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Abstract: This paper aims to formulate a class of nonlinear hybrid stochastic time-delay neural
networks (STDNNs) with Lévy noise. Specifically, the coefficients of networks grow polynomially
instead of linearly, and the time delay of given neural networks is non-differentiable. In many practical
situations, nonlinear hybrid STDNNs with Lévy noise are unstable. Hence, this paper uses feedback
control based on discrete-time state and mode observations to stabilize the considered nonlinear hybrid
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1. Introduction

Neural networks are successful tools for pattern recognition and machine learning, but traditional
neural network models tend to ignore stochasticity, which may limit their performance and
applicability. Compared to traditional deterministic neural networks, stochastic neural networks
(SNNs) have greater robustness, generalization, and the ability to deal with uncertainty and noise,
making them more suitable for use in areas such as financial forecasting, image processing, and
natural language processing. During the evolution of many real neural networks, signal transmission
between neurons inevitably generates time delay. The time delay has an important impact on the
stability, oscillatory characteristics, and dynamic response of SNNs. Therefore, it is significant to
analyze stochastic time-delay neural networks (STDNNs). There are numerous research results on
STDNNs (see, e.g., [1–5]).

The classic enforcement condition is that the network coefficients satisfy the linear growth
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condition. However, in practice, such a restriction is too stringent for many STDNNs. Consequently,
numerous scholars have shifted their focus to researching highly nonlinear STDNNs. Recently, the
stability criteria for stochastic differential delay equations (SDDEs) driven by G-Brownian motion with
highly nonlinear coefficients have been studied in [6], the finite-time stabilization criteria for highly
nonlinear stochastic coupled systems of networks have been explored in [7], and a delayed feedback
control function has been designed in [8] to stabilize nonlinear hybrid STDNNs with time-varying
delays. Nevertheless, the above discriminant rules can only be applied in cases where the time delay
of SNNs is constant or a differentiable function. In fact, these conditions may not be natural features
of real-world SNNs. For instance, piecewise constant delays or sawtooth delays often appear in either
sampled data control or network-based control (see, e.g., [9]), and yet these time delays are clearly
not differentiable. Technically, it is crucial to ensure that the time delay is not limited to a constant or
differentiable function to extend the applicability and expansiveness of dynamic evolution properties.

In many circumstances, neural networks are also subject to abrupt changes in parameters and
structure caused by uncontrollable external factors, which can be efficiently modeled using Markov
chains. As a result, STDNNs with Markov chains, namely hybrid STDNNs, are widely used to describe
more complex dynamic phenomena in networks (see, e.g., [10–13]). However, Markov chains are
unable to simulate random jumps of network states. In reality, many networks experience random
state jumps due to unforeseen events such as earthquakes, storms, and floods. Lévy processes can
describe such random jumps well, as these processes have significant tail and peak pulses. There are
several related research achievements (see, e.g., [14–17]). Lately, the stability of hybrid stochastic
delayed Cohen–Grossberg neural networks driven by Lévy noise has been investigated in [18], and the
stabilization problem for a class of hybrid SDDEs with Lévy noise has been studied in [19]. Hence, it
is worthwhile to consider Lévy noise in hybrid STDNNs.

It is already known that the stability of SNNs may decrease or eventually turn unstable under time
delay, Markov chains, and so on. It is significant to consider how to make unstable SNNs stable.
Various control strategies have been advanced to achieve the stabilization of a system. For example,
Li and Mao used delayed feedback control to stabilize nonlinear hybrid SDDEs in [20]. Li and co-
workers proposed feedback control based on discrete-time observations of state and mode to stabilize
hybrid SDDEs with non-differential delays in [21].

Note that the stabilization problem of highly nonlinear STDNNs has been discussed in [8], but does
not take into account non-differentiable time delay. The delayed feedback controls used in [19, 20]
have considered the time lag between the time of state observation and when the corresponding control
reaches the system. Still, the control functions require continuous-time observations of system state
and mode; in contrast, the controller based on discrete-time state and mode observations is easier to
implement in practice and relatively less costly. Inspired by the preceding discussion, the primary
objective of this paper is to apply discrete-time feedback control for stabilizing nonlinear hybrid
STDNNs with Lévy noise, where the time delay is non-differentiable. The major advantages of this
paper can be categorized as below:

(1) The coefficients of the considered STDNNs are highly nonlinear, and the time delay is non-
differentiable, which makes the results we obtained more general.

(2) The introduction of Markov chains and Lévy noise to nonlinear STDNNs makes theoretical
exploration in this paper more challenging. Additionally, the feedback control employed is more
practical than continuous-time feedback control because it is based on discrete-time states and mode
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observations.
(3) This paper develops new stabilization criteria for H∞ stability, asymptotic stability, and

exponential stability of global solutions for nonlinear hybrid STDNNs with Lévy noise.
Notations: We denote by ℜn the n-dimensional Euclidean space, ℜ = (−∞,+∞), and ℜ+ =

[0,+∞). For Φ ∈ ℜn, we define |Φ| as its Euclidean norm. Denote by BT the transpose of a vector or
matrix B. With respect to a matrix B, |B| =

√
trace(BT B) denotes its trace norm. If B is a symmetric real

matrix, its smallest and largest eigenvalues are expressed by λmin(B) as well as λmax(B), respectively.
The family of càdlàg functions ϱ : [−θ, 0]→ℜn are denoted by D

(
[−θ, 0];ℜn) for θ > 0, with its norm

defined as ∥ϱ∥ = sup−θ≤u≤0|ϱ (u) |. The family of all bounded, F0-measurable, D([−θ, 0];ℜn)-valued
random variables is denoted as Db

F0
([−θ, 0];ℜn). For real numbers m and n, m∨n = max {m, n} as well

as m ∧ n = min {m, n}. Let B be a subset of Ω, and IB represents its indicator function. Specifically,
IB(ν) = 1 if ν ∈ B and 0 else. Suppose that W(t) = (W1(t), · · · ,Wm(t)) is an m-dimensional Brownian
motion defined in the complete probability space (Ω,F , {Ft}t≥0 ,P) whose associated filtration {Ft}t≥0

satisfies the usual conditions. The Poisson random measure N(dt, dτ) is formed on ℜ+ × Y , where
Y = ℜn − {0}. The compensated Poisson random measure, denoted as Ñ(dt, dτ) = N(dt, dτ)−ϑ(dτ)dt,
is introduced, with ϑ being a Lévy measure that satisfies∫

Y
(1 ∧ |τ|2)ϑ(dτ) < ∞. (2.1)

In general, this pair (W,N) is known as Lévy noise.

Remark 1.1. (2.1) describes the properties of Lévy measure ϑ for noise, ensuring that the noise exhibits
appropriate heavy-tailed behavior. Specifically, the term 1 ∧ |τ|2 is used to regulate the noise tail,
avoiding the excessive effects of tremendous noise values on the system. In physical systems, this
type of noise is often used to describe phenomena with long memory or long-range dependence. In
biological systems, noise sources that satisfy (2.1) are utilized to model processes with significant
stochasticity.

