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Abstract: In this paper, high-order numerical algorithms for two classes of time-independent one-
sided tempered fractional diffusion equations were studied. The time derivative was discretized by
the backward difference formula, the space tempered fractional derivatives were discretized based
on tempered weighted and shifted Griinwald difference operators combined with the quasi-compact
technique, and the effective second-order numerical approximations of the left and right third-order
Riemann-Liouville tempered derivatives were given, thus the detailed fourth-order numerical schemes
of these two classes of equations were derived. With the energy method, we proved rigorously that
the numerical schemes were stable and convergent with order O(t + h*) and were only related to the
tempered parameter A. Finally, some examples were given to verify the validity of the numerical
schemes.
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1. Introduction
In this paper, the following one-sided tempered fractional diffusion equations are considered:

D = K(Dgulx, ) — A%u(x, 1) — @A™ 25Dy 4 f(x, 1), (x,1) € (a,b) X (0, T,
u(x,0) = ¢(x), X € [a,b], (1.1)
u(a,t) = 0,u(b, 1) = (), te[0,T],

and
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HED = K(Du(x, 1) — A%u(x, 1) + a2 250 + £(x, 1), (x,1) € (a,b) x (0, T,
u(x, 0) = ¢(x), x € [a, b], (1.2)
u(a,t) = (1), u(b,t) =0, te0,T],

where 1 < a < 2, 4 > 0, the diffusion coefficient K is positive, and f(x,¢) is the source

term. ngﬁu(x, ) and Dz’,fu(x, t) represent the left and right Riemann-Liouville tempered fractional
derivatives, respectively, and are defined as

e“u(T t)

@, e w
Doutx.1) = re- a)é?xz(f (x - T)”‘1

o e e u(r, t)
D" u(x 1= )8)(2(‘[ Fper= 1

The concept of fractional derivatives appeared almost at the same time as integer derivatives, but
the lack of application background of fractional derivatives at the beginning of their appearance made
fractional models not widely developed until recent decades. Fractional models are widely used in
physics [1-4], finance [5], biology [6], and hydrology [7-9]. Recently, the study of fractional diffusion
equations has attracted a lot of attention, in which the integral derivatives of diffusion equations
are replaced by the fractional derivatives to obtain fractional diffusion equations. Usually the time
fractional derivatives describe anomalous sub-diffusion, and the space fractional derivatives describe
anomalous super-diffusion [10].

The analytical solutions of fractional differential equations usually cannot be obtained because of
the nonlocality of fractional derivatives. Therefore, a lot of attention has been paid to the development
of high-precision numerical methods, and a lot of results have been obtained [11-15]. For the
space fractional advection-dispersion equations, Meerschaert and Tadjeran [11] point out that the
standard Griinwald difference operator to approximate the Riemann-Liouville fractional derivative is
unconditionally unstable regardless of the implicit and explicit Euler methods, so a modified Griinwald
difference operator, called the shifted Griinwald difference operator, is proposed to solve this problem.
Based on the shift Griinwald difference operator and its idea, more research has been done [16-20].
While developing numerical methods for fractional diffusion equations, some researchers have found
that if the power law (waiting time or jump length) is tempered by an exponential factor, it has practical
advantages [21-23]. Therefore, the time and space tempered fractional derivatives are obtained, and
the time tempered fractional derivative yields the time tempered fractional diffusion equation [22]. Luo
et al. [24] proposed an effective Lagrange-quadratic spline optimal collocation method to solve it. The
space tempered fractional derivative yields the space tempered fractional diffusion equation [23]. It is
very important to develop numerical methods for tempered fractional diffusion equations.

A common way to solve the space tempered fractional diffusion equation is to develop a modified
Griinwald difference operator based on the idea of the shifted Griinwald difference operator, called
the tempered shifted Griinwald difference operator by Bacumer and Meerschaert [25], which is used
to solve the tempered fractional advection-dispersion equation, but the space direction has only
first-order precision. Based on the idea of the tempered shifted Griinwald difference operator, Li
and Deng [26] obtained a class of second-order approximations of left and right Riemann-Liouville

