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1. Introduction

Riemann-Liouville and Caputo fractional derivatives are most commonly used in the analysis of
differential equations of non-integer order. The research monographs [1–5] present the fundamental
calculus of Riemann-Liouville and Caputo fractional derivatives, along with key studies on the
existence, uniqueness, and various qualitative properties of solutions to differential equations involving
these operators.

According to researchers [6–9], fractional derivatives with singular kernels may not adequately
describe certain natural phenomena with nonlocal characteristics. As a result, efforts are being
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made by mathematicians to define new, non local fractional derivatives involving a non-singular
kernel. In this sense, Caputo-Fabrizio [10] and Atangana-Baleanu [11] have defined new fractional
derivative operators with a non-singular kernel in the form of exponential and Mittag-Leffler functions,
respectively. Similar to other fractional derivatives, the Caputo version of the Atangana-Baleanu (AB)
derivative [11] also has some drawbacks, though it overcomes some of the limitations due to
conventional fractional derivatives.

The AB-derivative has garnered much attention because it effectively models certain phenomena
that cannot be modeled as FDEs involving other conventional fractional derivatives. Atangana and
Araz used the AB derivative [12] to analyse nonlinear differential equations in order to investigate the
existence and uniqueness of solutions. The approximate controllability of fractional neutral stochastic
systems with indefinite delay was investigated by Dineshkumar et al. [13] using the AB derivative.
Initial value problems for several classes of AB FDEs have been studied by Kucche and Sutar [14–16],
who have demonstrated comparative results as well as findings on the existence and uniqueness of
solutions, extremal solutions, and data dependency of solutions.

To know more about mathematical modeling utilizing the AB derivative for various outbreaks such
as dengue fever, a tumor-immune surveillance mechanism, optimal control of diabetes and tuberculosis
co-existence etc., one can refer to [6–9] and [17].

Byszewski [18] pioneered the investigation of differential equations with nonlocal conditions.
Nonlocal conditions play a crucial role in modeling many phenomena where the state at a point
depends on the state at distant points. Nonlocal conditions generalize classical initial conditions to
include additional information and provide more accurate solutions. For more details on nonlocal
conditions and analysis of associated differential equations, we recommend the foundational works of
Byszewski [19–21] and Balachandran [22,23].

The measures of non-compactness (MNC) provides another approach to manage differential
equations by leveraging fixed point theorems that are proved in the form of MNC. For a comprehensive
understanding and applications of MNC in the analysis of differential equations, we refer to [24–27]
and the works cited therein. Researchers working in this field are actively exploring the application
of MNC to investigate a wide range of differential equations subject to local and nonlocal constraints.
Here, we include a few relevant research works. Sarwar et al. [28] analyzed controllability results
for semi-linear non-instantaneous impulsive neutral stochastic differential equations with the AB
derivative. In another study, Thilakraj et al. [29] analyzed the sobolev-type Volterra-Fredholm
functional integro-differential equation with non-local conditions.

On the other hand, implicit FDEs are essential for modeling various physical phenomena,
in situations when it is not feasible to express fractional derivatives of a dependent variable
explicitly. Since it might not always be possible to obtain analytical solutions for these equations,
researchers are still working to develop the theory, methods, and techniques to analyze implicit FDEs.
Kucche et al. [30–32] have examined different classes of implicit FDEs that involve the Caputo
fractional derivative, and proved results about the existence and uniqueness of solutions as well as
the interval of solution existence. The authors also investigated global existence results and Ulam-type
stabilities via successive approximations for implicit AB FDEs. Sutar et al. [33] have studied implicit
FDEs involving Caputo fractional derivatives through Picard and weakly Picard operator theory, along
with the Pompeiu-Hausdorff functional to examine the existence, uniqueness, and dependence of the
solution on the initial condition and the nonlinear-functions involved in the FDEs.
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Inspired by the significance of implicit differential equations and the non-local, non-singular nature
of the AB fractional derivative, we examine the boundary value problem for nonlinear implicit AB-
FDEs of the following form:

