ˜̃I ⊆ X, the lower approximation (LA) and

upper approximation (UA) of ˜̃
I with respect to the space (X,Z) is defined as:

↓Z (Ĩ) = {̃%i ∈ X|Z
∗(ξ) ⊆ Ĩ}; ↑Z (Ĩ) = {̃%i ∈ X|Z

∗(ξ) ∩ Ĩ , φ},

where
(
↓Z (Ĩ), ↑Z (Ĩ)

)
: M(X) → M(X) are LA and UA operators and the pair

(
↓Z (Ĩ), ↑Z (Ĩ)

)
is

called RS.

Definition 2.6. [42] Let X = {̃%1, %̃2, %̃3, ..., %̃n} be the universal set and Z ∈ IFS (X × X) be an IF
relation. Then,
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(1)Z is reflexive ifHZ(%i,%i) = 1 and νZ(%i,%i) = 0,∀%i ∈ X;
(2)Z is symmetric if ∀(%i, £) ∈ X × X,HZ(%i, £) = HZ(£,%i), and νZ(%i, £) = νZ(£,%i);
(3)Z is transitive if ∀(%i, ∂) ∈ X × X,

HZ(̃%i, ∂) ≥
∨

c∈X

[
HZ(̃%i, c) ∧HZ(c, ∂)

]
,

and
UZ(̃%i, ∂) =

∧
c∈X

[
UZ(̃%i, c) ∧UZ(c, ∂)

]
.

Definition 2.7. [43] LetX = {̃%1, %̃2, %̃3, ..., %̃n} be the universal set. Then, any relationZ ∈ IFS (X×X)
is called an IF relation. The pair (X ×Z) is said to be an IF approximation space. Now for any
Ĩ ⊆ IFS (X), the LA and UA of Ĩ with respect to IF approximation space (X,Z) are two IFSs and
symbolized by ↓Z (Ĩ) and ↑Z (Ĩ) and are highlighted below:

↑Z (Ĩ) = {
〈
%̃i,H↑Z (Ĩ)(̃%i),U↑Z (Ĩ)(̃%i)

〉
|̃%i ∈ X}

and
↓Z (Ĩ) = {

〈
%̃i,H↓Z (Ĩ)(̃%i),U↓Z (Ĩ)(̃%i)

〉
|̃%i ∈ X},

where

H
↑Z (Ĩ)(̃%i) =

∨
B∈X

[HZ(̃%i,B)
∨
H
Ĩ
(B)]; U

↑Z (Ĩ)(̃%i) =
∧
B∈X

[UZ(̃%i,B)
∧
U
Ĩ
(B)];

H
↓Z (Ĩ)(̃%i) =

∧
B∈X

[HZ(̃%i,B)
∧
H
Ĩ
(B)]; U

↓Z (Ĩ)(̃%i) =
∨
B∈X

[UZ(̃%i,B)
∨
U
Ĩ
(B)];

such that

0 ≤ ((H
↑Z (Ĩ)(̃%i)) + (U

↑Z (Ĩ)(̃%i))) ≤ 1, and 0 ≤
((
H
↓Z (Ĩ)(̃%i)

)
+

(
U
↓Z (Ĩ)(̃%i)

))
≤ 1.

As
(
↓Z (Ĩ), ↑Z (Ĩ)

)
are IFS s, ↓Z (Ĩ), ↑Z (Ĩ) : IFS (X) → IFS (X) are LA and UA operators. The

pair

Z(Ĩ) = (↓Z (Ĩ), ↑Z (Ĩ)) = {
〈
%̃i, (H↓Z (Ĩ)(̃%i),U↓Z (Ĩ)(ξ), (H↑Z (Ĩ)(̃%i),U↑Z (Ĩ)(̃%i))

〉
|̃%i ∈ Ĩ}

is known as an IFRS. For simplicity,

Z(Ĩ) = {
〈
%̃i,H↓Z (Ĩ)(̃%i),U↓Z (Ĩ)(̃%i), (H↑Z (Ĩ)(̃%i),U↑Z (Ĩ)(̃%i))

〉
|̃%i ∈ X}

is represented asZ(Ĩ) = ((↓ H , ↓ U), (↑ H , ↑ U)) and is known as an intuitionistic fuzzy rough (IFR)
value.

Definition 2.8. LetX be the universal set and for any subset,Z ∈ PyHFS (X×X) is said to be a PyHFR
relation. The pair (X,Z) is said to be a PyHF approximation space. If for any Ĩ ⊆ PyHFS (X), then
the LA and UA of Ĩ with respect to PyHF approximation space (X,Z) are two PyHFSs, which are
denoted by ↓Z (Ĩ) and ↑Z (Ĩ) and defined as:

↑Z (Ĩ) =
{〈
%̃i,Hh

↑Z (Ĩ)
(̃%i),Uh

↑Z (Ĩ)
(̃%i)

〉
|̃%i ∈ X

}
;
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and
↓Z (Ĩ) =

{〈
%̃i,Hh

↓Z (Ĩ)
(̃%i),Uh

↓Z (Ĩ)
(̃%i)

〉
|̃%i ∈ X

}
;

where

Hh
↑Z (Ĩ)

(̃%i) =
∨
ϑ∈X

[
HhZ (̃%i, ϑ)

∨
Hh

Ĩ
(ϑ)

]
; Uh

↑Z (Ĩ)
(̃%i) =

∧
ϑ∈X

[
UhZ (̃%i, ϑ)

∧
Uh

Ĩ
(ϑ)

]
;

Hh
↓Z (Ĩ)

(ξ) =
∧
ϑ∈X

[
HhZ (̃%i, ϑ)

∧
Hh

Ĩ
(ϑ)

]
; Uh

↓Z (Ĩ)
(̃%i) =

∨
ϑ∈X

[
UhZ(ξ,H)

∨
Uh

Ĩ
(ϑ)

]
;

such that
0 ≤

(
max(Hh

↑Z (Ĩ)
(̃%i))

)2
+

(
min(Uh

↑Z (Ĩ)
(̃%i))

)2
≤ 1,

and
0 ≤

(
min(Hh

↓Z (Ĩ)
(̃%i)

)2
+

(
max(Uh

↓Z (Ĩ)
(̃%i))

)2
≤ 1.

As
(
↑Z (Ĩ), ↓Z (Ĩ)

)
are PyHFS s, ↓Z (Ĩ), ↑Z (Ĩ) : PyHFS (X) → PyHFS (X) are LA and UA

operators. The pair

Z(Ĩ) =
(
↓Z (Ĩ), ↑Z (Ĩ)

)
=

{〈
%̃i,

(
Hh

↓Z (Ĩ)
(̃%i),Uh

↓Z (Ĩ)
(̃%i)

)
,
(
Hh

↑Z (Ĩ)
(̃%i),Uh

↑Z (Ĩ)
(̃%i)

)〉
|̃%i ∈ Ĩ

}
will be called Pythagorean hesitant fuzzy RSs (PyHFRSs). For simplicity,

Z(Ĩ) =
{〈
%̃i,

(
Hh

↓Z (Ĩ)
(̃%i),Uh

↓Z (Ĩ)
(̃%i)

)
,
(
Hh

↑Z (Ĩ)
(̃%i),Uh

↑Z (Ĩ)
(̃%i)

)〉
|̃%i ∈ Ĩ

}
is represented asZ(Ĩ) = ((↓ H , ↓ U), (↑ H , ↑ U)) and is known as a PyHFR value.

Definition 2.9. The scoring function employed for the PyHFR value Z(Ĩ) = (↓Z (Ĩ), ↑Z (Ĩ)) =

((↓ H , ↓ U), (↑ H , ↑ U)) is given as:

S R(Z(Ĩ)) =
1
4

(
2 + 1

S

∑
(↓ Hτ) + 1

N

∑
(↑ Hτ)−

1
S

∑
(↓ Uτ) − 1

N

∑
(↑ Uτ)

)
.

The accuracy function for PyHFRVZ(Ĩ) = (↓Z (Ĩ), ↑Z (Ĩ)) = ((↓ Hτ, ↓ Uτ), (↑ Hτ, ↑ Uτ)) is given
as:

ACZ(Ĩ) =
1
4

( 1
S

∑
(↑ Hτ) + 1

S

∑
(↓ Hτ)+

1
N

∑
(↓ Uτ) + 1

N

∑
(↑ Uτ)

)
,

where S and N represent the number of elements inHτ andUτ, respectively.

Definition 2.10. Suppose Z(Ĩ1) = (↓Z (Ĩ1), ↑Z (Ĩ1)) and Z(Ĩ2) = (↓Z (Ĩ2), ↑Z (Ĩ2)) are two
PyHFR values. Then,
(1) if S R(Z(Ĩ1)) > S R(Z(Ĩ2)), thenZ(Ĩ1) > Z(Ĩ2),
(2) if S R(Z(Ĩ1)) < S R(Z(Ĩ2)), thenZ(Ĩ1) < Z(Ĩ2),
(3) if S R(Z(Ĩ1)) = S R(Z(Ĩ2)), then
(a) if ACZ(Ĩ1) > ACZ(Ĩ2) thenZ(Ĩ1) > Z(Ĩ2),
(b) if ACZ(Ĩ1) < ACZ(Ĩ2) thenZ(Ĩ1) < Z(Ĩ2),
(c) if ACZ(Ĩ1) = ACZ(Ĩ2) thenZ(Ĩ1) = Z(Ĩ2).
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3. Dombi t-norm and t-conorm

This section describes in detail the Domi product and dombi sum (see [44] for information) and
discuss some basic operations based on PyHFRSs, which will be useful for the subsequent analysis.
Following are the specific types of triangular norms and co-norms:

Definition 3.1. [44] Let ℘1and ℘2 be considered any two real numbers within the interval [0, 1]. The
Dombi t-norm can be expressed as

℘1 � ℘2 = 1

1+

((
1−℘1
℘1

)ζ
+

(
1−℘2
℘2

)ζ) 1
ζ
, ζ > 0.