2. Model description and preliminaries

Let π(t), t ≥ 0 be a right-continuous Markov chain on the probability space with state space S =
{1, 2, . . . ,N} and generator Γ = [γi j]N×N , where γi j ≥ 0 and γii = −

∑N
j=1, j,i γi j ≤ 0. Furthermore,

we assume that π(·),W(·), Ñ(·, ·) are mutually independent. Generally speaking, the nonlinear hybrid
STDNNs subject to Lévy noise have the following form:

dι(t) =
[
−A(π(t))ι(t−) + B(π(t)) f (ι(t−), ι((t − θt)−), π(t), t)

]
dt + h(ι(t−), ι((t − θt)−), π(t), t)dW(t)

+

∫
0<|τ|<e

g(ι(t−), ι((t − θt)−), π(t), t, τ)Ñ(dt, dτ)

+

∫
|τ|≥e

G(ι(t−), ι((t − θt)−), π(t), t, τ)N(dt, dτ),

(2.2)

where
A(π(t)) = diag {a1(π(t)), cdots, an(π(t))} ,

B(π(t)) =
(
bi j(π(t))

)
n×n

,
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and for any 1 ≤ i, j ≤ n, ai(π(t)) > 0 and bi j(π(t)) are real values. ι(t−) = limu→t ι(u), f ∈
C

(
ℜn ×ℜn × S ×ℜ+;ℜn), h ∈ C

(
ℜn ×ℜn × S ×ℜ+;ℜn×m)

, g ∈ C
(
ℜn ×ℜn ×S ×ℜ+ × Y;ℜn),

G ∈ C
(
ℜn ×ℜn × S ×ℜ+ × Y;ℜn). The constant e ∈ (0,∞) lets us clarify the meaning of ‘large’

and ‘small’ jumps in concrete applications. Additionally, θt is a time-varying function. Notice that
the last integral term in (2.2) represents a compound Poisson process, which can be easily managed
by employing techniques such as the interlacing method (see, e.g., [22]). Therefore, it is meaningful
to focus on equations driven by continuous noise interspersed with small jumps by omitting the large
jump term. Consequently, this study will focus on the reduced STDNNs with small jumps in the form

dι(t) =
[
−A(π(t))ι(t−) + B(π(t)) f (ι(t−), ι((t − θt)−), π(t), t)

]
dt + h(ι(t−), ι((t − θt)−), π(t), t)dW(t)

+

∫
0<|τ|<e

g(ι(t−), ι((t − θt)−), π(t), t, τ)Ñ(dt, dτ)
(2.3)

with initial condition  {ι(t) : −θ ≤ t ≤ 0} = ς ∈ Db
F0

([−θ, 0];ℜn),

π(0) = π0,
(2.4)

where ι(t−) = limu→t ι(u). Next, we will describe the required assumptions and lemmas.

Assumption 2.1. The time-varying delay θt is a Borel measurable function fromℜ+ to [θ1, θ] with the
following properties

θ̄ := lim sup
∆→0+

(
sup
u≥−θ

µ(Mu,∆)
∆

)
< ∞, (2.5)

where θ1 and θ are constants with 0 ≤ θ1 < θ,Mu,∆ =
{
t ∈ ℜ+ : t − θt ∈ [u, u + ∆)

}
as well as µ(·)

represents the Lebesgue measure onℜ+.

Remark 2.1. It is important to note that Assumption 2.1 is indeed weaker than the condition that the
time-varying delay θt is differentiable and its derivative is bounded by a positive constant less than 1.
Furthermore, many time-varying delay functions actually satisfy Assumption 2.1. For instance, assume
that θt is satisfying the Lipschitz condition, namely,

|θt − θu| ≤ θ2(t − u) for all 0 ≤ u < t < ∞,

where θ2 ∈ (0, 1). For any u ≥ −θ, let s = inf
{
t ∈ Mu,∆

}
. It is clear that s ∈ Mu,∆, that is, u ≤ s − θs <

u + ∆. If t ≥ s + ∆
1−θ2

, then

t − θt − u ≥ t − θt − (s − θs) ≥ t − s − |θt − θs| ≥ (1 − θ2)(t − s) ≥ ∆.

Consequently, t − θt ≤ u + ∆, namely, t < Mu,∆. Put differently, we have Mu,∆ ⊂
[
s, s + ∆

1−θ2

)
, which

implies µ(Mu,∆)
∆
≤ 1

1−θ2
. Since this holds for any u ≥ −θ and ∆ ∈ (0, 1), Assumption 2.1 must hold with

θ̄ = 1
1−θ2

. This suggests, in particular, that many sawtooth delays, such as

θt =

∞∑
i=1

[
(0.15 + 0.05(t − 2i)) I[2i,2i+1)(t) + (0.25 − 0.05(t − 2i)) I[2i+1,2(i+1))(t)

]
satisfy Assumption 2.1.
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Lemma 2.1. [19] Under Assumption 2.1 is satisfied, let T > 0 and η is a càdlàg function from
[−θ,T − θ1] toℜ+ with at most finite number of jumps in any finite time interval. Then∫ T

0
η(t − θt)dt ≤ θ̄

∫ T−θ1

−θ

η(t)dt. (2.6)

Remark 2.2. Lemma 2.2 in [21] demands that η is continuous, but here the solution is càdlàg. Hence
we need to come up with a new lemma, that is, Lemma 2.1.

Furthermore, the coefficients of (2.3) considered are polynomially rather than linearly increasing,
namely highly nonlinear. Therefore, we give the assumption as follows:

Assumption 2.2. Suppose that for any constants h > 0, k, k̄, l, l̄ ∈ ℜn and |k| ∨ |k̄| ∨ |l| ∨ |l̄| ≤ h, there
exists a constant Hh satisfying

| f (k, l, i, t) − f (k̄, l̄, i, t)| ∨ |h(k, l, i, t) − h(k̄, l̄, i, t)| ≤ Hh(|k − k̄| + |l − l̄|), (2.7)

where (i, t) ∈ S × ℜ+. In addition, there are constants H > 0, β1 > 1, as well as βi ≥ 1 (2 ≤ i ≤ 4)
satisfying

| f (k, l, i, t)| ≤ H(|k| + |l| + |k|β1 + |l|β2),
|h(k, l, i, t)| ≤ H(|k| + |l| + |k|β3 + |l|β4).

(2.8)

Under Assumption 2.2, the existence and uniqueness of the maximal local solution for (2.3) can
only be ensured. However, it has the potential to blow up to infinity in finite time. To escape this
potential explosion, the following assumptions become necessary:

Assumption 2.3. Suppose there exist some positive constants α, β, ω1, ω2, ω3 which make

β > (α + β1 − 1) ∨ [2(β1 ∨ β2 ∨ β3 ∨ β4)], α ≥ 2(β1 ∨ β2 ∨ β3 ∨ β4) − β1 + 1 (2.9)

and

ιT [−A(i)ι + B(i) f (ι, κ, i, t)] +
β − 1

2
|h(ι, κ, i, t)|2 ≤ ω1(|ι|2 + |κ|2) − ω2|ι|

α + ω3|κ|
α (2.10)

hold. Furthermore, let us assume that ω2 > ω3θ̄. Assuming that

q1 = βω2 −
ω3β(β − 2)
α + β − 2

, q2 =
ω3αβ

α + β − 2
,

we obtain q1 > q2θ̄.