AB
0D
µ
ηζ(η) = F

(
η, ζ(η), AB0D

µ
ηζ(η)

)
, η ∈ J = [0,T ], T > 0, (1.1)

αζ(0) + βζ(T ) = γ, (1.2)

and implicit AB-FDEs with non local condition of the form:

AB
0D
µ
ηζ(η) = F

(
η, ζ(η), AB0D

µ
ηζ(η)

)
, η ∈ J = [0,T ], T > 0, (1.3)

ζ(0) + g(ζ) = ζ0, (1.4)

in a Banach space (E, ∥ · ∥) over a field R. Here, AB0D
µ
η denotes the AB fractional derivative of order

µ (0 < µ < 1), F ∈ C1(J × E × E, E) is any nonlinear function, g : C → E is a continuous function,
α, β ∈ R such that α + β , 0 and γ, ζ0 ∈ E. We assume that C = C(J, E) is the Banach space equipped
with the supremum norm ∥ζ∥C = sup {∥ζ(η)∥ : η ∈ J}.

Proving the existence results to the boundary value problem for nonlinear implicit FDEs (1.3)
subject to boundary condition (1.4), and nonlinear implicit FDEs (1.1) subject to nonlocal
condition (1.2) using the AB derivative, is our primary objective. Our primary findings are derived
from the fixed point theorems of Darbo, Mönch, and the theory of the Kuratowski’s measure of non-
compactness.

We note that, the results obtained for nonlinear implicit FDEs (1.1)-(1.2) and (1.3)-(1.4) covers
the study of the following implicit FDEs subject to following different types of initial and boundary
conditions:
• The boundary value problem (1.1)-(1.2) reduces to an initial value problem for implicit FDEs if
α = 1 and β = 0.
• The non-local implicit FDEs (1.3)-(1.4) reduce to an initial value problem for implicit FDEs if
g(ζ) = 0.
• If g(ζ) =

∑n
k=1 ck ζ(ηk), where ηk ∈ J with 0 ≤ ηk < ηk+1 ≤ T for k = 0, 1, . . . n − 1, and

ck ∈ E for k = 1, 2, . . . n, then implicit FDEs (1.3)-(1.4) reduces to a non-local problem where
we are excepting a solution to the problem (1.3)-(1.4) passing through n number of points.

The key highlights can be summarized as follows:
• Established several significant existence results for nonlinear implicit FDEs that incorporate AB

derivative.
• The investigation of nonlinear implicit FDEs was subject to both boundary and nonlocal

conditions, shedding light on the complexities of such equations.
• The foundational tools employed are Kuratowski’s measure of non-compactness and associated

fixed point theorems, namely Darbo’s fixed point theorem and Mönch’s fixed point theorem.
• The results were illustrated by an example where we also obtained the solution to the problem for

boundary conditions and non local conditions.
The remaining structure of this article is as follows: In Section 2, we provide the definitions and

results regarding the AB fractional derivative, Kuratowski’s measure of non-compactness, and fixed
point theorems. In Section 3, we prove different existence results for the boundary value problem of
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the implicit FDEs (1.1)-(1.2). In Section 4, we establish existence results for implicit FDE (1.3) subject
to the nonlocal condition (1.4). Finally, in Section 5, we provide examples of nonlinear implicit FDEs
subject to boundary and initial conditions that illustrate the existence results we obtained.

2. Preliminaries

In this section, we introduce preliminary information that will be used throughout the paper.

2.1. AB fractional derivative and integral

In this section, we provide the definitions and few properties of the AB fractional derivative and
integral.

Definition 2.1. [11] Let ζ ∈ H1(0, 1) and 0 < µ < 1, the left AB fractional derivative of ζ of order µ
is defined by

AB
0D
µ
ηζ(η) =

A(µ)
1 − µ

∫ η

0
Eµ

[
−
µ

1 − µ
(η − ξ)µ

]
ζ′(ξ)dξ,

where A(µ) > 0 is a normalization function satisfying A(0) = A(1) = 1 and Eµ is one parameter
Mittag-Leffler function.