The Dombi t-conorm is given by
℘1 � ℘2 = 1 − 1

1+

((
1−℘1
℘1

)−ζ
+

(
1−℘2
℘2

)−ζ) 1
ζ
, ζ > 0, respectively.

Definition 3.2. Let K1 =
{
(H1s, U1s) : 1 ≤ s ≤ `K1

}
and K2 =

{
(H2k, U2k) : 1 ≤ k ≤ `K2

}
be two

PyHFRSs and ζ > 0, and the Dombi operations for PyHFR numbers are outlined below.

(1) K1 �K2 =
⋃

H1s, U1s ∈ K1

H2k, U2k ∈ K2


√√

1 − 1

1+

( H2
1s

1−H2
1s

)ζ
+

(
H2

2k
1−H2

2k

)ζ
1
ζ
,
√√ 1

1+

( 1−U2
1s

U2
1s

)ζ
+

(
1−U2

2k
U2

2k

)ζ
1
ζ

 ,

(2) K1 �K2 =
⋃

H1s, U1s ∈ K1

H2k, U2k ∈ K2


√√ 1

1+

( 1−H2
1s

H2
1s

)ζ
+

(
1−H2

2k
H2

2k

)ζ
1
ζ
,
√√

1 − 1

1+

( U2
1s

1−U2
1s

)ζ
+

(
U2

2k
1−U2

2k

)ζ
1
ζ

 ,

(3) λK1 =
⋃

H1s,U1s∈K1


√√

1 − 1

1+

λ( H2
1s

1−H2
1s

)ζ
1
ζ
,
√√ 1

1+

λ( 1−U2
1s

U2
1s

)ζ
1
ζ

 ,

(4) Kλ
1

⋃
H1s,U1s∈K1


√√ 1

1+

λ( 1−U2
1s

U2
1s

)ζ
1
ζ
,
√√

1 − 1

1+

λ( H2
1s

1−H2
1s

)ζ
1
ζ
,

 .
3.1. Pythagorean hesitant fuzzy rough Dombi weighted arithmetic averaging operator

Let in =
{
℘ı =

〈(
↓ Hı j, ↓ Uı j

)
,
(
↑ Hı j, ↑ Uı j

)〉
: 1 ≤ ı ≤ `hi , j = 1, 2, 3, ..., n

}
be an n-dimensional

of PyHFRSs. A PyHFRDWAA operator is defined by the function PyHFRDWAA: in 7−→ i as follows:

PyHFRDWAA(℘1, ℘2, ℘3, ..., ℘n) =
(
�n
ı=1 (wı ↓ ℘ı) ,�n

ı=1 (wı ↑ ℘ı)
)
,

where wı is the weight vector of ℘ı(ı = 1, 2, 3, ..., n), 0 ≤ wı ≤ 1, and �n
ı=1wı = 1.

Theorem 3.3. Let ℘ı ∈ in(ı = 1, 2, 3, ..., n). Then,
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PyHFRDWAA(℘1, ℘2, ℘3, ..., ℘n) =
(
�n
ı=1 (wı ↓ ℘) ,�n

ı=1 (wı ↑ ℘ı)
)

=



⋃
↓ H1, ↓ U1 ∈ K1

↓ H2, ↓ U2 ∈ K2

...

↓ Hn, ↓ Un ∈ Kn




√

1 − 1

1+

�n
ı=1wı

(
↓H2

ı

1−↓H2
ı

)ζ
1
ζ

 ,
√

1

1+

�n
ı=1wı

(
1−↓U2

ı

↓U2
ı

)ζ
1
ζ




,

⋃
↑ H1, ↑ U1 ∈ K1

↑ H2, ↑ U2 ∈ K2

...

↑ Hn, ↑ Un ∈ Kn




√

1 − 1

1+

�n
ı=1wı

(
↑H2

ı

1−↑H2
ı

)ζ
1
ζ

 ,
√

1

1+

�n
ı=1wı

(
1−↑U2

ı

↑U2
ı

)ζ
1
ζ







,

where wı is the weight vector of ℘ı(ı = 1, 2, 3, ..., n), 0 ≤ wı ≤ 1 and �n
ı=1wı = 1.

Proof. The theorem can be proved using the approach of mathematical induction as follows:

Step 1. When n = 2, we get the following findings based on Dombi operations for

PyHFRS s(w1H1)

=



⋃
↓ H1, ↓ U1 ∈ K1



√

1 − 1

1+

w1

(
↓H2

ı

1−↓H2
ı

)ζ
1
ζ

 ,

√

1

1+

w1

(
1−↓U2

ı

↓U2
ı

)ζ
1
ζ


 ,

⋃
↑ H1, ↑ U1 ∈ K1



√

1 − 1

1+

w1

(
↑H2

ı

1−↑H2
ı

)ζ
1
ζ

 ,

√√ 1

1+

w1

(
1−↑U2

1
↑U2

1

)ζ
1
ζ





,
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w2K2 =



⋃
↓ J2, ↓ U2 ∈ K2




√√

1 − 1

1+

w2

(
↓H2

2
1−↓H2

2

)ζ
1
ζ

 ,
√√ 1

1+

w2

(
1−↓U2

2
↓U2

2

)ζ
1
ζ




,

⋃
↑ H2, ↑ U2 ∈ K2




√√

1 − 1

1+

w2

(
↑H2

2
1−↑H2

2

)ζ
1
ζ

 ,
√√ 1

1+

w2

(
1−↑U2

2
↑U2

2

)ζ
1
ζ







,

w1K1 � w2K2 =



⋃
↓ H1, ↓ U1 ∈ K1

↓ H2, ↓ U2 ∈ K2




√√

1 − 1

1+

w1

(
↓H2

ı

1−↓H2
ı

)ζ
+w2

(
↓H2

2
1−↓H2

2

)ζ
1
ζ

 ,
√√ 1

1+

w1

(
1−↓U2

1
↓U2

1

)ζ
+w2

(
1−↓U2

2
↓U2

2

)ζ
1
ζ




,

⋃
↑ H1, ↑ U1 ∈ K1

↑ H2, ↑ U2 ∈ K2




√√

1 − 1

1+

w1

(
↑H2

1
1−↑H2

1

)ζ
+w2

(
↑H2

2
1−↑H2

2

)ζ
1
ζ

 ,
√√ 1

1+

w1

(
1−↑U2

1
↑U2

1

)ζ
+w2

(
1−↑U2

2
↑U2

2

)ζ
1
ζ







,
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w1K1 � w2K2 =



⋃
↓ J1, ↓ U1 ∈ K1

↓ J2, ↓ U2 ∈ K2




√

1 − 1

1+

�2
ı=1wı

(
↓H2

ı

1−↓J2
ı

)ζ
1
ζ

 ,
√

1

1+

�2
ı=1wı

(
1−↓U2

ı

↓U2
ı

)ζ
1
ζ




,

⋃
↑ H1, ↑ U1 ∈ K1

↑ H2, ↑ U2 ∈ K2




√

1 − 1

1+

�2
ı=1wı

(
↑H2

ı

1−↓H2
ı

)ζ
1
ζ

 ,
√

1

1+

�2
ı=1wı

(
1−↑U2

ı

↑U2
ı

)ζ
1
ζ







.

The theorem thus holds for n = 2.

Step 2. Suppose the result is true for n = k, that is,

PyHFRDWAA(℘1, ℘2, ℘3, ..., ℘k) =
(
�n
ı=1 (wı ↓ ℘) ,�n

ı=1 (wı ↑ ℘ı)
)

=

⋃
↓ H1, ↓ U1 ∈ K1

↓ H2, ↓ U2 ∈ K2

...

↓ Hk, ↓ Uk ∈ Kk



√

1 − 1

1+

�k
ı=1wı

(
↓H2

ı

1−↓H2
ı

)ζ
1
ζ

 ,

√√ 1

1+

�k
ı=1wı

(
1−↓U2

1
↓U2

1

)ζ
1
ζ


 ,

⋃
↑ H1, ↑ U1 ∈ K1

↑ H2, ↑ U2 ∈ K2

...

↑ Hk, ↑ Uk ∈ Kk



√

1 − 1

1+

�k
ı=1wı

(
↓H2

ı

1−↓H2
ı

)ζ
1
ζ

 ,

√

1

1+

�k
ı=1wı

(
1−↑U2

ı

↑U2
ı

)ζ
1
ζ


 .

Step 3. When n = k + 1,

PyHFRDWAA(℘1, ℘2, ℘3, ..., ℘k+1) = �k
ı=1 (wk℘k) � (wk+1℘k+1)

AIMS Mathematics Volume 9, Issue 10, 27167–27204.



27179

=



⋃
↓ H1, ↓ U1 ∈ K1

↓ H2, ↓ U2 ∈ K2

...

↓ Hk, ↓ Uk ∈ Kk




√

1 − 1

1+

�k
ı=1wı

(
↓H2

ı

1−↓H2
ı

)ζ
1
ζ

 ,
√√ 1

1+

�k
ı=1wı

(
1−↓U2

1
↓U2

1

)ζ
1
ζ




,

⋃
↑ H1, ↑ U1 ∈ K1

↑ H2, ↑ U2 ∈ K2

...