Assumption 2.4. [19] For any L ∈ ℜ+, there exists a constant ϕL so that for any k, k̄, l, l̄ ∈ ℜn and
|k| ∨ |k̄| ∨ |l| ∨ |l̄| ≤ L, we have∫

0<|τ|<e
|g(l, k, i, t, τ) − g(l̄, k̄, i, t, τ)|ϑ(dτ) ≤ ϕL(|l − l̄| + |k − k̄|), (2.11)

where (i, t) ∈ S ×ℜ+. There are constants χ > 0 and ω ≥ 1 so that for 0 < |τ| < e, satisfying

|g(ι, κ, i, t, τ)| ≤ χ|τ|ω(|ι| + |κ|). (2.12)
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Under Assumptions 2.1–2.4, it is known that (2.3) possesses a unique global solution and
sup−θ≤u<∞ E |ι(u)|β < ∞, but the stability of (2.3) is not guaranteed (see, e.g., [19]). Our goal is to
devise a feedback control function u(·, ·, ·) to enable the controlled nonlinear hybrid STDNNs with
Lévy noise

dι(t) =[−A(π(t))ι(t−) + B(π(t)) f (ι(t−), ι((t − θt)−), π(t), t) + u(ι(σt−), π(σt), t))]dt

+ h(ι(t−), ι((t − θt)−), π(t), t)dW(t) +
∫

0<|τ|<e
g(ι(t−), ι((t − θt)−), π(t), t, τ)Ñ(dt, dτ)

(2.13)

become stable, where u : ℜn × S × ℜ+ → ℜ
n is Borel measurable, ι(σt−) = limu→t ι(σu), as well as

σt = [t/λ]λ, where [t/λ] is the integer part of t/λ. λ > 0 denotes the duration between two consecutive
observations. The assumption about the function u(·, ·, ·) will be made as below.

Assumption 2.5. Consider all ι, κ ∈ ℜn, suppose that there is a constant ρ satisfying

|u(ι, i, t) − u(κ, i, t)| ≤ ρ|ι − κ|, (2.14)

where (i, t) ∈ S ×ℜ+. Also suppose that u(0, i, t) = 0.

To deal with the discrete-time Markov chain, we introduce the lemma as follows:

Lemma 2.2. [21] For all t ≥ 0,m > 0, as well as i ∈ S, one has

P (π(u) , i for some u ∈ [t, t + m]|π(t) = i) ≤ 1 − e−γ̄m,

where γ̄ = maxi∈S(−γii).

3. Boundedness

Within this section, we will present a theorem establishing the existence and uniqueness of a global
solution for (2.13), with the property that the solution is Lβ-bounded.

Theorem 3.1. According to Assumptions 2.1–2.5, for any initial condition (2.4), the hybrid
STDNNs (2.13) yield a unique global solution ι(t) on [−θ,∞) satisfying

sup
−θ≤t<∞

E|ι(t)|β < ∞. (3.1)

Proof. Define a bounded function φ : ℜ+ → [0, λ] with the form

φ(t) = t − mλ for mλ ≤ t < (m + 1)λ, m = 0, 1, 2, · · · ,

then (2.13) can be represented as

dι(t) =[−A(π(t))ι(t−) + B(π(t)) f (ι(t−), ι((t − θt)−), π(t), t) + u(ι((t − φ(t))−), π(t − φ(t)), t))]dt

+ h(ι(t−), ι((t − θt)−), π(t), t)dW(t) +
∫

0<|τ|<e
g(ι(t−), ι((t − θt)−), π(t), t, τ)Ñ(dt, dτ).

(3.2)

Given F (ι) = |ι|β, from the generalized Itô formula, one has

dF (ι(t)) = LF (ι(t−), ι((t − θt)−), ι((t − φ(t))−), π(t), π(t − φ(t)), t)dt + M(t), (3.3)
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where the specific form of M(t) is not used and will not be described in detail here. The operator LF
fromℜn ×ℜn ×ℜn × S × S ×ℜ+ toℜ is defined as

LF (ι, κ, z, i, î, t) =β|ι|β−2ιT
[
−A(i)ι + B(i) f (ι, κ, i, t) + u(z, î, t)

]
+
β

2
|ι|β−2|h(ι, κ, i, t)|2 +

β(β − 2)
2
|ι|β−4|ιT h(ι, κ, i, t)|2

+

∫
0<|τ|<e

{
|ι + g(ι, κ, τ, i, t)|β − |ι|β − β|ι|β−2ιT g(ι, κ, τ, i, t)

}
ϑ(dτ)

≤β|ι|β−2
(
ιT

[
−A(i)ι + B(i) f (ι, κ, i, t) + u(z, î, t)

]
+
β − 1

2
|h(ι, κ, i, t)|2

)
+

∫
0<|τ|<e

{
|ι + g(ι, κ, τ, i, t)|β − |ι|β − β|ι|β−2ιT g(ι, κ, τ, i, t)

}
ϑ(dτ).

In accordance with the proof of [19, Lemma 2.7], we can find two constants b1, b2 > 0 that satisfy∫
0<|τ|<e

[
|ι + g(ι, κ, τ, i, t)|β − |ι|β − β|ι|β−2ιT g(ι, κ, τ, i, t)

]
ϑ(dτ) ≤ b1|ι|

β + b2|κ|
β. (3.4)

Using Assumptions 2.3, 2.5, and (3.4), we can conclude that

LF (ι, κ, z, i, î, t) ≤ βρ|ι|β−1|z| + ω1β|ι|
β + ω1β|ι|

β−2|κ|2 − ω2β|ι|
α+β−2 + ω3β|ι|

β−2|κ|α + b1|ι|
β + b2|κ|

β. (3.5)

Based on Assumption 2.3, we can pick a constant δ0 to ensure that

0 < δ0 < q1 − q2θ̄, 2 −
1
θ

ln
q1 − δ0

q2θ̄
> 0

and further, another constant δ to satisfy

0 < δ < min

2
θ̄
,

2 − 1
θ

ln q1−δ0
q2θ̄

1 + q1−δ0
q2

 .
According to Young inequality, we have

βρ|ι|β−1|z| ≤ û|ι|β + δ|z|β,

ω1β|ι|
β−2|κ|2 ≤ û|ι|β + δ|κ|β,

β|ι|β−2|κ|α ≤
β − 2

α + β − 2
|ι|α+β−2 +

α

α + β − 2
|κ|α+β−2,

where û denotes a positive constant. Therefore, we can obtain

LF (ι, κ, z, i, î, t) ≤ U − 2|ι|β + δ|κ|β + δ|z|β − (q1 − δ0)|ι|α+β−2 + q2|κ|
α+β−2, (3.6)

where U = sups≥0

[
(2û + 2 + ω1β + b1 + b2)|s|β − δ0|s|α+β−2

]
. Since the proof closely resembles that

of [21, Theorem 3.1], it is omitted here. □

Remark 3.1. û changes may occur from line to line, but their particular form is not used.
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4. Stabilization

This section discusses the stabilization characteristic of (2.13). Next, we introduce some necessary
assumptions.