(1.3)
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tempered fractional derivatives by using the weighted idea, called the tempered weighted and shifted
Griinwald difference operators, which combined with the Crank-Nicolson method is used to solve
the two-sided tempered fractional diffusion equations. See more studies on space-time tempered
fractional differential equations [27, 28], time tempered fractional differential equations [29, 30], and
space tempered fractional differential equations [31-35]. Similar to the quasi-compact scheme of
fractional diffusion equations [36—38], it is natural to think of applying the quasi-compact technique
to the numerical solutions of two-sided tempered fractional diffusion equations. However, due to the
incompatibility of the left and right Riemann-Liouville tempered fractional quasi-compact operators,
Yu et al. [39] considered the quasi-compact technique on the one-sided tempered fractional diffusion
equations and obtained that the numerical schemes are stable and convergent with order O(t + h?)
and the schemes don’t depend on time and space steps. The high-order quasi-compact scheme of the
two-sided tempered fractional diffusion equation needs to be studied.

The novelty of this paper is that the fourth-order numerical schemes of the one-sided tempered
fractional diffusion equations are given, and the convergence accuracy is one order higher than that
of the existing literature. In the process of proposing the numerical schemes, the left and right
third-order Riemann-Liouville tempered derivatives will be generated, so it is necessary to study
their effective second-order numerical approximations, and we obtain them through the definition of
Riemann-Liouville tempered integer derivatives. Finally, the effective fourth-order numerical schemes
for solving these two classes of problems are obtained. In addition, there is a simpler numerical scheme
that will be available to solve the two-sided fractional advection-diffusion equations [38] by using the
idea of this paper.

The remaining sections of this paper are arranged as follows: Section 2 gives the fourth-order quasi-
compact approximations of tempered fractional derivatives. In Section 3, the numerical scheme for
solving problems (1.1) and (1.2) are derived. The stability and convergence of the numerical schemes
are proved in Section 4. Section 5 shows by examples that the numerical schemes are effective. Finally,
a brief summary of this work is given in Section 6.

2. Fourth-order quasi-compact approximations of tempered fractional derivatives
Define a fractional Sobolev space S7**(R),
STR) ={v|v € Li(R),and f (] + W)™ P (w)ldw < oo},
R

where P(w) = fR v(x)e~™*dx is the Fourier transform of v(x).

Lemma 2.1. [25,26] Let 1 < @ < 2, A > 0. The shift number p is an integer, h is the step size, v(x)
is defined on the bounded interval [a, b], and belongs to S""*(R) after zero extension on the interval
X € (—00,a) U (b, +00). The tempered and shifted Griinwald type difference operators are defined as

[%541+p
. 1 @) —(k—
A = > 8" P~ (k= ph),
k=0
2.1
(%2 1+p 2.1
Aty = 3 g S Py + (k- o)
k=0
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then

AP y(x) = D‘”v(x)+Z P DY Ok + Oh™),

2.2)
Ary(x) = DYlv(x) + Z o DRty ok + Oh™),
k=1
where g(“) = (=1 Dk = 0) denotes the normalized Griinwald weights, that is,
(1-s) = Z g s, 2.3)
c,” are the power series expansion coefficients of the function W,(s) = ePS(l_e:) Z c;’'s*, and the

[irst four coefficients are given as

' =1,

o @

Cl P = p - 55

wp  12P% = 12pa + a + 3a?

2 = 24 ’

wp 8PP —12p%a +2p(a +3a%) - - a’
gl = 23 .

Remark 2.1. Let the equations be

Yityotya=1,
Vlccf’l + Yoy’ +)’—1C? "=,

8| -1 _
Yics +y0c3 +y_ic5” =0,

then

1
v = E(a2 +3a + 2),

1
Yo = 6(_(1/2 + 4)7

1
1= 500" =3a+2),

and there are the following approximations:
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1 [(F1+1
BZ’Av(x) = Z ypA" y(x) = Z w(“)v(x (k—1h)
p=-1

@l —a/2+a/+4 2+al 2 4

= Da”xV(X) + TDG’X ? V(X)h + O(h )
-’ +a+4

= (1 + 22222 D y(x) + O,

1 [b *]+1 '