Definition 2.2. [11] For any ζ ∈ H1(0, 1) and 0 < µ < 1, the fractional integral in sense of Atangana-
Baleanu fractional derivative is given by

AB
0I
µ
ηζ(η) =

1 − µ
A(µ)

ζ(η) +
µ

A(µ)Γ(µ)

∫ η

0
(η − ξ)µ−1ζ(ξ)dξ.

Lemma 2.1. [34] For 0 < µ < 1,

(i) AB0I
µ
η

[
AB

0D
µ
ηζ(η)

]
= ζ(η) − ζ(0) ,

(ii) AB0D
µ
η

[
AB

0I
µ
ηζ(η)

]
= ζ(η).

Lemma 2.2. [35] Suppose that µ > 0, c(η)(1 − 1−µ
A(µ)d(η))−1 is a non-negative, non decreasing and

locally integrable function on [a, b), µd(η)
A(µ)

(
1 − 1−µ

A(µ)d(η)
)−1

is non negative and bounded on [a, b) and
ζ(η) is non negative and locally integrable on [a, b) with ζ(η) ≤ c(η) + d(η)(ABa I

µυ)(η). Then,

ζ(η) ≤
c(η)A(µ)

A(µ) − (1 − µ)d(η)
Eµ

(
µd(η)(η − a)µ

A(µ) − (1 − µ)d(η)

)
, η ∈ [a, b).

2.2. Kuratowski measure of non compactness

In this section, we provide the definition and properties of the Kuratowski measure of non
compactness and the associated fixed point theorems.

Definition 2.3. [24] (The Kuratowski measure of non compactness ) Let E be a Banach space and ΩE
the set of bounded subsets of E. The Kuratowski measure of non compactness is the map ν : ΩE →
[0,∞] defined by

ν(A) = inf
{
ϵ > 0 : E ⊆ ∪n

i=1Ei and diam(Ei) ≤ ϵ
}
,

where Ei ∈ ΩE and diam(Ei) = sup {∥a − b∥ : a, b ∈ Ei}.
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Lemma 2.3. [24] Let U and V bounded sets.
(a) ν(U) = 0 ⇐⇒ Ū is compact, i. e., U is relatively compact, where Ūdenotes closure of U.
(b) Non singularity: ν is equal to zero on every one element set.
(c) ν(U) = ν(Ū) = ν(conv U), where conv U is the convex hull of U.
(d) Monotonicity: U ⊂ V =⇒ ν(U) ≤ ν(V) .
(e) Algebraic semi-additivity: ν(U + V) ≤ ν(U) + ν(V), where

U + V = {u + v : u ∈ U, v ∈ V} .

( f ) Semi-homogencity: ν(λV) = |λ|ν(V); λ ∈ R where λV = {λv : v ∈ V} .
(g) Semi-additivity: ν(U ∪ V) = max {ν(U), ν(V)}.
(h) Invariance under translations: ν(U + ζ0) = ν(U) for any ζ0 ∈ E.

The following fixed-point theorems and subsequent lemmas that are connected to Kuratowski’s
measure of non-compactness serve as the foundation for our findings.

Lemma 2.4. [25] (Darbo’s fixed point theorem) Let X be a Banach space and C be a bounded, closed,
convex and nonempty subset of X. Suppose a continuous mapping N : C→ C is such that for all closed
subsets D of C,

ν(N(D)) ≤ Kν(D),

where 0 < K < 1. Then, N has a fixed point in C.

Lemma 2.5. [26] (Mönch’s fixed point theorem) Let D be a bounded, closed and convex subset of a
Banach space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the implication

V = ¯conv N(V) or V = N(V) ∪ {0} =⇒ ν(V) = 0

holds for every subset V of D, then, N has a fixed point.