↑ Hk, ↑ Uk ∈ Kk




√

1 − 1

1+

�k
ı=1wı

(
↑H2

ı

1−↑H2
ı

)ζ
1
ζ

 ,
√

1

1+

�k
ı=1wı

(
1−↑U2

ı

↑U2
ı

)ζ
1
ζ







� (wk+1℘k+1)

=



⋃
↓ H1, ↓ U1 ∈ K1

↓ H2, ↓ U2 ∈ K2

...

↓ Hk, ↓ Uk ∈ Kk




√

1 − 1

1+

�k
ı=1wı

(
↓H2

ı

1−↓H2
ı

)ζ
1
ζ

 ,
√√ 1

1+

�k
ı=1wı

(
1−↓U2

1
↓U2

1

)ζ
1
ζ




,

⋃
↑ H1, ↑ U1 ∈ K1

↑ H2, ↑ U2 ∈ K2

...

↑ Hk, ↑ Uk ∈ Kk




√

1 − 1

1+

�k
ı=1wı

(
↓H2

ı

1−↓H2
ı

)ζ
1
ζ

 ,
√

1

1+

�k
ı=1wı

(
1−↑U2

ı

↑U2
ı

)ζ
1
ζ







�
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27180

⋃
↓ Hk+1, ↓ Uk+1 ∈ Kk+1




√√

1 − 1

1+

wk+1

(
↓H2

k+1
1−↓H2

k+1

)ζ
1
ζ

 ,
√√ 1

1+

wk+1

(
1−↓U2

k+1
↓U2

k+1

)ζ
1
ζ




,

⋃
↑ Hk+1, ↑ Uk+1 ∈ Kk+1




√√

1 − 1

1+

wk+1

(
↑H2

k+1
1−↑H2

k+1

)ζ
1
ζ

 ,
√√ 1

1+

wk+1

(
1−↑U2

k+1
↑U2

k+1

)ζ
1
ζ








⋃
↓ H1, ↓ U1 ∈ K1

↓ H2, ↓ U2 ∈ K2

...

↓ Hk+1, ↓ Uk+1 ∈ Kk+1




√

1 − 1

1+

�k+1
ı=1 wı

(
↓H2

ı

1−↓H2
ı

)ζ
1
ζ

 ,
√

1

1+

�k+1
ı=1 wı

(
1−↓U2

ı

↓U2
ı

)ζ
1
ζ




,

⋃
↑ H1, ↑ U1 ∈ K1

↑ H2, ↑ U2 ∈ K2

...

↑ Hk+1, ↑ Uk+1 ∈ Kk+1




√

1 − 1

1+

�k+1
ı=1 wı

(
↓H2

ı

1−↓H2
ı

)ζ
1
ζ

 ,
√

1

1+

�k+1
ı=1 wı

(
1−↑U2

ı

↑U2
ı

)ζ
1
ζ







.

So, the results are true for all n = k + 1. Hence, the theorem is proved for n ∈ Z.

�

Example 3.4. Let’s suppose

℘1 = {〈(0.13, 0.17, 0.18), (0.19, 0.25, 0.27)〉 , 〈(0.21, 0.26, 0.29), (0.18, 0.25, 0.26)〉} ,
℘2 = {〈(0.19, 0.22, 0.23), (0.16, 0.19, 0.22)〉 , 〈(0.22, 0.29, 0.31), (0.17, 0.26, 0.34)〉} ,
℘3 = {〈(0.13, 0.14, 0.29), (0.19, 0.20, 0.22)〉 , 〈(0.15, 0.18, 0.19), (0.13, 0.19, 0.20)〉} ,
℘4 = {〈(0.12, 0.16, 0.22), (0.14, 0.15, 0.18)〉 , 〈(0.18, 0.19, 0.26), (0.19, 0.23, 0.26)〉}

for n = 4 and ζ = 1, with weight vector w = (0.15, 0.22, 0.26, 0.37) . We get
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PyHFRDWAA(℘1, ℘2, ℘3, ℘4) = �4
ı=1 (wı ↓ ℘ı) ,�4

ı=1 (wı ↑ ℘ı)

=
⋃

↓ H1, ↓ U1 ∈ K1

↓ H2, ↓ U2 ∈ K2

↓ H3, ↓ U3 ∈ K3

↓ H4, ↓ U4 ∈ K4




√

1 − 1

1+

�4
ı=1wı

(
↓H2

ı

1−↓H2
ı

)ζ
1
ζ

 ,
√√ 1

1+

�4
ı=1wı

(
1−↓U2

1
↓U2

1

)ζ
1
ζ




,

⋃
↑ H1, ↑ U1 ∈ K1

↑ H2, ↑ U2 ∈ K2

↑ H3, ↑ U3 ∈ K3

↑ H4, ↑ U4 ∈ K4




√

1 − 1

1+

�4
ı=1wı

(
↑H2

ı

1−↑H2
ı

)ζ
1
ζ

 ,
√

1

1+

�4
ı=1wı

(
1−↑U2

ı

↑U2
ı

)ζ
1
ζ




,

PyHFRDWAA(℘1, ℘2, ℘3) =

{
[(0.1404, 0.1705, 0.2362), (0.1619, 0.1810, 0.2086)] ,
[(0.1863, 0.2227, 0.2599), (0.1646, 0.2261, 0.2534)]

}
.

Theorem 3.5. (Idempotency): Let ℘ı( ı = 1, 2, 3, ..., n) be a number of PyHFRNs. Then,

℘ı =
{(
↓ Hı, ↓ Uı j

)
,
(
↑ Hı j, ↑ Uı j

)
: ı = 1, 2, 3, ..., n

}
is a number of PyHFR elements that are equal, i.e., ℘ı = ℘ for all ı, then
PyHFRDWAA(℘1, ℘2, ℘3, ..., ℘n) = ℘.

3.2. PyHFRDOWAA operator

Let
in =

{
℘ı =

〈(
↓ H2

ı , ↓ Uı j

)
,
(
↑ Hı j, ↑ Uı j

)〉
: 1 ≤ i ≤ `hi , j = 1, 2, 3, ..., n

}
be an n-dimensional of PyHFRSs. A PyHFRDOWAA operator is defined by the function
PyHFRDOWAA: in 7−→ i as follows:

PyHFRDOWAA(℘1, ℘2, ℘3, ..., ℘n) =
(
�n
ı=1 (wı ↓ ℘ı) ,�n

ı=1 (wı ↑ ℘ı)
)
,

where ℘ϑ(ı) is the ıth largest of ℘ı and wı is the weight vector of ℘ı(ı = 1, 2, 3, ..., n), such that 0 ≤ wı ≤ 1
and �n

ı=1wı = 1.

Theorem 3.6. Let ℘ı ∈ in(ı = 1, 2, 3, ..., n). Then
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PyHFRDOWAA(℘1, ℘2, ℘3, ..., ℘n) =
(
�n
ı=1 (wı ↓ ℘ı) ,�n

ı=1 (wı ↑ ℘ı)
)

=



⋃
↓ H1, ↓ U1 ∈ K1

↓ H2, ↓ U2 ∈ K2

...

↓ Hn, ↓ Un ∈ Kn




√√

1 − 1

1+

�n
ı=1wı

 ↓H2
ϑ(ı)

1−↓H2
ϑ(ı)

ζ
1
ζ

 ,
√√ 1

1+

�n
ı=1wı

 1−↓U2
ϑ(ı)

↓U2
ϑ(ı)

ζ
1
ζ




,

⋃
↑ H1, ↑ U1 ∈ K1

↑ H2, ↑ U2 ∈ K2

...

↑ Hn, ↑ Un ∈ Kn




√√

1 − 1

1+

�n
ı=1wı

 ↑H2
ϑ(ı)

1−↑H2
ϑ(ı)

ζ
1
ζ

 ,
√√ 1

1+

�n
ı=1wı

 1−↑U2
ϑ(ı)

↑U2
ϑ(ı)

ζ
1
ζ







,

where ℘ϑ(ı) is the ıth largest of ℘ı and wı is the weight vector of ℘i(i = 1, 2, 3, ..., n), such that 0 ≤ wı ≤ 1
and �n

ı=1wı = 1.

Proof. The proof is straightforward and similar to the proof of Theorem 1. �

3.3. Pythagorean hesitant fuzzy rough Dombi hybrid weighted arithmetic
averaging (PyHFRDHWAA) operator

Let in =
{
℘ı =

〈(
↓ Hı j, ↓ Uı j

)
,
(
↑ Hı j, ↑ Uı j

)〉
: 1 ≤ ı ≤ `hi , j = 1, 2, 3, ..., n

}
be an n-dimensional

of HFRSs and let wı be the weight vector of ℘ı(ı = 1, 2, 3, ..., n), such that 0 ≤ wı ≤ 1 and �n
ı=1wı = 1.

A PyHFRDHWAA operator is defined by the function PyHFRDHWAA: in 7−→ i as follows:

PyHFRDHWAA(℘1, ℘2, ℘3, ..., ℘n) =
(
�n
ı=1

(
ηı ↓ ℘̂δ(ı)

)
,�n

ı=1
(
ηı ↑ ℘̂δ(ı)

))
.

Let Ω = (η1, η2, ..., ηn)T be the associated weight vector such that
∑n
ı=1 ηı = 1 and 0 ≤ ηı ≤ 1 .

Theorem 3.7. Let ℘ı ∈ in(ı = 1, 2, 3, ..., n). Then,
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PyHFRDHWAA(℘1, ℘2, ℘3, ..., ℘n) =
(
�n
ı=1

(
ηı ↓ ℘̂δ(ı)

)
,�n

ı=1
(
ηı ↑ ℘̂δ(ı)

))

=



⋃
↓ H1, ↓ U1 ∈ K1

↓ H2, ↓ U2 ∈ K2

...