B™y(x) = Z YpAitv(x) = Z wOv(x + (k = 1)h)
p=-1

@ —a’ +a+4 2+a.d 2 4

= Dx,b v(x) + TDx,b V(X)h + O(h )
-’ +a+4
=+ %h%“w y(x) + O(h*),
where
(a) — (y(la) g]((a) + ,y(()a) g]((a)l + ,y(al) g;a)z) e—(k—l)/lh (k >0, g(a) 0)
<“>+w;“>>0 w” <0, w?>0 k>3,
(2.5)
Z W((Y) (la/)e/lh + ,y(()(l/) + ,)/(111) )(1 _ e—/lh)a/’
in particular, when a = 1, the following approximations are given as
1
(I + 2 DEHDv() = Z VoA v(x) + O(hY)
p=—1
1
= ﬁ(e*hv(x +h) — e Mv(x — h)) + O(h*)
= B"Yv(x) + O(hY),
L v(x) + O(hY) 2.6)

1 1
(I + h21)25> ly(x) = ZypA”v(x)+0(h4

p=-1
= 2—1h(eﬂ"v(x —h) — e My(x + h)) + O(h")
= B"'v(x) + O(h").

For the first left and right Riemann-Liouville tempered derivatives Dcl,jﬁv(x) and D}C:lfv(x), we know

Div(x) = e ; [e™v(x)] = L + Av(x),
2.7)
Div(x) = - %[e‘“v(x)] = —d;(;) + (),
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so the normalized left and right Riemann-Liouville tempered fractional derivatives can be rewritten as

DZ’;}V(X) - A%(x) — a'/l"_lm
’ dx
=Div() + (@ = DAV - cma-l[% + (x)] (2.8)

=D2v(x) + (@ — DA V(x) — @2* ' Dyiv(x),
and

dv(x)

dx
=Di’2v(x) + (@ — DA"v(x) — aﬂ"‘l[—% + ()] (2.9)

Di’;v(x) — A%(x) + 1!

=Dv(x) + (@ = DA*(x) — ad* ' DLiv(x).

Let A? := (I + ch®D}) and A? := (I + cthig), where ¢ = # € (55, ¢]. Now, we give the
following theorem as the contribution of this paper.

Theorem 2.1. Ler v(x) € S jm(R), 1 <a <2 42=0, and the continuous operators N and A are
given to operate on the normalized left and right Riemann-Liouville tempered fractional derivatives,
respectively. Then,

AIDZ(x) + (@ = DA"A2v(x) — 2" ' AYD)iv(x)
1 (2.10)
=ADEv(x) + (@ = DATAIV(x) — @d® ' A D)v(x) + cw-l(g — R DDy (X)),

x~a,x

and

A?D™v(x) + (@ — DATAY(x) — @l ' A?D M y(x)

X, x.b

(2.11)

1
=AIDTV(x) + (@ = DA"AIv(x) — 21" ALD v(x) + cw—l(8 — o)W’ DY(Dpv(x))

have a fourth-order approximation, respectively. The details are as follows:

(). AYDTHv(x) = B 'v(x) + O(hY),
(ii). ALDYv(x) = B, 'v(x) + O(hY),

(ii). A%v(x) = C'v(x) + O(h*),
(iv). DDy v(x) = Pv(x) + 376,v(x) + 3A670(x) + 6, v(x) + O(h?),

(2.12)

and
(i). ALDv(x) = By 'v(x) + O(h®),
(ii). ALDpv(x) = B, 'v(x) + O(hY),

(iii). Atv(x) = C¥'v(x) + O(h*),

(iv). DXp(D (X)) = 1Pv(x) = 3026,v(x) + 3A62v(x) — 6, ,v(x) + O(K?),

(2.13)
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where

C'v(x) = v(x) + ch*e 62 [e™v(X)],

C‘Z’Av(x) = v(x) + ch*e™ 62 [e (X)),
1

o v(x) = 2—h[v(x + h) —v(x — h)],

5)29/(36) = %[V(X + h) = 2v(x) + v(x — h)], (2.14)

5?{’11/()6) = #[v(x —3h) — 6v(x = 2h) + 12v(x — h) — 10v(x) + 3v(x + h)],

6)3(’21/()6) = #[—v(x +3h) + 6v(x +2h) — 12v(x + h) + 10v(x) — 3v(x — h)].