Lemma 2.6. If V ⊂ C(J,E) is a bounded and equicontinious set, then:

(i) The function η→ ν(V(η)) is continuous on J, and

νc(V) = sup
η∈J
ν(V(η)).

(ii)

ν

(∫ b

a
ζ(ξ)dξ : ζ ∈ D

)
≤

∫ b

a
ν(ζ(ξ))dξ,

where D(η) = {ζ(η) : ζ ∈ D} , η ∈ J.

3. Boundary value problem for implicit FDEs

Lemma 3.1. Let ζ, AB0D
µ
ηζ ∈ C(J, E) and F(0, ζ(0), 0) = 0. Then, ζ ∈ C(J, E) is a solution of implicit

AB-FDEs (1.1)-(1.2) if and only if

ζ(η) = Aυ + AB
0I
µ
ηυ(η), η ∈ J, (3.1)
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where υ(η) is a solution of the functional equation

υ(η) = F
(
η,Aυ +

AB
0I
µ
ηυ(η), υ(η)

)
, η ∈ J, (3.2)

and
Aυ =

1
α + β

[
γ − β

(
AB

0I
µ
ηυ(η)

)
η=T

]
. (3.3)

Proof. Define
AB

0D
µ
ηζ(η) = υ(η), η ∈ J. (3.4)

Operating the AB-fractional integral operator AB0I
µ
η on both sides of (3.4) and utilizing Lemma 2.1,

we obtain
ζ(η) = ζ(0) + AB

0I
µ
ηυ(η), η ∈ J. (3.5)

Using the boundary condition given in Eq (1.2), from Eq (3.5), we get

γ = αζ(0) + βζ(T )

= αζ(0) + β
[
ζ(0) +

(
AB

0I
µ
ηυ(η)

)
η=T

]
= (α + β)ζ(0) + β

(
AB

0I
µ
ηυ(η)

)
η=T
.

This gives

ζ(0) =
1
α + β

[
γ − β

(
AB

0I
µ
ηυ(η)

)
η=T

]
:= Aυ. (3.6)

From Eqs (3.5) and (3.6), we obtain Eq (3.1). Further, using Eqs (3.1) and (3.4) in the Eq (1.1) , we
obtain Eq (3.2).

On the other hand, assume that ζ satisfy functional Eq (3.1). Operating the AB-fractional derivative
operator AB0D

µ
η on both sides of Eq (3.1) and using the Lemma 2.1, provides the following equation:

AB
0D
µ
ηζ(η) =

AB
0D
µ
η

[
Aυ +

AB
0I
µ
ηυ(η)

]
= AB

0D
µ
η

[
AB

0I
µ
ηυ(η)

]
= υ(η), η ∈ J. (3.7)

Equations (3.1) and (3.7) are used in Eq (3.2), to get

AB
0D
µ
ηζ(η) = F

(
η, ζ(η), AB0D

µ
ηζ(η)

)
, η ∈ J = [0,T ], T > 0,

which is Eq (1.1).
Next, we show that ζ defined in Eq (3.1) also fulfills the boundary condition (1.2). In fact, based on

Eqs (3.1) and (3.5), we have

αζ(0) + βζ(T ) = αζ(0) + β
[
Aυ +

(
AB

0I
µ
ηυ(η)

)
η=T

]
= αAυ + β

[
Aυ +

(
AB

0I
µ
ηυ(η)

)
η=T

]
= (α + β)Aυ + β

(
AB

0I
µ
ηυ(η)

)
η=T
.

Using the value of Aυ defined in (3.6), from above equation, we have

αζ(0) + βζ(T ) = (α + β)
[

1
α + β

[
γ − β

(
AB

0I
µ
ηυ(η)

)
η=T

]]
+ β

(
AB

0I
µ
Tυ(η)

)
η=T
= γ.
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Remark 3.1. In the view of Lemma 3.1, to demonstrate the existence of the solution for the nonlinear
implicit AB-FDEs (1.1)-(1.2), we need to demonstrate the existence of the solution ζ(η) for the
functional fractional integral equation Eq (3.2). The function ζ(η) when substituted into Eq (3.1)
provides the solution to the nonlinear implicit AB-FDEs (1.1)-(1.2).