Assumption 4.1. Designing the control function u : ℜn × S × ℜ+ → ℜ
n, for any ι, κ ∈ ℜn, we can

find constants pi, p̄i ∈ ℜ, positive constants p̂i, ĉi,mi, m̄i, as well as ci, c̄i, ni, n̄i ∈ ℜ+(i ∈ S) satisfying

2
[
ιT [−A(i)ι + B(i) f (ι, κ, i, t) + u(ι, i, t)] +

1
2
|h(ι, κ, i, t)|2

]
+

∫
0<|τ|<e

[
|ι + g(ι, κ, i, t, τ)|2 − |ι|2

− 2ιT g(ι, κ, i, t, τ)
]
ϑ(dτ) ≤ pi|ι|

2 + ci|κ|
2 − mi|ι|

α + ni|κ|
α,

(4.1)

ιT [−A(i)ι + B(i) f (ι, κ, i, t) + u(ι, i, t)] +
β1

2
|h(ι, κ, i, t)|2 ≤ p̄i|ι|

2 + c̄i|κ|
2 − m̄i|ι|

α + n̄i|κ|
α, (4.2)

and∫
0<|τ|<e

[
|ι + g(ι, κ, i, t, τ)|β1+1 − |ι|β1+1 − (β1 + 1)|ι|β1−1ιT g(ι, κ, i, t, τ)

]
ϑ(dτ) ≤ p̂i|ι|

β1+1 + ĉi|κ|
β1+1, (4.3)

where (i, t) ∈ S ×ℜ+, while

P1 : = −diag(p1, p2, · · · , pN) − Γ and

P2 : = −diag((β1 + 1)p̄1 + p̂1, · · · , (β1 + 1)p̄N + p̂N) − Γ

are nonsingular M-matrices. In addition,

ξ1 < 1, ξ3θ̄ < ξ2,
ξ4(β1 − 1 + 2θ̄)

β1 + 1
< 1 and

ξ6(β1 − 1 + αθ̄)
α + β1 − 1

< ξ5, (4.4)

where
ξ1 = max

i∈S
ϱici, ξ2 = min

i∈S
ϱimi,

ξ3 = max
i∈S

ϱini, ξ4 = max
i∈S

[
(β1 + 1)c̄i + ĉi

]
ϱ̄i,

ξ5 = min
i∈S

(β1 + 1)ϱ̄im̄i, ξ6 = max
i∈S

(β1 + 1)ϱ̄in̄i,

(4.5)

in which
(ϱ1, · · · , ϱN)T = P−1

1 (1, · · · , 1)T ,

(ϱ̄1, · · · , ϱ̄N)T = P−1
2 (1, · · · , 1)T .

(4.6)

Based on the principles of M-matrix theory, we can conclude that the nonsingularity of the M-matrices
P1 and P2 ensures that all ϱi and ϱ̄i defined in (4.6) are positive.

Define the function
V(ι, i) = ϱi|ι|

2 + ϱ̄i|ι|
β1+1, (ι, i) ∈ ℜn × S, (4.7)
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and the function LV by

LV(ι, κ, i, t) =2ϱi

(
ιT

[
−A(i)ι + B(i) f (ι, κ, i, t) + u(ι, i, t)

]
+

1
2
|h(ι, κ, i, t)|2

)
+ (β1 + 1)ϱ̄i

(
|ι|β1−1ιT

[
−A(i)ι + B(i) f (ι, κ, i, t) + u(ι, i, t)

]
+

1
2
|ι|β1−1|h(ι, κ, i, t)|2

+
β1 − 1

2
|ι|β1−3|ιT h(ι, κ, i, t)|2

)
+

N∑
k=1

γik(ϱk|ι|
2 + ϱ̄k|ι|

β1+1)

+

∫
0<|τ|<e

ϱi

[
|ι + g(ι, κ, i, t, τ)|2 − |ι|2 − 2ιT g(ι, κ, i, t, τ)

]
ϑ(dτ)

+

∫
0<|τ|<e

ϱ̄i

[
|ι + g(ι, κ, i, t, τ)|β1+1 − |ι|β1+1 − (β1 + 1)|ι|β1−1ιT g(ι, κ, i, t, τ)

]
ϑ(dτ).

(4.8)

According to (4.1)–(4.3), (4.5), (4.6), and Young inequality, we can deduce that

LV(ι, κ, i, t) ≤ − |ι|2 + ξ1|κ|
2 − ξ2|ι|

α + ξ3|κ|
α − (1 −

ξ4(β1 − 1)
β1 + 1

)|ι|β1+1

+
2ξ4

β1 + 1
|κ|β1+1 − (ξ5 −

ξ6(β1 − 1)
α + β1 − 1

)|ι|α+β1−1 +
ξ6α

α + β1 − 1
|κ|α+β1−1.

(4.9)

Assumption 4.2. Suppose that there are constants ψi > 0(1 ≤ i ≤ 9) to make

LV(ι, κ, i, t) + ψ1(2ϱi|ι| + (β1 + 1)ϱ̄i|ι|
β1)2 + ψ2| − A(i)ι + B(i) f (ι, κ, i, t)|2 + ψ3|h(ι, κ, i, t)|2

+ ψ4

∫
0<|τ|<e

|g(ι, κ, i, t, τ)|2ϑ(dτ) ≤ −ψ5|ι|
2 + ψ6|κ|

2 − Φ(ι) + ψ7Φ(κ)
(4.10)

and
ψ8|ι|

α+β1−1 ≤ Φ(ι) ≤ ψ9(1 + |ι|α+β1−1) (4.11)

hold, where ψ5 > ψ6θ̄, ψ7 ∈ (0, 1/θ̄) and Φ ∈ C(ℜn;ℜ+).

Next, we describe our stabilization rules.

4.1. H∞ stabilization

Theorem 4.1. Assume that Assumptions 2.1–2.5, 4.1, and 4.2 are satisfied, and let

ζ =
9ρ2

4ψ1
(1 + 8(1 − e−

γ̄
6ρ )). (4.12)

If λ is a sufficiently small positive constant such that

λ ≤

√
ψ2

2ζ
∧
ψ3

ζ
∧
ψ4

ζ
∧

1
6ρ

(4.13)

and

ψ5 − ψ6θ̄ − 4ζλ2ρ2 −
4ρ2

ψ1
(1 − e−γ̄λ) > 0 (4.14)
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hold, then the solution of (2.13) satisfies∫ ∞

0
E|ι(t)|β̄dt < ∞, β̄ ∈

[
2, α + β1 − 1

]
(4.15)

for any initial condition (2.4).

Proof. For convenience, the proof is divided into two steps.
Step 1. For t ∈ ℜ+, we define ι̂t = {ι(t + s) : −2θ ≤ s ≤ 0} and π̂t = {π(t + s) : −2θ ≤ s ≤ 0}. For

ι̂t and π̂t to be well defined for t ∈ [0, 2θ], define ι(s) = ς(−θ) for s ∈ [−2θ,−θ) and π(s) = π0 for
s ∈ [−2θ, 0). Next, we use the Lyapunov function stated below

U(ι̂t, π̂t, t) = V(ι(t), π(t)) + ζ
∫ 0

−λ

∫ t

t+s
Q(u)duds (4.16)

for t ≥ 0, where V has been determined by (4.7) and

Q(u) =λ| − A(π(u))ι(u−) + B(π(u)) f (ι(u−), ι((u − θu)−), π(u), u) + u(ι(σu−), π(σu), u)|2

+ |h(ι(u−), ι((u − θu)−), π(u), u)|2 +
∫

0<|τ|<e
|g(ι(u−), ι((u − θu)−), τ, π(u), u)|2ϑ(dτ).