↓ Hn, ↓ Un ∈ Kn




√√

1 − 1

1+

�n
ı=1ηı

 ↓Ĥ2
δ(ı)

1−↓Ĥ2
δ(ı)

ζ
1
ζ

 ,
√√ 1

1+

�n
ı=1ηı

 1−↓Û2
δ(ı)

↓Û2
δ(ı)

ζ
1
ζ




,

⋃
↑ H1, ↑ U1 ∈ K1

↑ H2, ↑ U2 ∈ K2

...

↑ Hn, ↑ Un ∈ Kn




√√

1 − 1

1+

�n
ı=1ηı

 ↑Ĥ2
δ(ı)

1−↑Ĥ2
δ(ı)

ζ
1
ζ

 ,
√√ 1

1+

�n
ı=1ηı

 1−↑Û2
δ(ı)

↑Û2
δ(ı)

ζ
1
ζ







,

where ℘̂δ(ı) =
(
℘δ(ı)

)n$i = ((℘ı)n$i , (℘ı)n$i) shows the superior value of permutation from the collection
of HFRVs and n represents the balancing coefficient.

Proof. The proof is straightforward and similar to the proof of Theorem 1. �

4. Multiple attribute group DM approach under PyHRFR information

The MADM is a crucial procedure for selecting an alternative from a set of desirable alternatives
based on the opinions of experts regarding attributes. A team of experts thoroughly evaluates each
alternative, acquiring various attributes, and stipulates an assessment in the form of PyHFRV for
each alternative pertaining to each attribute. The information collected from the decision makers is
aggregated using the weights given by the experts. After collecting the appropriate data, it is then
compiled to assess the overall value of each alternative, considering the assigned weights for each
attribute. The MADM is incredibly beneficial for a wide range of industries. It is widely used in a
variety of fields including research areas including business, economics, machine learning, intelligent
systems, pattern recognition, image processing, signal assessment, data mining, knowledge discovery,
feature selection and reduction, classification, clustering, aiding in DM processes by managing
imprecise and inconsistent information, analyzing medical data to assist in diagnosis and treatment
planning, engineering, and more. Here, we present an MADM methodology that involves the following
crucial steps:

Step 1. Let A = {A1, A2, ..., Al}, C = {c1, c2, ..., c j} and D = {d1, d2, ..., dt} be the set of alternatives,
criteria and decision-makers respectively. Let the wight vector beW = (w1,w2,w3...,w j), where
ws ∈ (0, 1] and � j

sws = 1. The MADM method comprises the following procedures:

Step 2. The assessment of the alternative Ai based on criteria cs by decision-makers dr (r = 1, 2, 3, ..., t)
can be written as ψ̃rs (r = 1, 2, 3, ..., t; s = 1, 2, 3, ..., j). Consequently, the PyHFR-decision matrix
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DAi = [ψ̃rs]t× j may be established as follows:

DAi = [ψ̃rs]t× j =


ψ̃11 ψ̃12 . . . ψ̃1 j

ψ̃21 ψ̃22 . . . ψ̃2 j
...

...
. . .

...

ψ̃t1 ψ̃t2 . . . ψ̃t j

 .
Step 3. Assess the normalized experts matrices as

(NAi) =
℘i =

〈(
↓ Hı j, ↓ Uı j

)
,
(
↑ Hı j, ↑ Uı j

)〉
if for benefit,

℘c
i =

〈(
↓ Uı j, ↓ Hı j

)
,
(
↑ Uı j, ↑ Hı j

)〉
if for cost.

Step 4. Construct collected PyHFR information using PyHFRDWAA related to Aı denoted by Lı,
which is defined as follows:

Lı =
(
�n
ı=1 (wı ↓ ℘) ,�n

ı=1 (wı ↑ ℘ı)
)
.

Step 5. To use the aforementioned aggregation information, evaluate the aggregated PyHFR values for
each alternative examined in accordance to the given set of attributes/criteria.

Step 6. Compute the score values for Lı(ı = 1, 2, 3, ..., l).

Step 7. Order the score value of all Lı(ı = 1, 2, 3, ..., l).

Step 8. Select the option with the highest score value. Figure 1 illustrates the diagrammatic chart of
the algorithm for the implied MADM technique.

Start

Information of 

expert 3

Identify the 

experts

Information of 

expert-1

Collection 

expert 

information

Aggregated 

expert

information

End

Score function

Pythagorean 

hesitant fuzzy rough

information
Information of 

expert-2

Figure 1. Illustration of the flowchart for suggested MADM algorithm.
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5. Numerical application

In this section, we will provide an MADM problem-related wearable medical technology to
demonstrate the implementation and adaptability of the aforementioned approach. The market for
wearable medical and health-care manufactured products has widened significantly in the years owing
to global industrialization. The utilization of wearable technology has increased significantly, having
an enormous effect on the health-care industry. Wearable devices, equipped with transmitters and
target receptors, are worn on the body or in clothing to detect changes in the human body and offer
rapid feedback. This technology assists physicians in understanding the changes happening in the
human body and providing timely medicines to patients. The goal of wearable technology in health-
care is to transform the industry through providing patients with comprehensive information that can
be carried out in order to gain practical insights. Wearable technology is influencing health-care by
monitoring electrocardiograms like heart rate, blood pressure, and oxygen levels, as well as recording
patient health data like physical activity, nutrition, and sleep patterns. Individuals with chronic
illnesses such as diabetes, cardiovascular disease, and neurological issues need regular monitoring
of their physiological functioning in order to get appropriate medical treatment. Wearable technology
has emerged as a crucial tool in the health-care industry to meet the demands of this requirement.
Wearable health technology facilitate patients to accumulate their own health data and transmit it in
digital format, minimizing the need for face-to-face appointments. Wearable medical technology could
assist hospitals save both resources and time while maintaining convenience to patients. Continuous
monitoring of patients is required during their rehabilitation, and the adoption of wearable health
monitoring devices has increased the efficiency of this approach. Wearable fitness trackers and other
health-tracking technology are beneficial for those who desire to measure their physical activity. This
includes not only measuring steps or physical training, but also monitoring the individual’s overall
mobility and essential indications Individuals’ psychological conditions are also assessed employing
wearable medical gadgets. These wearable health solutions include sensors that monitor patients’
mental health. Wearable device health care provides the benefit of medical education by enabling
individuals to effortlessly access critical information, essays, articles, case studies, and other study
materials on their smartphone. Wearable medical devices also have benefits for electronic health record
systems. Primary care asserts that combine patient-generated fitness or medical data with enormous
amounts of information, such as current health data, into electronic medical records, in addition to
other biological and genetic data, has significant power and resiliency.

The challenges of incorporating wearable medical technology into health-care systems include the
financial strain on medical organizations, whilst not every organization can afford to embrace such
devices. Patients may feel uncomfortable when utilizing wearable medical equipment owing to its
weight. These technologies are made up of a variety of components and are intended to be attached
to the body. Due to data discrepancies, there is insufficient evidence to demonstrate wearable devices’
unaltered accuracy. Individuals have data privacy concerns regarding a lack of control over their
personal information. Furthermore, during the installation of programs, users are needed to provide
authorization to access personal data, exposing them to possible hazards such as forgery and data
destruction. Because the integration of patient data via wearable technology is still in its early stages,
the area of health wearable technology has hurdles in terms of system compatibility and linkage.
Wearable medical devices hold a large quantity of personal information concerning health conditions.
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It may cause people to get anxious and feel like they are being watched too closely. Furthermore, the
medical community struggles to adequately handle the enormous amount of information.

5.1. The evaluation procedure for selecting an appropriate wearable health technology devices

This section applies the developed model to a case study concerning wearable health technology
device selection. Assume an employer has nominated four prospective companies on a worldwide basis
with the intention of determining a wearable health technology gadget. A panel of specialists across the
world has been invited to investigate and determine the most appropriate gadgets for the organization.
LetD = {D1,D2,D3} be a set of three decision-makers. A = {A1, A2, A3, A4} symbolizes the set of four
devices that were under consideration for selection among them and the set of four index dimensions,
in particular: accuracy (c1), security (c2), intelligence (c3), and limitations (c4). It should be noted
that all of the attributes presented here are of the benefit type. The decision-makers weights vector is
W = [0.25, 0.49, 0.56]T and the associated attribute weight vector isW=[0.11, 0.25, 0.28, 0.36]T . To
assess the MADM situation by employing the aforementioned scheme for evaluating alternatives, the
following procedures are carried out:

Step 1. The information obtained from three experts based on PyHFRVs has been incorporated into
Tables 1–3, respectively.

Step 2. All the information provided by the experts are benefit type; there is no requirement
for normalization.

Table 1. Expert-1 information.