Proof. From Remark 2.1, the conclusion of (i) and (i) in Eqs (2.12) and (2.13) can be obtained.
For the conclusion (iii) in Eqs (2.12) and (2.13), it is easy to obtain the following:

2
ASv(x) = v(x) + chze_“d—z[e“v(x)]
dx
= ce"v(x + h) + (1 = 2c)v(x) + cev(x = h) + O(hY)

= v(x) + ch’e™ 62 [eMv(x)] + O(h*)

= C'v(x) + O(hY),
! P (2.15)
A*v(x) = v(x) + ch*e™ —[e " v(x)]
dx?
= ce"v(x + h) + (1 = 2c)v(x) + cev(x — h) + O(h")
= v(x) + ch*e™ 6% [e " v(x)] + O(h*)
= C7'v(x) + O(h*).
Finally, DZ:ﬁ(D},jﬁv(x)) and Di:;(Di:gv(x)) can be represented as
2 d
DEADV0) = e (e e (e V()]
: ’ dx? dx
d d? d?
= D) + 3220 3 ) AV
dx dxz d.x3 (2 16)
d? d '
DD = et~ e [=e" (e ()
dv(x) &v(x)  d*v(x)
= Pv(x) - 32° 31 —~ :
V) dx * dx? dx3
For derivatives of order 1 to 3, we adopt the following discretizations, respectively,
d 1
:l(x) = S G+ ) = v(r = )] + O() = 6.v(x) + O),
ax (2.17)
dv(x) 1

= T x + ) = 2v(0) + v(x = )] + O(h*) = 6*v(x) + O(h?),

dx?

AIMS Mathematics Volume 9, Issue 10, 27102-27121.
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d*v(x) 1 2
5 = ﬁ[v(x —3h) —6v(x —2h) + 12v(x — h) — 10v(x) + 3v(x + h)] + O(h°)
=6 v(x) + O(h?),
P 1 (2.18)
——— = —[-v(x 4 3h) + 6v(x + 2h) — 12v(x + h) + 10v(x) — 3v(x — h)] + O(h?)
dx? 2h3
= 6,,v(x) + O(h?).
Thus, the whole conclusion of the theorem is proved. O

3. Derivation of the numerical schemes

In this section, we consider the numerical scheme for solving problems (1.1) and (1.2). Here,
we always assume that the function u(x, -) in problem (1.1) and (1.2) belongs to Sj*a(R) after zero
extension.

We make space grid {x; = a + ih}g” and time grid {z,, = I’lT}ON , Where h = bﬁ and 7 = % represent the
space step size and the time step size, respectively. Let u] = u(x;, ), f" = f(xi, t,), and U} represent
the numerical solution at the point (x;, #,).

For problem (1.1), the operator A{ is applied to both the left and right ends of equation. We obtain

ou(x,t)
ot

A” =K[ASDT u(x, ) + (@ — DA"ASu(x, 1) — ad* ' ALD)u(x, 1)

x~a,x

1
+ @A (2 = DD, 0)] + ALf (1), 3.1)

then the backward Euler method is carried out at the point (x;, t,,) to discrete the time partial derivative,
and by Theorem 2.1, we get

' — !
CoN(———) =K[BY"u} + (@ — DA"CP'u! — @A™ ' B, u?
T
1
+ cw—lhz(8 — O] + 376, + 3263 + 6, )]
+CO'f"+R!, 1<n<N, 1<i<M-]1, (3.2)

where R! = O(t + h*) is the local truncation error.
Removing the local truncation error in Eq (3.2) yields the numerical scheme as

CHU! - UMY = 7K[BP' UL + (@ — DACIUY — @A ' B UY

1
+ oz/l"_lh2(g — XU +32°6,U} + 346U} + 6, UN] +1C f7 (3.3)
the matrix form of the numerical scheme (3.3) can be written as

(C® —7KP —tKQ)U" = COU"™ + 1COf" + F", G.4)

AIMS Mathematics Volume 9, Issue 10, 27102-27121.
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where P = B9 +(a—1)A"C®—aA*' BV +(: —)a1**h’E, Q = (:—c)ad*'h* 322DV +31D?P + D),

v =, U5,.., U}

M-2>
(@) (@)
wi Wy
(@) (@) (@)
W, wy Wo
1
(@) —
B'Y = T
(@) (@) (@)
Wyo Wyu-s Wy
(@) (@) (@)
Wyt Wy Wus
1-2¢c ce*
ce™ 1-2¢ ce™
Cc@ —
Ce—/lh
0 e/lh
_ e—/lh 0 e/lh
1
g = L
2h
e
0 1
-1 0 1
1
ph -
2h
-1