We require the subsequent assumption to demonstrate the existence results for functional fractional
integral equation (3.2).

(H1) ∥F(η1, ζ1, δ1) − F(η2, ζ2, δ2)∥ ≤ L|η1 − η2| +M∥ζ1 − ζ2∥ + N∥δ1 − δ2∥; L,M ∈ R+, 0 < N < 1.

Remark 3.2. [27] The condition (H1) is equivalent to the following inequality:

µ(F(η,A1,A2)) ≤ Mµ(A1) + Nµ(A2),

for any bounded sets A1,A2 ⊆ E and for each η ∈ J.

The proof of the first existence result is provided through the fixed point theorem of Darbo.

Theorem 3.1. Let the function F ∈ C(J × E × E, E) satisfies Lipschitz type condition (H1). Then, the
nonlinear implicit AB-FDEs (1.1)-(1.2) has at least one solution, provided

N +M

(
1 +

|β|

|α + β|

) (
1 − µ
A(µ)

+
T µ

A(µ)Γ(µ)

)
< 1. (3.8)

Proof. We define the mapping T : C → C , C = C(J, E) by

(Tυ)(η) = F
(
η,Aυ +

AB
0I
µ
ηυ(η), υ(η)

)
, η ∈ J, (3.9)

in the context of comments in Remark 3.1, where Aυ refers to the constant specified in Eq (3.3). We
demonstrate that the mapping T fulfills every condition of Lemma 2.4.

First, we establish that the mapping T is continuous. Let the sequence {υm} of points in E convergent
to υ ∈ E. Then for any η ∈ J, from Eq (3.9), we obtain

∥(Tυm)η − (Tυ)η∥

=
∥∥∥∥F (
η,Aυm +

AB
0I
µ
ηυm(η), υm(η)

)
− F

(
η,Aυ +

AB
0I
µ
ηυ(η), υ(η)

)∥∥∥∥
≤ M

{
∥Aυm − Aυ∥ +

AB
0I
µ
η∥υm(η) − υ(η)∥

}
+ N∥υm(η) − υ(η)∥

≤ M

∥∥∥∥∥ 1
α + β

[
γ − β

(
AB

0I
µ
ηυm(η)

)
η=T

]
−

1
α + β

[
γ − β

(
AB

0I
µ
ηυ(η)

)
η=T

]∥∥∥∥∥
+M AB

0I
µ
η∥υm(η) − υ(η)∥ + N∥υm(η) − υ(η)∥

≤
Mβ

α + β

(
AB

0I
µ
η∥υm(η) − υ(η)∥

)
η=T
+M AB

0I
µ
η∥υm(η) − υ(η)∥ + N∥υm(η) − υ(η)∥

≤
Mβ

α + β

{
1 − µ
A(µ)

∥υm(T ) − υ(T )∥ +
µ

A(µ)Γ(µ)

∫ T

0
(T − ξ)µ−1∥υm(ξ) − υ(ξ)∥dξ

}
+M

{
1 − µ
A(µ)

∥υm(η) − υ(η)∥ +
µ

A(µ)Γ(µ)

∫ η

0
(η − ξ)µ−1∥υm(ξ) − υ(ξ)∥dξ

}
+ N∥υm(η) − υ(η)∥
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≤
Mβ

α + β

{
1 − µ
A(µ)

∥υm − υ∥C +
µ

A(µ)Γ(µ)
∥υm − υ∥C

∫ T

0
(T − ξ)µ−1dξ

}
+M

{
1 − µ
A(µ)

∥υm − υ∥C +
µ

A(µ)Γ(µ)
∥υm − υ∥C

∫ η

0
(η − ξ)µ−1dξ

}
+ N∥υm − υ∥C

≤
M(1 − µ)
A(µ)

[
β

α + β
+ 1

]
∥υm − υ∥C +

Mµ

A(µ)Γ(µ)
∥υm − υ∥C

[
β

α + β
+ 1

]
T µ

µ
+ N∥υm − υ∥C.