(4.17)

For u ∈ [−2θ, 0), we set f (ι, κ, i, u) = f (ι, κ, i, 0), g(ι, κ, i, u) = g(ι, κ, i, 0), u(ι, i, u) = u(ι, i, 0). Based on
Itô formula, it follows that

dV(ι(t−), π(t)) = LV(ι(t−), ι((t − θt)−), ι(σt−), π(t), π(σt), t)dt + dM(t), (4.18)

where M(t) denotes the continuous local martingale with M(0) = 0 and LV is defined by

LV(ι, κ, z, i, î, t) =2ϱi

(
ιT

[
−A(i)ι + B(i) f (ι, κ, i, t) + u(z, î, t)

]
+

1
2
|h(ι, κ, i, t)|2

)
+ (β1 + 1)ϱ̄i|ι|

β1−1
(
ιT

[
−A(i)ι + B(i) f (ι, κ, i, t) + u(z, î, t)

]
+

1
2
|h(ι, κ, i, t)|2

)
+

(β1 + 1)(β1 − 1)
2

ϱ̄i|ι|
β1−3|ιT h(ι, κ, i, t)|2 +

N∑
k=1

γik(ϱk|ι|
2 + ϱ̄k|ι|

β1+1)

+

∫
0<|τ|<e

ϱi

[
|ι + g(ι, κ, i, t, τ)|2 − |ι|2 − 2ιT g(ι, κ, i, t, τ)

]
ϑ(dτ)

+

∫
0<|τ|<e

ϱ̄i

[
|ι + g(ι, κ, i, t, τ)|β1+1 − |ι|β1+1 − (β1 + 1)|ι|β1−1ιT g(ι, κ, i, t, τ)

]
ϑ(dτ)

=LV(ι, κ, i, t) −
[
2ϱi + (β1 + 1)ϱ̄i|ι|

β1−1
]
ιT

[
u(ι, i, t) − u(z, î, t)

]
.

In addition, we can obtain

d
(
ζ

∫ 0

−λ

∫ t

t+s
Q(u)duds

)
= ζλQ(t) − ζ

∫ t

t−λ
Q(u)du. (4.19)

Together with (4.18) and (4.19), we obtain

dU(ι̂t, π̂t, t) ≤ LU(ι̂t− , π̂t, t)dt + dM(t), (4.20)
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where

LU(ι̂t− , π̂t, t) =LV(ι(t−), ι((t − θt)−), π(t), t) + ψ1

(
2ϱπ(t)|ι(t−)| + (β1 + 1)ϱ̄π(t)|ι(t−)|β1

)2

+
1

4ψ1
|u(ι(t−), π(t), t) − u(ι(σt−), π(σt), t)|2 + ζλQ(t) − ζ

∫ t

t−λ
Q(u)du.

(4.21)

Under Assumptions 2.2–2.5, 4.1, and Theorem 3.1, we can intuitively see that

E|LU(ι̂t− , π̂t, t)| < ∞, ∀t ≥ 0. (4.22)

Step 2. For a sufficiently large positive constant v0, consider the initial value ||ς|| < v0. For any
v0 ≤ v, define the stopping time ϖv = inf {t ≥ 0 : |ι(t)| ≥ v}, for ϖv is increasing as v → ∞ and
limv→∞ϖv = ∞. By generalized Itô formula, it is possible to obtain from (4.20) that

EU(ι̂t∧ϖv , π̂t∧ϖv , t ∧ϖv) ≤ U(ι̂0, π̂0, 0) + E
∫ t∧ϖv

0
LU(ι̂s− , π̂s, s)ds.

Based on (4.22), let v→ ∞ and then apply the dominated convergence theorem and Fubini theorem to
have

0 ≤ EU(ι̂t, π̂t, t) ≤ U(ι̂0, π̂0, 0) +
∫ t

0
E(LU(ι̂s− , π̂s, s))ds. (4.23)

According to (4.13), (4.21), Assumptions 2.5 and 4.2, we can conclude that

E (LU(ι̂t− , π̂t, t))

≤ − ψ5E|ι(t−)|2 + ψ6E|ι((t − θt)−)|2 − EΦ(ι(t−)) + ψ7EΦ(ι((t − θt))−) + 2ζλ2ρ2E|ι(σt−)|2

+
1

4ψ1
E|u(ι(t−), π(t), t) − u(ι(σt−), π(t), t) + u(ι(σt−), π(t), t) − u(ι(σt−), π(σt), t)|2 − ζE

∫ t

t−λ
Q(u)du

≤ − ψ5E|ι(t−)|2 + ψ6E|ι((t − θt)−)|2 − EΦ(ι(t−)) + ψ7EΦ(ι((t − θt))−) + 4ζλ2ρ2E|ι(σt−) − ι(t−)|2

+ 4ζλ2ρ2E|ι(t−)|2 +
ρ2

2ψ1
E|ι(t−) − ι(σt−)|2 +

1
2ψ1
E|u(ι(σt−), π(t), t) − u(ι(σt−), π(σt), t)|2

− ζE

∫ t

t−λ
Q(u)du.

(4.24)
Furthermore, under Assumption 2.5 and Lemma 2.2, it is concluded that

E|u(ι(σt−), π(t), t) − u(ι(σt−), π(σt), t)|2

= E
[
E|u(ι(σt−), π(t), t) − u(ι(σt−), π(σt), t)|2|Fσt

]
≤ E

[
4ρ2|ι(σt−)|2E

(
1{π(σt),π(t)}|Fσt

)]
= E

4ρ2|ι(σt−)|2E

∑
i∈S

1{π(σt)=i}1{π(t),i}|Fσt


= E

4ρ2|ι(σt−)|2
∑
i∈S

1{π(σt)=i} × P(π(t) , i|π(σt) = i)

 ≤ E [
4ρ2|ι(σt−)|2(1 − e−γ̄λ)

]
= 4ρ2(1 − e−γ̄λ)E|ι(σt−)|2 ≤ 8ρ2(1 − e−γ̄λ)E|ι(t−) − ι(σt−)|2 + 8ρ2(1 − e−γ̄λ)E|ι(t−)|2.

(4.25)
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Moreover, in view of the fact that t − σt ≤ λ holds for all t ≥ 0, it can be proved on (2.13) that

E|ι(t) − ι(σt)|2 ≤3E
∫ t

t−λ

[
λ| − A(π(u))ι(u−) + B(π(u)) f (ι(u−), ι((u − θu)−), π(u), u) + u(ι(σu− , π(σu), u))|2

+ |h(ι(u−), ι((u − θu)−), π(u), u)|2 +
∫

0≤|τ≤e
|g(ι(u−), ι((u − θu)−), π(u), u, τ)|2ϑ(dτ)

]
du.

(4.26)
Notice that

∫ t

0
E|ι(u)−ι(σu)|2du is the equivalent of

∫ t

0
E|ι(u−)−ι(σu−)|2du. Substituting (4.25) and (4.26)

into (4.24), and using (4.13) and (4.14), it can be found that

EU(ι̂t, π̂t, t) ≤U(ι̂0, π̂0, 0) −
[
ψ5 − 4ξλ2ρ2 −

4ρ2

ψ1
(1 − e−γ̄λ)

]
E

∫ t

0
|ι(u−)|2du

− E

∫ t

0
Φ(ι(u−))du + ψ6E

∫ t

0
|ι((u − θu)−)|2du + ψ7E

∫ t

0
Φ(ι((u − θu)−))du.

Using Lemma 2.1, we obtain

E

∫ t

0
|ι((u − θu)−)|2du ≤ θ̄E

∫ t−θ1

−θ

|ι(u−)|2du ≤ θ̄
(∫ 0

−θ

|ι(u−)|2du + E
∫ t

0
|ι(u−)|2du

)
and

E

∫ t

0
Φ(ι((u − θu)−))du ≤ θ̄E

∫ t−θ1

−θ

Φ(ι(u−)) ≤ θ̄
(∫ 0

−θ

Φ(ι(u−))du + E
∫ t

0
Φ(ι(u−))du

)
.