AIMS Mathematics

Wy

W,

1-2c

Ce—/lh

(@) (@)
W

(@) W(la)

Cexlh

1-2c¢

Ui D8 = e s fir_ DT, E is the identity matrix of order M — 1,

) (3.5)

) (3.6)

(3.7)

(3.8)

Volume 9, Issue 10, 27102-27121.
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-2 1
1 -2 1
D(Z) _ i . . . (3 9)
= R , ,
1 -2 1
1 =2
-10 3
12 -10 3
. -6 12 -10 3
DY = — : (3.10)
21 ¢ 12 -10 3
1 -6 12 -10
and
ce 0
n n—1 n n 0 n—1 n n N
0 ceth
Bt (@ — DA%V 4 e (L oot (2L 4 3 6y
i+ (= 0ad (=)
% + 1 _ /la_]h2 L}
+ KU} G csz )
I
wh
h(r
0
+7KU", (:) . (3.11)

wo 207t 1 172032 | 34, 3
h—g + C(CY - 1)/1“6/”1 - % + (g - c)a/l“ lhz(ﬁ + W + ﬁ)

The same idea is used to solve problem (1.2). The operator A{ is applied to both the left and right
ends of the equation, and we obtain

2 Ou(x, 1)

A
ot

=K[ATDu(x, 1) + (@ — D)A"ATu(x, 1) — ad* ' ALDju(x, 1) (3.12)

x,b X,

AIMS Mathematics Volume 9, Issue 10, 27102-27121.
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1
+ B (2 — DD pux, )] + ALf(x. ), (3.13)

then the backward Euler method is carried out at the point (x;, #,,) to discrete the time partial derivative.
By Theorem 2.1, we get

n_ ,n—1

Cri(——— T" ) =K[B"'u}! + (@ — DA"CIu! — ad®' B u!

1
+ cwl"‘lhz(g — O)(Xul + 3276, + 328%u] + 6 ul)]

X,

+COT AR, 1<n<N, 1<i<M-1,

(3.14)
where IAQ? = O(t + h*) is the local truncation error.
Removing the local truncation error in Eq (3.14) yields the numerical scheme as
Cr\U; - U™ = KBy UL + (@ — DA*CLUY — ad™ ' B UY
+ (w—llﬁ(é — U =32%6,U} +346°U7 = 62,UN] +7C f7 (3.15)
the matrix form of the numerical scheme (3.15) can be written as
(CY —1tKP - 1KQ)U" = CU" " + tC9Of" + F", (3.16)

where P = BV+(a—1)A°CW-@1* ' BV+(1-0)al*?W’E, Q = (—)a1* ' h*(=322DV+31DP-D®),
B — (B@)T, B — (BT, C@ = (CNT p= PT, DB = — (DT, Q =0,

ce'l 0

) n—1 n n 0 n—1 n n
F'=U; +1fy —Up) . + WUy, +1fy = Uy
ce

@

Wm
h(l
wi
+ KU}, N he
2+ (3 - 0)al ' h (5)
2+ (- 0a1 i (-32)
ws a,—Ah | al®le M ] a-172,=32 . 31 . 6
e tola— DA% + 55—+ (¢ —ad hA (5 + 35+ %)

wl a-1,h 2
0 a ,Ah al’ e 1 a-17,2,32 31 3

0
+7KU} (3.17)
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4. Stability and convergence analysis of the numerical schemes

In this section, we use the energy method to prove in detail that numerical schemes (3.3) and (3.15)
are valid. Before doing so, we first introduce some lemmas that will be used.

Lemma 4.1. [40] A real matrix A of order M is positive definite if and only if D = A+TAT is positive

definite.

Lemma 4.2. [4]1] Let T be a Toeplitz matrix with the generating function f(x) being a 2n-periodic
continuous real-valued function. Denote A,,;,,(T) and A,,,,(T) as the smallest and largest eigenvalues
of T, respectively. Then, we have

fmin(x) < /lmm(T) < /lmax(T) < fmax(x)a

where f,i,(X) and f.(x) denote the minimum and maximum values of f(x), respectively. In particular,
if f(x) is a nonpositive function and is not always zero, and f,;,(x) # fuax(X),

fmin(x) < /l(T) < fmax(x)-

Lemma 4.3. [41] (Weyl’s theorem). Let A,E € C™" be a Hermitian matrix and the eigenvalues
Ai(A), i(E), 4;(A + E) be arranged in an increasing order. Then, for each k = 1, 2,...,n, we have

A(A) + L4 (E) £ 4(A + E) < 44(A) + 2,(E).