(a)
c1 c2

A1

[
((0.21, 0.31, 0.41) , (0.22, 0.30, 0.31)) ,
((0.41, 0.42, 0.43) , (0.21, 0.41, 0.44))

] [
((0.25, 0.27, 0.29) , (0.27, 0.26, 0.31)) ,
((0.22, 0.25, 0.26) , (0.32, 0.34, 0.41))

]
A2

[
((0.22, 0.32, 0.42) , (0.27, 0.29, 0.52)) ,
((0.23, 0.25, 0.27) , (0.26, 0.27, 0.33))

] [
((0.33, 0.53, 0.62) , (0.25, 0.37, 0.42)) ,
((0.36, 0.37, 0.41) , (0.23, 0.25, 0.29))

]
A3

[
((0.24, 0.35, 0.36) , (0.36, 0.37, 0.38)) ,
((0.27, 0.28, 0.29) , (0.21, 0.24, 0.27))

] [
((0.21, 0.22, 0.23) , (0.25, 0.26, 0.28)) ,
((0.24, 0.26, 0.27) , (0.25, 0.37, 0.41))

]
A4

[
((0.26, 0.27, 0.29) , (0.23, 0.24, 0.26)) ,
((0.32, 0.37, 0.41) , (0.27, 0.32, 0.43))

] [
((0.33, 0.34, 0.35) , (0.34, 0.37, 0.39)) ,
((0.21, 0.42, 0.43) , (0.32, 0.33, 0.41))

]
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(b)
c3 c4

A1

[
((0.22, 0.23, 0.24) , (0.23, 0.24, 0.27)) ,
((0.31, 0.35, 0.42) , (0.23, 0.25, 0.27))

] [
((0.25, 0.36, 0.37) , (0.24, 0.25, 0.27)) ,
((0.26, 0.28, 0.29) , (0.26, 0.27, 0.29))

]
A2

[
((0.34, 0.35, 0.38) , (0.34, 0.45, 0.47)) ,
((0.22, 0.25, 0.33) , (0.34, 0.35, 0.36))

] [
((0.34, 0.36, 0.38) , (0.33, 0.35, 0.42)) ,
((0.27, 0.38, 0.39) , (0.21, 0.23, 0.24))

]
A3

[
((0.23, 0.26, 0.37) , (0.35, 0.37, 0.38)) ,
((0.25, 0.39, 0.41) , (0.25, 0.28, 0.38))

] [
((0.23, 0.36, 0.42) , (0.25, 0.26, 0.38)) ,
((0.31, 0.33, 0.37) , (0.33, 0.34, 0.35))

]
A4

[
((0.33, 0.34, 0.35) , (0.36, 0.37, 0.38)) ,
((0.23, 0.33, 0.43) , (0.24, 0.27, 0.28))

] [
((0.32, 0.43, 0.44) , (0.45, 0.46, 0.47)) ,
((0.23, 0.34, 0.35) , (0.27, 0.28, 0.31))

]

Table 2. Expert-2 information.

(a)
c1 c2

A1

[
((0.22, 0.23, 0.24) , (0.32, 0.35, 0.38)) ,
((0.24, 0.36, 0.37) , (0.33, 0.45, 0.46))

] [
((0.24, 0.25, 0.26) , (0.23, 0.32, 0.35)) ,
((0.32, 0.37, 0.41) , (0.42, 0.43, 0.44))

]
A2

[
((0.22, 0.23, 0.24) , (0.25, 0.28, 0.29)) ,
((0.35, 0.36, 0.37) , (0.28, 0.29, 0.30))

] [
((0.23, 0.24, 0.26) , (0.27, 0.28, 0.31)) ,
((0.21, 0.61, 0.62) , (0.23, 0.27, 0.32))

]
A3

[
((0.26, 0.32, 0.42) , (0.42, 0.48, 0.53)) ,
((0.23, 0.28, 0.30) , (0.22, 0.42, 0.43))

] [
((0.23, 0.24, 0.62) , (0.41, 0.42, 0.43)) ,
((0.33, 0.43, 0.44) , (0.23, 0.34, 0.42))

]
A4

[
((0.21, 0.22, 0.41) , (0.25, 0.26, 0.31)) ,
((0.31, 0.32, 0.33) , (0.42, 0.43, 0.44))

] [
((0.25, 0.32, 0.33) , (0.23, 0.32, 0.43)) ,
((0.33, 0.34, 0.36) , (0.44, 0.35, 0.37))

]

(b)
c3 c4

A1

[
((0.22, 0.24, 0.52) , (0.42, 0.43, 0.44)) ,
((0.24, 0.27, 0.28) , (0.22, 0.26, 0.27))

] [
((0.21, 0.22, 0.32) , (0.24, 0.26, 0.28)) ,
((0.22, 0.25, 0.27) , (0.28, 0.29, 0.33))

]
A2

[
((0.23, 0.35, 0.37) , (0.32, 0.33, 0.36)) ,
((0.26, 0.27, 0.28) , (0.22, 0.28, 0.29))

] [
((0.43, 0.44, 0.55) , (0.24, 0.26, 0.27)) ,
((0.21, 0.23, 0.25) , (0.22, 0.23, 0.25))

]
A3

[
((0.35, 0.36, 0.37) , (0.33, 0.35, 0.43)) ,
((0.27, 0.28, 0.29) , (0.32, 0.33, 0.35))

] [
((0.22, 0.27, 0.28) , (0.22, 0.27, 0.29)) ,
((0.41, 0.42, 0.44) , (0.25, 0.26, 0.27))

]
A4

[
((0.26, 0.27, 0.29) , (0.32, 0.35, 0.43)) ,
((0.32, 0.33, 0.44) , (0.32, 0.35, 0.41))

] [
((0.23, 0.25, 0.29) , (0.24, 0.26, 0.27)) ,
((0.42, 0.43, 0.46) , (0.24, 0.25, 0.27))

]
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Table 3. Expert-3 information.

(a)
c1 c2

A1

[
((0.24, 0.27, 0.29) , (0.33, 0.36, 0.38)) ,
((0.32, 0.33, 0.38) , (0.27, 0.28, 0.29))

] [
((0.34, 0.37, 0.38) , (0.27, 0.28, 0.29)) ,
((0.33, 0.43, 0.44) , (0.21, 0.32, 0.43))

]
A2

[
((0.31, 0.33, 0.34) , (0.25, 0.26, 0.29)) ,
((0.31, 0.42, 0.43) , (0.42, 0.43, 0.44))

] [
((0.22, 0.33, 0.37) , (0.33, 0.42, 0.43)) ,
((0.22, 0.25, 0.26) , (0.22, 0.32, 0.33))

]
A3

[
((0.32, 0.33, 0.43) , (0.24, 0.33, 0.43)) ,
((0.21, 0.28, 0.29) , (0.24, 0.34, 0.42))

] [
((0.22, 0.23, 0.32) , (0.33, 0.42, 0.43)) ,
((0.25, 0.32, 0.33) , (0.22, 0.33, 0.43))

]
A4

[
((0.21, 0.25, 0.27) , (0.25, 0.26, 0.32)) ,
((0.23, 0.25, 0.27) , (0.24, 0.29, 0.33))

] [
((0.22, 0.23, 0.33) , (0.25, 0.26, 0.33)) ,
((0.31, 0.33, 0.43) , (0.32, 0.43, 0.44))

]

(b)
c3 c4

A1

[
((0.22, 0.23, 0.28) , (0.25, 0.26, 0.27)) ,
((0.23, 0.25, 0.26) , (0.22, 0.32, 0.33))

] [
((0.21, 0.24, 0.29) , (0.22, 0.23, 0.27)) ,
((0.32, 0.33, 0.43) , (0.32, 0.41, 0.42))

]
A2

[
((0.21, 0.23, 0.26) , (0.24, 0.26, 0.28)) ,
((0.26, 0.27, 0.29) , (0.23, 0.28, 0.29))

] [
((0.21, 0.42, 0.53) , (0.32, 0.33, 0.52)) ,
((0.23, 0.24, 0.26) , (0.22, 0.31, 0.41))

]
A3

[
((0.31, 0.32, 0.33) , (0.33, 0.35, 0.39)) ,
((0.32, 0.33, 0.34) , (0.22, 0.24, 0.26))

] [
((0.31, 0.32, 0.34) , (0.21, 0.31, 0.41)) ,
((0.22, 0.24, 0.25) , (0.32, 0.43, 0.54))

]
A4

[
((0.22, 0.23, 0.27) , (0.33, 0.41, 0.42)) ,
((0.42, 0.43, 0.44) , (0.21, 0.22, 0.23))

] [
((0.22, 0.33, 0.43) , (0.32, 0.33, 0.41)) ,
((0.23, 0.25, 0.28) , (0.24, 0.35, 0.41))

]
Step 3. Table 4 demonstrates the PyHFRDWA and evaluates the accumulated information of three

expert analysts. Table 5 shows the score value of the collected experts in formation. Based on
score value, the ordered collected experts information is presented in Table 6.
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Table 4. Collected experts information.

(a)
c1 c2

A1


(

(0.2569, 0.2987, 0.3413) ,
(0.2600, 0.3043, 0.3232)

)
,(

(0.3552, 0.4039, 0.4316),
(0.2387, 0.3050, 0.3168)

)



(

(0.3271, 0.3517, 0.3643) ,
(0.2232, 0.2554, 0.2778)

)
,(

(0.3472, 0.4258, 0.4483) ,
(0.2382, 0.3165, 0.3850)

)


A2


(

(0.2976, 0.3325, 0.3681) ,
(0.2240, 0.2411, 0.2762)

)
,(

(0.3525, 0.4162, 0.4281) ,
(0.2793, 0.2889, 0.3111)

)



(

(0.2820, 0.4049, 0.4680) ,
(0.2535, 0.3022, 0.3289)

)
,(

(0.2849, 0.5183, 0.5331) ,
(0.1990, 0.2509, 0.2817)

)


A3


(

(0.2872, 0.3293, 0.4168) ,
(0.2968, 0.3776, 0.4511)

)
,(

(0.2279, 0.2800, 0.2940) ,
(0.2268, 0.3372, 0.3842)

)



(

(0.2225, 0.2325, 0.4831) ,
(0.3344, 0.3770, 0.3919)

)
,(

(0.2836, 0.3631, 0.3730) ,
(0.2278, 0.3392, 0.4229)

)


A4


(

(0.2184, 0.2422, 0.3377) ,
(0.2467, 0.2567, 0.3047)

)
,(

(0.2788, 0.3001, 0.3201) ,
(0.2857, 0.3325, 0.3766)

)