Therefore, we can further deduce

EU(ι̂t, π̂t, t) ≤ H1 −

[
ψ5 − 4ξλ2ρ2 −

4ρ2

ψ1
(1 − e−γ̄λ) − ψ6θ̄

] ∫ t

0
E|ι(u−)|2du − (1 − ψ7θ̄)

∫ t

0
EΦ(ι(u−))du,

where H1 = U(ι̂0, π̂0, 0) + θ̄θ sup−θ≤u<0

[
ψ6E|ι(u)|2 + ψ7EΦ(ι(u))

]
≤ ∞. From (4.14) and ψ7 ∈ (0, 1/θ̄),

we get ∫ t

0
E|ι(u)|2du ≤

H1

ψ5 − 4ξλ2ρ2 −
4ρ2

ψ1
(1 − e−γ̄λ) − ψ6θ̄

,

∫ t

0
EΦ(ι(u))du ≤

H1

1 − ψ7θ̄
.

Let t → ∞ and combine with (4.11) to obtain∫ ∞

0
E|ι(u)|2du < ∞,

∫ ∞

0
E|ι(u)|α+β1−1du < ∞,

which means that the needed assertion (4.15) holds. □

4.2. Asymptotic stabilization

Theorem 4.2. Assuming that conditions of Theorem 4.1 hold, the solution of (2.13) satisfies

lim
t→∞
E|ι(t)|β̄ = 0, β̄ ∈ [2, β) (4.27)

for any initial condition (2.4).
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Proof. From Theorem 3.1, let H2 = sup−θ≤u<∞ E|ι(t)|
β < ∞. We can prove, as (3.4) is to be shown, that

there are two constants b̂1, b̂2 > 0 that make∫
0<|τ|<e

[
|ι + g(ι, κ, τ, i, t)|β − |ι|β − β|ι|β−2ιT g(ι, κ, τ, i, t)

]
ϑ(dτ) ≤ b̂1|ι|

β + b̂2|κ|
β.

For any 0 ≤ t1 < t2 < ∞, under Assumptions 2.2, 2.3, and 2.5, with the use of Itô formula, we obtain

|E|ι(t2)|2 − E|ι(t1)|2| ≤
∣∣∣∣∣E∫ t2

t1

[
2|ι(t−)|

(
−A(π(t))ι(t−) + B(π(t)) f (ι(t−), ι((t − θt)−), π(t), t)

+ u(ι(σt−), π(t − σt), t)
)
+ |h(ι(t−), ι((t − θt)−), π(t), t)|2

+

∫
0<|τ|<e

(|ι(t−) + g(ι(t−), ι((t − θt)−), π(t), t, τ)|2 − |ι(t−)|2

− 2ιT (t−)g(ι(t−), ι((t − θt)−), π(t), t, τ))ϑ(dτ)
]
dt

∣∣∣∣∣
≤E

∫ t2

t1

(
2|ι(t−)|(ă|ι(t−)| + Hb̆(|ι(t−)| + |ι((t − θt)−)| + |ι(t−)|β1 + |ι((t − θt)−)|β2)

+ 2ρ|ι(t−)||ι(σt−)| + H2(|ι(t−)| + |ι((t − θt)−)| + |ι(t−)|β3 + |ι((t − θt)−)|β4)2

+ b̂1|ι(t−)|2 + b̂2|ι((t − θt)−)|2
)
dt

≤

∫ t2

t1
H3(1 + E|ι(t−)|β + E|ι((t − θt)−)|β + E|ι(σt−)|β)dt

≤H3(1 + 3H2)(t2 − t1),

where ă = max1≤i≤n {ai} , b̆ = max1≤i, j≤n

{
bi j

}
and H3 is a constant unrelated to t1 and t2. Hence, E|ι(t)|2

is uniformly continuous at t onℜ+. This, combined with (4.15), means that

lim
t→∞
E|ι(t)|2 = 0. (4.28)

Next, fix any β̄ ∈ (2, β), it is obtained from the hölder inequality

E|ι(t)|β̄ ≤
(
E|ι(t)|2

)(β−β̄)/(β−2)
H(β−2)/(β−2)

2 . (4.29)

In combination with (4.28), it is implied that the required (4.27) holds. □

4.3. Exponential stabilization

Theorem 4.3. Assume that Assumptions 2.1–2.5, 4.1, and 4.2 are satisfied, and recall that

ζ =
9ρ2

4ψ1
(1 + 8(1 − e−

γ̄
6ρ )). (4.30)

If λ > 0 is a small enough constant to make

λ ≤

√
ψ2

2ζ
∧
ψ3

ζ
∧
ψ4

ζ
∧

1

6
√

2ρ
(4.31)
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and

ψ5 − ψ6θ̄ − 4ζλ2ρ2 −
4ρ2

ψ1
(1 − e−γ̄λ) > 0 (4.32)

hold, then the solution of (2.13) satisfies

lim sup
t→∞

1
t

log(E|ι(t)|β̄) < 0 (4.33)

and

lim sup
t→∞

1
t

log(E|ι(t)|) < 0 a.s. (4.34)

for any initial condition (2.4) and β̄ ∈ [2, β).

Proof. Similarly to the proof of Theorem 4.1, for t ≥ 0, it is shown that

eγtEU(ι̂t∧ϖv , π̂t∧ϖv , t ∧ϖv) ≤ U(ι̂0, π̂0, 0) +
∫ t

0
eγuE

(
γU(ι̂u− , π̂u, u) + LU(ι̂u− , π̂u, u)

)
du, (4.35)

and γ is a sufficiently small positive constant. Setting ϵ1 = mini∈S ϱi, ϵ2 = maxi∈S ϱi, ϵ3 = maxi∈S ϱ̄i, we
have

ϵ1eγtE|ι(t)|2 ≤ U(ι̂0, π̂0, 0)+
∫ t

0
eγu(γϵ2E|ι(u−)|2+γϵ3E|ι(u−)|β1+1)du+γζQ1(t)+

∫ t

0
eγuE(LU(ι̂u− , π̂u, u))du,

(4.36)
where

Q1(t) = E
∫ t

0
eγu

( ∫ 0

−λ

∫ u

u+v
Q(s)dsdv

)
du.

Analogous to the proof of Theorem 4.1,

E(LU(ι̂u− , π̂u, u)) ≤ −
[
ψ5 − 4ξλ2ρ2 −

4ρ2

ψ1
(1 − e−γ̄λ)

]
E|ι(u−)|2 − EΦ(ι(u−))du + ψ6E|ι((u − θu)−)|2

+ ψ7EΦ(ι((u − θu)−)) −
(
ζ − 12ζλ2ρ2 −

3ρ2

2ψ1
+

12ρ2

ψ1
(1 − e−γ̄λ)

)
E

∫ u

u−λ
Q(v)dv.

(4.37)
In addition, there is apparently

E|ι(u−)|β1+1 ≤ E|ι(u−)|2 + E|ι(u−)|α+β1−1 ≤ E|ι(u−)|2 + ψ−1
8 EΦ(ι(u−)). (4.38)

From Lemma 2.1,∫ t

0
eγuE|ι((u − θu)−)|2du ≤ θ̄eγθ

∫ t−θ1

−θ

eγuE|ι(u−)|2du

≤ θ̄eγθ
(∫ 0

−θ

eγuE|ι(u−)|2du +
∫ t

0
eγuE|ι(u−)|2du

)
,
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0
eγuEΦ(ι((u − θu)−))du ≤ θ̄eγθ

∫ t−θ1

−θ

eγuEΦ(ι(u−))du

≤ θ̄eγθ
(∫ 0

−θ

eγuEΦ(ι(u−))du +
∫ t

0
eγuEΦ(ι(u−))du

)
.