Lemmad4.4. For1 < a < 2,0 < Ah < 1, then the matrices P, Q, and C'® in Eq (3.4) have the following
properties:

pii=m o (1-2002%@ - 1)+ (2 = )aa™?h? <0, i=1,2,..,M -1,

Diir1 = th—(? + cA%a — Det — ﬁa/l“‘le’”’, i=1,2,...M -2,
Pisli = h—i +cA%a - De ' + S-ad™ e, i=1,2,.,M -2,
(i). {Pii1 + Pis1i > 0, i=1,2,..,M-2,

Piki = mwe >0, i=1,2, . M-k-1, k=23,.,M-2,

piik =0, =12, . . M-k-1, k=2,3,..M-2,

+00 a—1
z wi + (Ah) (@ = D[1 = 2¢ + c(e™ + e™™)] + (£ = )a(Ah)**? + L (e~ — eth) <

and the matrix P is negative definite.
(ii). The matrix Q is negative definite.
(iii). For all given nonzero real column vectors €, C'® satisfies that

1 4
—€ele< efCYe < geTe.

12

Proof. (i). By simple calculation, it is easy to obtain the properties of the elements of the matrix P;
From the Gerschgorin disk theorem [42], we get that the matrix P is negative definite.

AIMS Mathematics Volume 9, Issue 10, 27102-27121.
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(ii). Note that Q = (£ —)ad* ' B*(322DV +3AD? + DY), so we just consider 342DV +31D? + D,
First, it is easy to show that the matrix 34°D"" + 31D® is negative definite; and then for the matrix

(3) _ DO 4 (DOHT . . . . . . .
D', let D = =————, which is a Toeplitz matrix, and the generating function [41] is

f(x) =

2
@(8 cos® x — 24 cos® x + 24 cos x — 8) = E(cosx -1’ <0,x € [-n, 7).
From Lemma 4.2, we can see that the matrix D is negative definite. Further from Lemma 4.1, the
matrix Q is negative definite.

@ 4 (Cl@)T . . . .
(iii). Let H = %, and the generating function of the matrix H is

f(x)=1-2c+ ce + e Mycosx, xe[-n 7).

From Lemma 4.2, we obtain 1 — c(e? + e +2) < A(H) < 1 + c(eM" + e — 2), and it is easy to

check 11—2 < A(H) < %, which means éeTe <e'He < %eTe, that is, éeTe < elCWe < %eTe.

Thus, all the conclusions of the lemma are proved. O

Lemma 4.5. [43] Assume that {k,} and {p,} are nonnegative sequences, and the sequence {¢,} satisfies

n—1 n—1
$o < 8o, Pn 580+ZP1+Zk1¢1, n>1,
1=0 1=0

where gy > 0. Then, the sequence {¢,} satisfies

n—1 n—1
$n < (80 + Z pz)ew(z k), n=1.
=0 =0

To prove the stability and convergence of numerical schemes by the energy method, we define
U, = {ulu = {u;} as a grid function defined on {x; = a + ik};' }, for u € U, and the corresponding

M-1
discrete Ly-norm is defined as |[ull;, = (h Y, u?)!/2. Next, we present the theoretical analysis.
i=1

Theorem 4.1. For a € (1,2), let 0 < Ah < 1, then the numerical scheme (3.3) is stable for solving
problem (1.1).