(

(0.2519, 0.2870, 0.3331) ,
(0.2498, 0.2922, 0.3696)

)
,(

(0.3062, 0.3497, 0.4052) ,
(0.3542, 0.3767, 0.4043)

)


(b)
c3 c4

A1


(

(0.2490, 0.2644, 0.4433) ,
(0.2487, 0.2584, 0.2738)

)
,(

(0.2841, 0.3158, 0.3458) ,
(0.1957, 0.2468, 0.2583)

)



(

(0.2472, 0.2965, 0.3580) ,
(0.2036, 0.2155, 0.2421)

)
,(

(0.3108, 0.3302, 0.3983) ,
(0.2572, 0.2853, 0.3109)

)


A2


(

(0.2812, 0.3444, 0.3719) ,
(0.2472, 0.2700, 0.2917)

)
,(

(0.2856, 0.3005, 0.3317) ,
(0.2105, 0.2571, 0.2662)

)



(

(0.3809, 0.4643, 0.5669) ,
(0.2502, 0.2660, 0.3177)

)
,(

(0.2617, 0.3066, 0.3250) ,
(0.1922, 0.2264, 0.2564)

)


A3


(

(0.3170, 0.3291, 0.3525) ,
(0.3328, 0.3528, 0.4025)

)
,(

(0.2919, 0.3228, 0.3348) ,
(0.2523, 0.2724, 0.3011)

)



(

(0.2676, 0.3089, 0.3338) ,
(0.2188, 0.2845, 0.3448)

)
,(

(0.3251, 0.3392, 0.3591) ,
(0.2874, 0.3235, 0.3502)

)


A4


(

(0.2558, 0.2657, 0.2916) ,
(0.3626, 0.3815, 0.4385)

)
,(

(0.3299, 0.3775, 0.4168) ,
(0.2437, 0.2604, 0.2781)

)



(

(0.2422, 0.3227, 0.3870) ,
(0.3244, 0.3491, 0.3761)

)
,(

(0.2886, 0.3057, 0.3378) ,
(0.2439, 0.2898, 0.3220)

)

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Table 5. Score value of collected experts information.

c1 c2 c3 c4

A1 0.5283 0.5473 0.5351 0.5355
A2 0.5479 0.5729 0.5311 0.5664
A3 0.4801 0.4887 0.5028 0.5104
A4 0.4912 0.4905 0.5074 0.5178

Table 6. Ordered collected experts information.

(a)
c1 c2

A1


(

(0.3271, 0.3517, 0.3643) ,
(0.2232, 0.2554, 0.2778)

)
,(

(0.3472, 0.4258, 0.4483) ,
(0.2382, 0.3165, 0.3850)

)



(

(0.2472, 0.2965, 0.3580) ,
(0.2036, 0.2155, 0.2421)

)
,(

(0.3108, 0.3302, 0.3983) ,
(0.2572, 0.2853, 0.3109)

)


A2


(

(0.2820, 0.4049, 0.4680) ,
(0.2535, 0.3022, 0.3289)

)
,(

(0.2849, 0.5183, 0.5331) ,
(0.1990, 0.2509, 0.2817)

)



(

(0.3809, 0.4643, 0.5669) ,
(0.2502, 0.2660, 0.3177)

)
,(

(0.2617, 0.3066, 0.3250) ,
(0.1922, 0.2264, 0.2564)

)


A3


(

(0.2676, 0.3089, 0.3338) ,
(0.2188, 0.2845, 0.3448)

)
,(

(0.3251, 0.3392, 0.3591) ,
(0.2874, 0.3235, 0.3502)

)



(

(0.3170, 0.3291, 0.3525) ,
(0.3328, 0.3528, 0.4025)

)
,(

(0.2919, 0.3228, 0.3348) ,
(0.2523, 0.2724, 0.3011)

)


A4


(

(0.2422, 0.3227, 0.3870) ,
(0.2886, 0.3057, 0.3378)

)
,(

(0.3244, 0.3491, 0.3761) ,
(0.2439, 0.2898, 0.3220)

)



(

(0.2558, 0.2657, 0.2916) ,
(0.3299, 0.3775, 0.4168)

)
,(

(0.3626, 0.3815, 0.4385) ,
(0.2437, 0.2604, 0.2781)

)

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(b)
c3 c4

A1


(

(0.2490, 0.2644, 0.4433) ,
(0.2487, 0.2584, 0.2738)

)
,(

(0.2841, 0.3158, 0.3458) ,
(0.1957, 0.2468, 0.2583)

)



(

(0.2569, 0.2987, 0.3413) ,
(0.2600, 0.3043, 0.3232)

)
,(

(0.3552, 0.4039, 0.4316),
(0.2387, 0.3050, 0.3168)

)


A2


(

(0.2976, 0.3325, 0.3681) ,
(0.2240, 0.2411, 0.2762)

)
,(

(0.3525, 0.4162, 0.4281) ,
(0.2793, 0.2889, 0.3111)

)



(

(0.2812, 0.3444, 0.3719) ,
(0.2472, 0.2700, 0.2917)

)
,(

(0.2856, 0.3005, 0.3317) ,
(0.2105, 0.2571, 0.2662)

)


A3


(

(0.2225, 0.2325, 0.4831) ,
(0.3344, 0.3770, 0.3919)

)
,(

(0.2836, 0.3631, 0.3730) ,
(0.2278, 0.3392, 0.4229)

)



(

(0.2872, 0.3293, 0.4168) ,
(0.2968, 0.3776, 0.4511)

)
,(

(0.2279, 0.2800, 0.2940) ,
(0.2268, 0.3372, 0.3842)

)


A4


(

(0.2184, 0.2422, 0.3377) ,
(0.2467, 0.2567, 0.3047)

)
,(

(0.2788, 0.3001, 0.3201) ,
(0.2857, 0.3325, 0.3766)

)



(

(0.2519, 0.2870, 0.3331) ,
(0.2498, 0.2922, 0.3696)

)
,(

(0.3062, 0.3497, 0.4052) ,
(0.3542, 0.3767, 0.4043)

)


Step 4. Assess the aggregated PyHFR values for each alternative evaluated using the specified set of
criteria/attributes utilizing the aforementioned aggregation information. Tables 7 and 8 visualized
the aggregated information for PyHFRDWA, PyHFRODWA, respectively. The hybrid collected
experts information is shown in Table 9. The score values of hybrid information is presented in
Table 10 and the aggregated information for PyHFRHDWA is depicted in Table 11.

Table 7. PyHF rough aggregation information using PyHFRDWA operator.

A1

[
((0.2716, 0.3040, 0.3851) , (0.2244, 0.2428, 0.2657)) ,
((0.3189, 0.3631, 0.4031) , (0.2289, 0.2806, 0.3057))

]
A2

[
((0.3242, 0.4077, 0.4821) , (0.2468, 0.2716, 0.3070)) ,
((0.2859, 0.3906, 0.4092) , (0.2050, 0.2458, 0.2700))

]
A3

[
((0.2752, 0.3010, 0.3943) , (0.2718, 0.3292, 0.3800)) ,
((0.2967, 0.3353, 0.3498) , (0.2523, 0.3108, 0.3499))

]
A4

[
((0.2461, 0.2908, 0.3447) , (0.2805, 0.3099, 0.3585)) ,
((0.3272, 0.3541, 0.3975) , (0.2662, 0.2992, 0.3262))

]
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Table 8. PyHF rough aggregation information using PyHFRDOWA operator.

A1

[
((0.2615, 0.2959, 0.3807) , (0.2351, 0.2569, 0.2787)) ,
((0.3253, 0.3675, 0.4042) , (0.2273, 0.2813, 0.3000))

]
A2

[
((0.3149, 0.3845, 0.4479) , (0.2413, 0.2627, 0.2962)) ,
((0.3012, 0.3721, 0.3911) , (0.2169, 0.2546, 0.2756))

]
A3

[
((0.2774, 0.3039, 0.4168) , (0.2995, 0.3566, 0.4062)) ,
((0.2729, 0.3231, 0.3359) , (0.2380, 0.3159, 0.3613))

]
A4

[
((0.2430, 0.2746, 0.3316) , (0.2674, 0.2962, 0.3524)) ,
((0.3169, 0.3457, 0.3909) , (0.2845, 0.3152, 0.3436))

]
Table 9. Hybrid collected experts information.