Substitute (4.37) and (4.38) into (4.36) to obtain

ϵ1eγtE|ι(t)|2 ≤H4 − (ψ5 − 4ξλ2ρ2 −
4ρ2

ψ1
(1 − e−γ̄λ) − γϵ2 − γϵ3 − ψ6θ̄eγθ)

∫ t

0
eγuE|ι(u−)|2du

− (1 − γϵ3ψ
−1
8 − ψ7θ̄eγθ)

∫ t

0
eγuEΦ(ι(u−))du + γζQ1(t)

−

(
ζ − 12ζλ2ρ2 −

3ρ2

2ψ1
+

12ρ2

ψ1
(1 − e−γ̄λ)

)
Q2(t),

(4.39)

where

H4 = U(ι̂0, π̂0, 0) + θ̄eγθ(ψ6

∫ 0

−θ

eγuE|ι(u−)|2du + ψ7

∫ 0

−θ

eγuEΦ(ι(u−))du)

as well as

Q2(t) = E
∫ t

0
eγu

∫ u

u−λ
Q(v)dvdu.

Clearly,
Q1(t) ≤ λQ2(t).

Now, we may select a small enough constant γ > 0 to satisfy

γλ ≤
1
6
, 1 − γϵ3ψ

−1
8 − ψ7θ̄eγθ ≥ 0,

ψ5 − 4ξλ2ρ2 −
4ρ2

ψ1
(1 − e−γ̄λ) − γϵ2 − γϵ3 − ψ6θ̄eγθ ≥ 0.

Again reviewing (4.30) and λ ≤ 1
6
√

2ρ
, from (4.39)

E|ι(t)|2 ≤
H4

ϵ1
e−γt (4.40)

for any t ∈ ℜ+. Moreover, for any β̄ ∈ (2, β), we have by (4.29) and (4.40) that

E|ι(t)|β̄ ≤ H(β−2)/(β−2)
2

(
E|ι(t)|2

)(β−β̄)/(β−2)
e−γt(β−β̄)/(β−2). (4.41)

Thus, the required assertion (4.33) is proved.
Put tk = kλ for k = 0, 1, 2, · · · . By Hölder inequality and Doob martingale inequality, it is possible

to show that
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E

(
sup

tk≤t≤tk+1

|ι(t)|2
)
≤4E|ι(tk)|2 + 4λE

∫ tk+1

tk
| − A(π(t))ι(t−) + B(π(t)) f (ι(t−), ι((t − θt)−), π(t), t)

+ u(ι(σt−), π(σt), t)|2dt + 16E
∫ tk+1

tk
|h(ι(t−), ι((t − θt)−), π(t), t)|2dt

+ 16E
∫ tk+1

tk

∫
0<|τ|<e

|g(ι(t−), ι((t − θt)−), π(t), t, τ)|2ϑ(dτ)dt.

Based on Assumptions 2.2, 2.4, and 2.5, it is possible to conclude that

E

(
sup

tk≤t≤tk+1

|ι(t)|2
)
≤ 4E|ι(tk)|2 + H5

∫ tk+1

tk
E

(
|ι(t−)|2 + |ι((t − θt)−)|2 + |ι(σt−)|2 + |ι(t−)|β̄ + |ι((t − θt)−)|β̄

)
dt,

where β̄ = 2(β1 ∨ β2 ∨ β3 ∨ β4) and H5 > 0 is a constant. From Assumption 2.3, we find β̄ ∈ [2, β). We
can obtain, by applying (4.40) and (4.41), that

E

(
sup

tk≤t≤tk+1

|ι(t)|2
)
≤ H6e−ε̂tk ,

where ε̂ = γ(β − β̄)/(β − 2) and H6 > 0 is also a constant. So
∞∑

k=0

P

(
sup

tk≤t≤tk+1

|ι(t)| > e−0.25ε̂tk

)
≤

∞∑
k=0

H6e−0.5ε̂tk < ∞.

It is shown by Borel–Cantelli Lemma that for almost all ω̃ ∈ Ω, there exists an integer k0 = k0(ω̃) > 0,
which makes

sup
tk≤t≤tk+1

|ι(t)| ≤ e−0.25ε̂tk , k ≥ k0.

Thus, we have
1
t

log(|ι(t)|) ≤ −
0.25ε̂kλ
(k + 1)λ

, t ∈ [tk, tk+1], k ≥ k0.

This means
lim sup

t→∞

1
t

log(|ι(t)|) ≤ −0.25ε̂ < 0 a.s.

which is the desired assertion (4.34). □

Remark 4.1. The asymptotic stability discussed in Theorem 4.2 states that the solution of system (2.13)
will asymptotically converge to zero; however, its rate of decrease is not provided. In Theorem 4.3, we
further show that the solution of system (2.13) converges to zero at an exponential rate.

Remark 4.2. In general, almost surely exponential stabilization cannot be obtained from exponential
stabilization in Lβ̄, but it is possible in the content of this paper, as stated in Theorem 4.3.

Remark 4.3. Recently, Dong and collaborators [19] designed a feedback control function to stabilize
highly nonlinear hybrid SDDEs with Lévy noise, which is based on continuous-time state and mode
observations and difficult to implement in practice. Consequently, the feedback control function
u(ι(σt−), π(σt), t) based on discrete-time state and mode observations used in this paper is more sensible
and practical.
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5. Numerical examples

An example will be given throughout this section to demonstrate the validity of theoretical results.
Example 1. Consider the nonlinear hybrid STDNNs with Lévy noise

dι(t) =[−A(π(t))ι(t−) + B(π(t)) f (ι(t−), ι((t − θt)−), π(t), t))]dt + h(ι(t−), ι((t − θt)−), π(t), t)dW(t)

+

∫
0<|τ|<e

g(ι(t−), ι((t − θt)−), π(t), t, τ)Ñ(dt, dτ)
(5.1)

on t ≥ 0 and ι(t) = 1 + sin(t) for t ∈ [−0.2, 0]. The coefficients are defined by A(1) = 0.3,A(2) =
0.2,B(1) = 0.5,B(2) = 0.6, and

f (ι, κ, i, t) =

 − ι3 + ικ, i = 1,
− 1.5ι3 + 1.2ικ, i = 2,

h(ι, κ, i, t) =

0.2ικ, i = 1,
0.1ικ, i = 2,

g(ι, κ, τ, i, t) =

0.5κτ − 0.5ιτ, i = 1,
0.25κτ − 0.5ιτ, i = 2,

where e = 5, W(t) is a scalar Brownian motion, the Markov chain π(t) over the state space S = {1, 2},
possessing the generator matrix Γ = (−1, 1; 1,−1), and time delay θt = 0.1| sin(t)| + 0.1.

The Lévy measure ϑ is characterized by ϑ(dτ) = aϕ(dτ) = 0.5 × e−2|τ|dτ, where a = 0.5 represents
the jump rate, ϕ(·) is the jump distribution, and the probability density function of ϕ(·) is e−2|τ|. This
ensures the fulfillment of (2.1).