Proof. Let U! and V! represent the solution obtained by solving problem (1.1) using scheme (3.3) from
different initial values. Denoting &' = U! — V!, &" = (€], ¢}, ..., eﬁl_l)T, it can be seen from Eq (3.3)
that

(CY —1KP - 1KQ)e" = CWe" . 4.1)
Multiplying the left side of both sides of Eq (4.1) by h(e")!, we obtain
(e C¢" = h(e")' (tKP + TKQ)e" + h(e") C @& 4.2)
From Lemma 4.3, we know that matrix P + Q is negative definite, so

h(eMTCWe" < (e CWe! < S[(e") CVe" + h(e" )T CWe"], (4.3)

| =
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which implies that
h(EHTCPe" < h(e" )T CYe! < h(e"™HTCWe ! < ... < h(e®)TCW&. (4.4)

Finally, it follows from Lemma 4.4 that

1—12||g"||§2 <) CPe" < W) CWe’ < gns"ng, (4.5)
that is,
lle"liZ, < 161l
At this point, we have proved that the numerical scheme (3.3) is stable. m|

Theorem 4.2. For a € (1,2), let 0 < Ah < 1, then the numerical scheme (3.3) is convergent for solving
problem (1.1), that is, the following relationship is satisfied:

le"llz, < Ci(r +h*), 1<n<N,

where e" = (¢, ¢}, ..., e’}u_l)T, e! =u! — U?!, and C, is a constant independent of n, T, and h.

Proof. Subtracting (3.3) from (3.2) and from scheme (3.4), we obtain
(C —7KP - 71KQ)e" = CYe"" + TR", (4.6)

where R" = (R}, R}, ..., R}, ).
Let’s multiply both sides of (4.6) by h(e")!, which can be written as

h(e") C@e" = tKh(e") (P + Q)e" + h(e") C e + th(e")'R". 4.7
Denoting E" = h(e")" C@e", similar to the proof of Theorem 4.1,
1
Elle”lliz <E"
< E"' +2th(e")TR"

< E° + 27h Z(ek)TRk
k=1

<

YIS

n—1
1 1
Il + 2T(—48T||€”Ili2 + 127]IR"|I7,) + 27 E (Elleklli2 + 12/IRMI7,). (4.8)
k=1

Noticing that [le°||7 = 0, the Eq (4.8) can be rearranged as

n-1 n-1
"I, <7 )" e, + 5767 > IRKIE, + STOT IR, (4.9)
k=1 k=1

AIMS Mathematics Volume 9, Issue 10, 27102-27121.



27116

By the Lemma 4.5 (discrete Gronwall inequalities), we obtain

n—1
le"|I7, < €' (5767 Z IRM7, + 576T°IR"(I7,), (4.10)
k=1
that is,
lle"llz, < Ci(r + h*). 4.11)
Thus, the theorem is proved. O

By the same idea, we can obtain the following theorem, whose proof we skip here.

Theorem 4.3. For a € (1,2), let 0 < Ah < 1, then the numerical scheme (3.15) is stable for solving
problem (1.2).

Theorem 4.4. For a € (1,2), let 0 < Ah < 1, then the numerical scheme (3.15) is convergent for
solving problem (1.2), that is, the following relationship is satisfied:

le"ll7, < Ca(r + h), 1<n<N,
_ T _ . .
where " = (e}, €5, ...,¢e}, ), e! = u! — U, and C, is a constant independent of n, 7, and h.
5. Numerical experiments

In this section, we present some numerical experiments to verify the convergence accuracy of the
numerical schemes. Let

Order = log,, (lllelﬂ) ,

|e”L2,h/m
be the order of observation.

Example 5.1. Consider the following left Riemann-Liouville tempered fractional diffusion equation
with initial-boundary value problem

WD = pOty(x, 1) — Au(x, 1) — @ 2D 4 f(xh), (x,1) € (0,1) % (0, 11,
u(0,7) = 0,u(l,1) = ™4, t€[0,1],

u(x,0) = e x5, x€(0,1),

where 1 < @ < 2, and the linear source term is

F(7) 6—a]

f(x, 1) = ™™ [(1 + 29 — aA)x® + 621 'x° — mx ,

and the exact solution is u(x, t) = e"~*x°.
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Set the relationship between time step size and space step size as T = h* for all numerical
experiments. Choose different @, A, and space step size h, and use numerical scheme (3.3) to solve
Example 5.1. The error and observation order results obtained are shown in Table 1. From Table 1, it
can be seen that the space convergence order reaches the fourth order, and the numerical results are in
perfect agreement with the theoretical analysis.