(a)
c1 c2

A1


(

(0.1705, 0.1846, 0.1920) ,
(0.9935, 0.1309, 0.1431)

)
,(

(0.1820, 0.2290, 0.2432) ,
(0.9926, 0.1646, 0.2042)

)



(

(0.1513, 0.1831, 0.2242) ,
(0.9923, 0.1313, 0.1481)

)
,(

(0.1925, 0.2054, 0.2521) ,
(0.9875, 0.1758, 0.1926)

)


A2


(

(0.2400, 0.3000, 0.3816) ,
(0.9882, 0.1633, 0.1971)

)
,(

(0.1606, 0.1898, 0.2019) ,
(0.9932, 0.1381, 0.1572)

)



(

(0.1454, 0.2162, 0.2560) ,
(0.9915, 0.1566, 0.1716)

)
,(

(0.1470, 0.2900, 0.3005) ,
(0.9949, 0.1285, 0.1452)

)


A3


(

(0.1644, 0.1913, 0.2078) ,
(0.9911, 0.1753, 0.2152)

)
,(

(0.2020, 0.2115, 0.2249) ,
(0.9842, 0.2009, 0.2189)

)



(

(0.1742, 0.1814, 0.1955) ,
(0.9830, 0.1957, 0.2266)

)
,(

(0.1594, 0.1776, 0.1848) ,
(0.9906, 0.1482, 0.1648)

)


A4


(

(0.1291, 0.1481, 0.1739) ,
(0.9918, 0.1510, 0.1951)

)
,(

(0.1588, 0.1835, 0.2164) ,
(0.9825, 0.1993, 0.2158)

)



(

(0.1481, 0.2004, 0.2442) ,
(0.9795, 0.2181, 0.2366)

)
,(

(0.1780, 0.1892, 0.2105) ,
(0.9888, 0.1788, 0.1999)

)

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(b)
c3 c4

A1


(

(0.1348, 0.1436, 0.2532) ,
(0.9909, 0.1401, 0.1490)

)
,(

(0.1549, 0.1734, 0.1914) ,
(0.9945, 0.1336, 0.1401)

)



(

(0.0878, 0.1033, 0.1196) ,
(0.9960, 0.1054, 0.1126)

)
,(

(0.1250, 0.1449, 0.1567) ,
(0.9967, 0.1056, 0.1101)

)


A2


(

(0.1532, 0.1906, 0.2074) ,
(0.9910, 0.1468, 0.1593)

)
,(

(0.1558, 0.1644, 0.1829) ,
(0.9936, 0.1394, 0.1446)

)



(

(0.1028, 0.1161, 0.1302) ,
(0.9971, 0.0821, 0.0949)

)
,(

(0.1240, 0.1501, 0.1552) ,
(0.9954, 0.0996, 0.1079)

)


A3


(

(0.1134, 0.1187, 0.2659) ,
(0.9846, 0.1994, 0.2083)

)
,(

(0.1463, 0.1913, 0.1971) ,
(0.9932, 0.1774, 0.2272)

)



(

(0.0990, 0.1149, 0.1503) ,
(0.9947, 0.1340, 0.1653)

)
,(

(0.0774, 0.0963, 0.1015) ,
(0.9970, 0.1180, 0.1367)

)


A4


(

(0.0740, 0.0825, 0.1182) ,
(0.9965, 0.0877, 0.1055)

)
,(

(0.0958, 0.1038, 0.1114) ,
(0.9951, 0.1161, 0.1336)

)



(

(0.1387, 0.1443, 0.1593) ,
(0.9795, 0.2134, 0.2500)

)
,(

(0.1818, 0.2109, 0.2358) ,
(0.9913, 0.1413, 0.1514)

)


Table 10. Score value of hybrid collected experts information.

c1 c2 c3 c4

A1 0.3591 0.3889 0.3743 0.3888
A2 0.3692 0.3930 0.3717 0.3981
A3 0.3376 0.3540 0.3552 0.3699
A4 0.3505 0.3612 0.3488 0.3585

Table 11. PyHF rough aggregation information using PyHFRDHWA operator.

A1

[
((0.1298, 0.1478, 0.2004) , (0.9934, 0.1216, 0.1316)) ,
((0.1591, 0.1800, 0.2044) , (0.9933, 0.1290, 0.1369))

]
A2

[
((0.1490, 0.1928, 0.2285) , (0.9930, 0.1113, 0.1267)) ,
((0.1435, 0.2034, 0.2142) , (0.9945, 0.1182, 0.1284))

]
A3

[
((0.1333, 0.1451, 0.2065) , (0.9885, 0.1640, 0.1929)) ,
((0.1383, 0.1630, 0.1700) , (0.9929, 0.1431, 0.1662))

]
A4

[
((0.1258, 0.1483, 0.1777) , (0.9855, 0.1356, 0.1616)) ,
((0.1590, 0.1785, 0.2001) , (0.9907, 0.1423, 0.1581))

]

Step 5. The score value of the information obtained through PyHFRDWA, PyHFRODWA, and
PyHFRHDWA is presented in Table 12 and depicted in Figure 2. Ranking the alternatives based
on the score values, we observed that A2 is the best alternative.
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Table 12. Ranking order of alternatives.

Proposed operators
Score values of alternatives

A1 A2 A3 A4
Ranking

PyHFRDWA 0.5415 0.5628 0.5049 0.5100 A2 > A1 > A4 > A3

PyHFRDOWA 0.5380 0.5554 0.4960 0.5036 A2 > A1 > A4 > A3

PyHFRDHWA 0.3763 0.3883 0.3590 0.3680 A2 > A1 > A4 > A3
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Figure 2. Graphical representation of ranking order obtained through PyHFRDWA,
PyHFRODWA, and PyHFRHDWA operator.

6. Sensitivity analysis

It is evident that the PyHFRDWAA includes a parameter ζ, which significantly improves its
adaptability and effectiveness in handling fuzzy information. In our example, we use a parameter value
of ζ=1. We analyze the potential variations in the outcomes achieved with the PyHFRDWAA operator.
Table 13 and Figure 3 display the ranking orders determined by the score values obtained through the
PyHFRDWAA operator. Vary the value of parameter ζ from 1 to 200, identify multiple values, and
organize them in ascending order based on PyHFR scores. When the value ζ in the PyHFRDWAA
is varied, the optimal alternative is always the same, and the orderings of alternatives (A2 > A1 >

A4 > A3) are the same for all values of ζ. Using the PyHFRDWAA operator and the score function, we
achieved option A2 with the highest score value as an optimal alternative and A3 with the lowest score
values presented in Table 13 for ζ = 1, 2, 5, 10, 20, 50, 100, 200. Therefore, the most appropriate
alternative is similar for different values of ζ. Figure 3 depicts a graphical representation of Table 13.
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Table 13. Ranking order for different values of ζ in the PyHFRWAA operator.

ζ
Score values of alternatives

A1 A2 A3 A4
Ranking Best Alternative

1 0.5415 0.5628 0.5049 0.5100 A2 > A1 > A4 > A3 A2

2 0.5454 0.5708 0.5098 0.5137 A2 > A1 > A4 > A3 A2

5 0.5559 0.5869 0.5210 0.5223 A2 > A1 > A4 > A3 A2

10 0.5661 0.5983 0.5302 0.5305 A2 > A1 > A4 > A3 A2

20 0.5737 0.6065 0.5370 0.5376 A2 > A1 > A4 > A3 A2

50 0.5788 0.6125 0.5418 0.5428 A2 > A1 > A4 > A3 A2

100 0.5806 0.6145 0.5435 0.5446 A2 > A1 > A4 > A3 A2

200 0.5815 0.6156 0.5443 0.5455 A2 > A1 > A4 > A3 A2
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Figure 3. The impact of ζ on the order of ranking under the IHFRWAA operator.

7. Comparative analysis

The goals of this section are to compare the outcome of the improved TOPSIS scheme with the
novel aggregation operators based on PyHFRS. The fundamental concept of the TOPSIS approach
states that the better the alternative, the farther it is from the negative ideal solution and the closer it is
to the positive ideal solution. As a consequence, researchers have developed several techniques that are
capable of completing the process of classifying alternatives in worldwide decision-making problems.
These algorithms are devoted to dealing with the ordering of feasible alternatives. We develop a
novel TOPSIS methodology based on PyHFRSs that handles the identification and categorization of
alternatives. By following these criteria, we explain in detail how the innovative TOPSIS technique
works and assess its validity. The feasibility of our technique is then verified, as well as its effectiveness
and reliability are shown via comparisons to alternative approaches and a variety of experiments with
varying input parameters. In addition, we conduct a simulation experiment to test how our strategy
compares to the traditional TOPSIS approach in terms of sorting attribute. The TOPSIS is a framework
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employed by Hwang and Yoon [25] for assessing the advantages and disadvantages of various policy
approaches under ideal situations. TOPSIS characterizes the best possible decision as the one that
relates closely to the positive ideal solution all of the criteria while simultaneously becoming the
farthest away from the negative ideal solution. The method consists of mainly the following aspects:

Step 1. Let κ̃ = {`1, `2, `3, ..., `m} and C = {c1, c2, c3, ..., cn} be the set of alternatives and criteria. The
information obtained from the professionals is provided as follows:

M =
[
↓ i(̃κφi j), ↑ i(̃κφi j)

]
m×n

=



(↓ i(̃κ11), ↑ i(̃κ11)) (↓ i(̃κ12), ↑ i(̃κ12)) · · ·
(
↓ i(̃κ1 j), ↑ i(̃κ1 j)

)
(↓ i(̃κ21), ↑ i(̃κ21)) (↓ i(̃κ22), ↑ i(̃κ22)) · · ·

(
↓ i(̃κ2 j), ↑ i(̃κ2 j)

)
(↓ i(̃κ31), ↑ i(̃κ31)) (↓ i(̃κ32), ↑ i(̃κ32)) · · ·

(
↓ i(̃κ3 j), ↑ i(̃κ3 j)

)
...

...
. . .

...

(↓ i(̃κi1), ↑ i(̃κi1)) (↓ i(̃κi2), ↑ i(̃κi2)) · · ·
(
↓ i(̃κi j), ↑ i(̃κi j)

)


,

where
↑ i(̃κi j) =

{〈
`,Hh↑i(̃κ)(`),Uh↑i(̃κ)(`)

〉
|` ∈ £

}
and

↓ i(̃κ) =
{〈
`,Hh↓i(̃κ)(`),Uh↓i(̃κ)(`)

〉
|` ∈ £

}
,

such that

0 ≤
(
max(Hh↑i(̃κ)(`))

)
+

(
min(Uh↑i(̃κ)(`))

)
≤ 1 and 0 ≤

(
min(Hh↓i(̃κ)(`)

)
+

(
max(Uh↓i(̃κ)(`))

)
≤ 1

are the PyHFR rough values.

Step 2. First, we assemble information from decision-makers using PyHFR numbers.