We can check that Assumption 2.1 is true when θ1 = 0.1, θ = 0.2, θ̄ = 1.1111. Assumption 2.2
holds when β1 = 3, β2 = β3 = β4 = 2. Assumption 2.3 holds when α = 4, ω1 = 0.72, ω2 = 0.19, ω3 =

0.06, q1 = 1.0967, q2 = 0.1867, β > 6, we may then choose β = 7 and satisfy the condition q1 > q2θ̄.
Figure 1 indicates that (5.1) is unstable. To make it stable, we devise the control function

u(ι, 1) = −2(|ι| ∧ 1.8)ι/|ι|, u(ι, 2) = −2.5(|ι| ∧ 2)ι/|ι|, (5.2)

clearly, ρ = 2.5 satisfies Assumption 2.5. The controlled nonlinear hybrid STDNNs with Lévy noise
take the following form:

dι(t) =[−A(π(t))ι(t−) + B(π(t)) f (ι(t−), ι((t − θt)−), π(t), t)) + u(ι(σt−), π(σt), t)]dt

+ h(ι(t−), ι((t − θt)−), π(t), t)dW(t) +
∫

0<|τ|<e
g(ι(t−), ι((t − θt)−), π(t), t, τ)Ñ(dt, dτ).

(5.3)
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Figure 1. The dynamic evolution of nonilnear hybrid STDNNs with Lévy noise (5.1).

Due to
ιu(ι, i) ≤ 0.095ι4 − (2I1(i) + 2.5I2(i))ι2,

it follows that for (ι, κ, i, t, τ) ∈ ℜ ×ℜ × S ×ℜ+ × Y , we obtain

2
[
ιT [−A(i)ι + B(i) f (ι, κ, i, t) + u(ι, i, t)] +

1
2
|h(ι, κ, i, t)|2

]
+

∫
0<|τ|<e

[
|ι + g(ι, κ, i, t, τ)|2 − |ι|2

− 2ιT g(ι, κ, i, t, τ)
]
ϑ(dτ) ≤

 − 3.413ι2 + 0.687κ2 − 0.29ι4 + 0.02κ4, i = 1,
− 4.213ι2 + 0.7667κ2 − 0.885ι4 + 0.005κ4, i = 2,

ιT [−A(i)ι+B(i) f (ι, κ, i, t)+u(ι, i, t)]+
β1

2
|h(ι, κ, i, t)|2 ≤

 − 2.3ι2 + 0.25κ2 − 0.125ι4 + 0.03κ4, i = 1,
− 2.7ι2 + 0.36κ2 − 0.4375ι4 + 0.0075κ4, i = 2,

and ∫
0<|τ|<e

[
|ι + g(ι, κ, i, t, τ)|4 − |ι|4 − (4)|ι|2ιT g(ι, κ, i, t, τ)

]
ϑ(dτ) ≤

1.4748ι4 + 0.7268κ4, i = 1,
0.5834ι4 + 0.2455κ4, i = 2.

Hence, (4.1)–(4.3) hold when

p1 = −3.413, c1 = 0.687, m1 = 0.29, n1 = 0.02,
p2 = −4.213, c2 = 0.7667, m2 = 0.885, n2 = 0.005,
p̄1 = −2.3, c̄1 = 0.25, m̄1 = 0.125, n̄1 = 0.03,
p̄2 = −2.7, c̄2 = 0.36, m̄2 = 0.4375, n̄2 = 0.0075,
p̂1 = 1.4748, ĉ1 = 0.7268, p̂2 = 0.8534, ĉ2 = 0.2455,

AIMS Mathematics Volume 9, Issue 10, 27080–27101.



27098

as well as

P1 =

(
4.413 −1
−1 5.213

)
,P2 =

(
8.7252 −1
−1 10.9466

)
,

which are both M-matrices. From (4.6), we derive

ϱ1 = 0.2823, ϱ2 = 0.2459, ϱ̄1 = 0.1264, ϱ̄2 = 0.1029.

So
ξ1 = 0.1939, ξ2 = 0.0819, ξ3 = 0.0056,
ξ4 = 0.2183, ξ5 = 0.1801, ξ6 = 0.0152,

which satisfies (4.4). It is obvious that

V(ι, i) =

0.2823ι2 + 0.1264ι4, i = 1,
0.2459ι2 + 0.1029ι4, i = 2.

As a result of (4.9), we obtain

LV(ι, κ, i, t) ≤ −ι2 + 0.1939κ2 − 0.9727ι4 + 0.1148κ4 − 0.175ι6 + 0.0101κ6.

In addition, we have

(2ϱi|ι| + (β1 + 1)ϱ̄i|ι|
β1)2 ≤ 0.3188ι2 + 0.5709ι4 + 0.2556ι6,

| − A(i)ι + B(i) f (ι, κ, i, t)|2 ≤ 0.27ι2 + 0.7776ι4 + 0.7776κ4 + 2.43ι6,
|h(ι, κ, i, t)|2 ≤ 0.02ι4 + 0.02κ4,∫

0<|τ|<e
|g(ι, κ, i, t, τ)|2ϑ(dτ) ≤ 0.0623ι2 + 0.0623κ2.

Selecting ψ1 = 0.2, ψ2 = 0.01, ψ3 = 0.3, and ψ4 = 0.5, we obtain

LV(ι, κ, i, t) + ψ1(2ϱi|ι| + (β1 + 1)ϱ̄i|ι|
β1)2 + ψ2| − A(i)ι + B(i) f (ι, κ, i, t)|2 + ψ3|h(ι, κ, i, t)|2

+ ψ4

∫
0<|τ|<e

|g(ι, κ, i, t, τ)|2ϑ(dτ)

≤ − 0.9023ι2 + 0.2251κ2 − 0.8722ι4 + 0.1286κ4 − 0.0995ι6 + 0.0101κ6

≤ − 0.9023ι2 + +0.2251κ2 − Φ(ι) + 0.1474Φ(κ),

where Φ(ι) = 0.8722ι4 + 0.0995ι6, ψ5 = 0.9023, ψ6 = 0.2251, ψ7 = 0.1474, ψ8 = 0.0995, and ψ9 =

0.9717. Based on Theorems 4.1 and 4.3, we have ζ = 106.5937 and λ ≤ 0.0028. Thus, in view
of Theorems 4.1–4.3, it follows that the controlled nonlinear hybrid STDNNs with Lévy noise (5.3)
are H∞-stable, asymptotically stable, and exponentially stable in Lβ̄ for any β̄ ∈ [2, 7). We perform a
computer simulation with initial data ι(t) = 1 + sin(t) for t ∈ [−0.2, 0] and π(0) = 1. Figure 2 shows
sample paths of the Markov chain and the solution of controlled STDNNs (5.3). The simulation results
apparently support our theoretical results.
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Figure 2. Sample path of Markov chain and state of controlled nonlinear hybrid STDNNs
with Lévy noise (5.3).

6. Conclusions

In this paper, we probe into the stabilization problem of nonlinear hybrid STDNNs with Lévy noise,
whose coefficients are highly nonlinear. Unlike the constant time delay considered in [20] and the time
delay studied in [8], which is a continuous function, we focus on the case where the time delay of
STDNNs is time-varying and non-differentiable. We employ feedback control based on discrete-time
state and mode observations to make unstable nonlinear hybrid STDNNs with Lévy noise stable. In
addition, utilizing M-matrix theory and Lyapunov functional techniques, we explore the H∞ stability,
asymptotic stability, and exponential stability of the controlled nonlinear hybrid STDNNs with Lévy
noise. In future work, we will explore introducing mixed delays into highly nonlinear hybrid SNNs
with Lévy noise [23]. Additionally, incorporating Lévy noise into metapopulation models will be
considered (see, e.g., [24, 25]), as it could enhance the realism and complexity of the models.
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driven by Lévy noise, Int. J. Dyn. Control, 7 (2019), 547–556. https://doi.org/10.1007/s40435-
018-0451-x

18. P. L. Yu, F. Q. Deng, P. Cheng, Stability analysis of hybrid stochastic delayed Cohen-Grossberg
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