Table 1. The numerical results obtained in Example 5.1

scheme (3.3)

atr = 1.

are computed by the numerical

A=1/5

A=1

=5

a h

llellz,

Order

llellz,

Order

llellz, Order Time(s)

1/10
1/15
1/20
1/25

1.1

1.3130e-04
2.6460e-05
8.4533e-06
3.4822e-06

3.9506
3.9665
3.9745

4.1820e-05
8.3497e-06
2.6544e-06
1.0901e-06

3.9736
3.9836
3.9882

4.7268e-06
1.0110e-06
3.3111e-07
1.3823e-07

0.0975
0.7121
2.7296
8.2779

3.8038
3.8801
3.9147

1/10
1/15
1/20
1/25

L.5

2.8480e-04
5.7261e-05
1.8275e-05
7.5243e-06

3.9564
3.9700
3.9768

1.3493e-04
2.6583e-05
8.3898e-06
3.4300e-06

4.0065
4.0088
4.0084

2.7545e-05
5.8428e-06
1.9067e-06
7.9433e-07

0.1022
0.6929
2.9840
8.7314

3.8243
3.8926
3.9241

1/10
1/15
120
1/25

1.9

1.4830e-04
2.9868e-05
9.5371e-06
3.9271e-06

3.9521
3.9683
3.9763

7.7791e-05
1.4949¢-05
4.6496e-06
1.8829¢e-06

4.0679
4.0596
4.0511

3.4075e-05
7.1197e-06
2.3064¢e-06
9.5663e-07

0.1108
0.7326
2.9485
8.6782

3.8615
3.9181
3.9438

Example 5.2. Consider the following right Riemann-Liouville tempered fractional diffusion equation
with initial-boundary value problem

ou(x,t)
ot

= Djj;fu(x, £) = %u(x, 1) + @A 245D 4 f(x, ), (x,0) € (0,1) x (0,11,
0,1 =é€',u(l,t) =0,
u(x,0) = e™(1 - x)8,

where 1 < @ < 2, and the linear source term is

f(x, 1) = ™ [(1 + 27 — a2?)(1 — x)® + 82A®7 (1 — x)’

and the exact solution is u(x, t) = (1 — x)3.

1€[0,1],
x€(0,1),

BRIO)
I -a

(1 -x)%"],

The numerical scheme (3.15) is used to solve Example 5.2, and the obtained numerical results are
presented in Table 2 for different @, A, and space step size A. From Table 2, we find that the space
convergence order is fourth order, and the numerical results are consistent with the theoretical results.
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Table 2. The numerical results obtained in Example 5.2 are computed by the numerical
scheme (3.15) atr = 1.

A=1/5

A=1

=35

a

h

llellz,

Order

llellz,

Order

llellz,

Order

Time(s)

1.1

1/10
1/15
1/20
1/25

9.1487e-04
1.8988e-04
6.1547e-05
2.5572e-05

3.8780
3.9161
3.9360

7.0276e-04
1.4515e-04
4.6930e-05
1.9468e-05

3.8900
3.9249
3.9431

1.1609¢-03
2.5294e-04
8.3946¢-05
3.5365e-05

3.7581
3.8340
3.8740

0.1055
0.7646
2.9746
8.9580

1.5

1/10
1/15
1/20
1/25

1.9184e-03
3.9926e-04
1.2964e-04
5.3930e-05

3.8712
3.9101
3.9305

2.2558e-03
4.7089¢-04
1.5301e-04
6.3662e-05

3.8638
3.9075
3.9298

7.2422e-03
1.5730e-03
5.2152e-04
2.1958e-04

3.7659
3.8375
3.8766

0.1153
0.7558
3.1384
9.1835

1.9

1/10
1/15
1/20
1/25

1.1269e-03
2.3282e-04
7.5358e-05
3.1293e-05

3.8893
3.9210
3.9385

1.5888e-03
3.3031e-04
1.0712e-04
4.4519e-05

3.8738
3.9143
3.9348

6.4974e-03
1.3517e-03
4.3885e-04
1.8250e-04

3.8722
3.9104
3.9320

0.1217
0.8132
3.1974
9.2827

6. Conclusions

In this paper, we focus on fourth-order numerical algorithms for one-sided tempered fractional

diffusion equations.

By using the quasi-compact technique, the fourth-order quasi-compact

approximations of the tempered fractional derivatives and the effective second-order approximations
of the third-order tempered derivatives are given. It is proved that the numerical schemes are stable
and convergent. Finally, some experiments are given to demonstrate the effectiveness of the numerical

schemes.
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