Step 3. Second, normalize DM information because the decision matrix may include benefit and cost
criteria, which is demonstrated below:

(H)φ =



(
↑ i(̃κφ11), ↓ i(̃κφ11)

) (
↑ i(̃κφ12), ↓ i(̃κφ12)

)
· · ·

(
↑ i(̃κφ1 j), ↓ i(̃κφ1 j)

)(
↑ i(̃κφ21), ↓ i(̃κφ21)

) (
↑ i(̃κφ22), ↓ i(̃κφ22)

)
· · ·

(
↑ i(̃κφ2 j), ↓ i(̃κφ2 j)

)(
↑ i(̃κφ31), ↓ i(̃κφ31)

) (
↑ i(̃κφ32), ↓ i(̃κφ32)

)
· · ·

(
↑ i(̃κφ3 j), ↓ i(̃κφ3 j)

)
...

...
. . .

...(
↑ i(̃κφi1), ↓ i(̃κφi1)

) (
↑ i(̃κφi2), ↓ i(̃κφi2)

)
· · ·

(
↑ i(̃κφi j), ↓ i(̃κφi j)

)


,

where φ shows the number of experts.

Step 4. Analyze the normalized information obtained from professionals (N)φ , as

(N)φ =

 i(̃κi j) =
(
↓ i

(̃
κi j

)
, ↑ i

(̃
κi j

))
if For benefit,(

i(̃κi j)
)c

=
((
↓ i

(̃
κi j

))c
,
(
↑ i

(̃
κi j

))c)
if For cost.

AIMS Mathematics Volume 9, Issue 10, 27167–27204.



27197

Step 5. The score value determines the positive and negative ideal solutions. +ג =
(
1+ג , ג

+
2 , ג

+
3 , ..., ג

+
n

)
and

k− =
(
1−ג , ג

−
2 , ג
−
3 , ..., ג

−
n

)
are the positive ideal solutions (PIS) and negative ideal solutions (NIS).

The formula computes PIS +ג is as follows:

+ג =
(
1+ג , ג

+
2 , ג

+
3 , ..., ג

+
n
)

=

(
max

i
score(גi1),max

i
scoreגi2,max

i
scoreגi3, ...,max

i
scoreגin

)
.

In a comparable way, the formula used to determine the NIS k− is as follows:

−ג =
(
1−ג , ג

−
2 , ג
−
3 , ..., ג

−
n
)

=

(
min

i
scoreגi1,min

i
scoreגi2,min

i
scoreגi3, ...,min

i
scoreגin

)
.

Subsequently, calculate the geometric distance between each alternative and the PIS using+ג the
formula enclosed:

d(αi j, ג
+) =

1
8



 1
#h

∑#h
s=1

∣∣∣∣(↓ Hi j(s)

)2
−

(
↓ H+

i

)2∣∣∣∣
+

∣∣∣∣(↑ Hi j(s)

)2
−

(
↑ H+

i(s)

)2∣∣∣∣


+

 1
#g

∑#g
s=1

∣∣∣∣(↓ Ui j(s)

)2
−

(
↓ U+

i(s)

)2∣∣∣∣
+

∣∣∣∣(↑ Uh i j

)2
−

(
↑ Uh

+

i

)2∣∣∣∣



,

where i = 1,2,3,...,n, and j=1,2,3,...,m.

By routine calculation, the geometric distance between each alternative and the NIS −ג can be
displayed as follows:

d(αi j, ג
−) =

1
8



 1
#h

∑#h
s=1

∣∣∣∣(↓ Hi j(s)

)2
−

(
↓ H−i(s)

)2∣∣∣∣
+

∣∣∣∣(↑ Hi j(s)

)2
−

(
↑ H−i(s)

)2∣∣∣∣


+

 1
#g

∑#g
s=1

∣∣∣∣(↓ Ui j(s)

)2
−

(
↓ U−i(s)

)2∣∣∣∣
+

∣∣∣∣(↑ Uh i j

)2
−

(
↑ Uh

−

i

)2∣∣∣∣



,

where i = 1,2,3,...,n and j=1,2,3,...,m.

Step 6. Here is the procedure employed for determining the relative closeness indices for each
decision-makers alternative:

RC(αi j) =
d(αi j, ג

+)
d(αi j, (−ג + d(αi j, (+ג

.

Step 7. The ranking orders of alternatives may be established, and the most desired option with the
shortest distance can be identified.
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7.1. Numerical example

In this section, we demonstrate an MADM problem to show the framework’s applicability and
versatility. A numerical illustration to choose the best international partner for a multinational company
is given. The following is a summary of the key procedures:

Step 1. The decision-makers information is provided in Tables 1 and 3 in the form of PyHFR numbers.

Step 2. The collected information compiled by decision-makers portrayed as PyHFR numbers is
displayed in Table 4.

Step 3. There is no need to normalize the information since it is benefit type.

Step 4. The PIS and NIS are determined based on the score value and are displayed in Table 14 as
follows:

Table 14. Ideal solutions.

+ג −ג

c1


(

(0.2976, 0.3325, 0.3681) ,
(0.2240, 0.2411, 0.2762)

)
,(

(0.3525, 0.4162, 0.4281) ,
(0.2793, 0.2889, 0.3111)

)



(

(0.2872, 0.3293, 0.4168) ,
(0.2968, 0.3776, 0.4511)

)
,(

(0.2279, 0.2800, 0.2940) ,
(0.2268, 0.3372, 0.3842)

)


c2


(

(0.2820, 0.4049, 0.4680) ,
(0.2535, 0.3022, 0.3289)

)
,(

(0.2849, 0.5183, 0.5331) ,
(0.1990, 0.2509, 0.2817)

)



(

(0.2225, 0.2325, 0.4831) ,
(0.3344, 0.3770, 0.3919)

)
,(

(0.2836, 0.3631, 0.3730) ,
(0.2278, 0.3392, 0.4229)

)


c3


(

(0.3170, 0.3291, 0.3525) ,
(0.3328, 0.3528, 0.4025)

)
,(

(0.2919, 0.3228, 0.3348) ,
(0.2523, 0.2724, 0.3011)

)



(

(0.3170, 0.3291, 0.3525) ,
(0.3328, 0.3528, 0.4025)

)
,(

(0.2919, 0.3228, 0.3348) ,
(0.2523, 0.2724, 0.3011)

)


c4


(

(0.3809, 0.4643, 0.5669) ,
(0.2502, 0.2660, 0.3177)

)
,(

(0.2617, 0.3066, 0.3250) ,
(0.1922, 0.2264, 0.2564)

)



(

(0.2676, 0.3089, 0.3338) ,
(0.2188, 0.2845, 0.3448)

)
,(

(0.3251, 0.3392, 0.3591) ,
(0.2874, 0.3235, 0.3502)

)


Step 5. Compute the distance measure of PIS and NIS as follows:

Distance measures of PIS
0.0614 0.0102 0.0790 0.0856

and
Distance measures of NIS

0.0619 0.0892 0.0723 0.0557

Step 6. The calculation of the relative closeness indices for all decision-makers of the alternatives is
as follows:

Relative closeness indices for all decision-makers of the alternatives
A1 A2 A3 A4

0.4980 0.1026 0.5221 0.6058
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Step 7. The order of alternatives is ranked in descending order as shown in Table 15 and in Figure 4.
The minimum distance can be observed to be associated with A2. Therefore, option A2 is the best
choice.

Table 15. Ranking order of alternatives.

Score values of alternatives
A1 A2 A3 A4

Ranking Best alternative

0.5403 0.4064 0.7182 0.4436 A2 < A4 < A1 < A3 A2
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Figure 4. The ranking order obtained through TOPSIS approach.

8. Conclusions

Assessing the performance of wearable health technology devices has exceptional practical value
for product optimization and technology enhancement. However, there are numerous distinctions in
the technical standards, functions, prices, and service objects of these solutions, all within an uncertain
objective environment. Decision-makers often encounter unreliable uncertainty when evaluating
alternatives simultaneously. Decision-makers are faced with a daunting task when it pertains to
identifying the most optimal wearable health technology devices. To solve these problems, this paper
introduced the concept of PyHFRSs, which are robust mathematical tools designed to effectively
manage uncertain and imprecise information. The aim is to address the complexity and uncertainty
associated with decision information and smart medical solutions. In addition, we introduced the
innovative concept of PyHFRWA, PyHFROWA, and PyHFRHA aggregation operators based on
PyHFRSs. We provided a comprehensive description of the characteristics and new score and accuracy
functions for the proposed operators. Furthermore, the hybrid PyHFR-TOPSIS model for MADM
and its stepwise algorithm are demonstrated using the proposed approach. On the other hand, the
significance and validity of the evaluation framework are confirmed by numerical examples of the
WHTDs evaluation system, and sensitivity and comparative show that the investigated models are
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more effective and useful than the existing approaches. The study enhances existing aggregation
operators and the DM method based on the aforementioned operator, improving the existing fuzzy
MADM techniques. The study provides assessment and theoretical support for evaluating and selecting
WHTDs in the medical system. This approach can provide a valuable reference for designers
of WHTDs in the medical system. It helps to identify areas for product improvement, optimize
performance, enhance sustainable development capabilities, expand market influence, and motivate
long-term enterprise growth. This method can serve as a valuable resource for hospitals and medical
institutions seeking to identify the most effective solutions for their medical systems. By doing so, it
has the potential to enhance the quality of medical services and improve the overall patient experience.
In addition, this research presents valuable insights for the development and future direction of the
national smart medical system, which will ultimately contribute to more effective health-care for
humanity.

In the upcoming research, we aim to expand this investigation to include other fuzzy settings and
the model can be applied to additional specialized MADM challenges like [45–47].
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