This gives

∥(Tυm) − (Tυ)∥C ≤
(
M

A(µ)
2β + α
α + β

[
1 − µ +

T µ

Γ(µ)

]
+ N

)
∥υm − υ∥C.

Since
lim
n→∞
∥υm − υ∥C = 0,

we have
lim
n→∞
∥Tυm − Tυ∥C = 0.

We have established the mapping T is continuous.
Next, consider the number R defined by

R =
M|γ|

|α+β|
+MF

1 − N −M
(
|β|

|α+β|
+ 1

) (
1−µ
A(µ) +

Tµ
A(µ)Γ(µ)

) , (3.10)

whereMF = supη∈J ∥F(η, 0, 0)∥. Condition (3.8) implies R > 0. Define

BR = {υ ∈ C : ∥υ∥C ≤ R} .

Note that BR is non-empty, convex, closed and bounded subset of E. Our aim is to prove that T(BR) ⊆
BR. To prove this, let’s consider any η ∈ J and υ ∈ Br. Then, by employing hypothesis (H1), we obtain

∥(Tυ)(η)∥ = ∥F
(
η,Aυ +

AB
0I
µ
ηυ(η), υ(η)

)
∥

≤ ∥F
(
η,Aυ +

AB
0I
µ
ηυ(η), υ(η)

)
− F(η, 0, 0)∥ + ∥F(η, 0, 0)∥

≤ M∥Aυ +
AB

0I
µ
ηυ(η)∥ + N∥υ(η)∥ +MF

≤ M∥Aυ∥ +M ∥
AB

0I
µ
ηυ(η)∥ + N∥υ(η)∥ +MF

≤ M

(
1

|α + β|

[
|γ| + |β|

(
AB

0I
µ
η∥υ(η)∥

)
η=T

])
+M AB

0I
µ
η∥υ(η)∥ + N∥υ(η)∥ +MF

≤ M

(
1

|α + β|

[
|γ| + |β|R

(
AB

0I
µ
η(1)

)
η=T

])
+MR AB0I

µ
η(1) + NR +MF

≤ M

 1
|α + β|

|γ| + |β|R (
1 − µ
A(µ)

+
ηµ

A(µ)Γ(µ)

)
η=T

 +MR
(
1 − µ
A(µ)

+
ηµ

A(µ)Γ(µ)

)
+ NR +MF

≤

(
M|γ|

|α + β|
+MF

)
+ R

{
M

(
|β|

|α + β|
+ 1

) [
1 − µ
A(µ)

+
T µ

A(µ)Γ(µ)

]
+ N

}
.
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Using Eq (3.10), we have(
M|γ|

|α + β|
+MF

)
= R

(
1 −M

(
|β|

|α + β|
+ 1

) [
1 − µ
A(µ)

+
T µ

A(µ)Γ(µ)

]
− N

)
.

Applying it in the aforementioned inequality leads us to

∥(Tυ)(η)∥ = R
(
1 −M

(
|β|

|α + β|
+ 1

) [
1 − µ
A(µ)

+
T µ

A(µ)Γ(µ)

]
− N

)
+ R

{
M

(
|β|

|α + β|
+ 1

) [
1 − µ
A(µ)

+
T µ

A(µ)Γ(µ)

]
+ N

}
= R.

Consequently, ∥T(υ)∥C ≤ R, implying Tυ ∈ BR, and the proof of T(BR) ⊆ BR is completed. Moreover,
for each υ ∈ BR , ∥Tυ∥C ≤ R indicates that T(BR) is bounded.

To demonstrate T(BR) is equicontinuous, consider any η1, η2 ∈ J with η1 ≤ η2. Then,

∥(Tυ)(η1) − (Tυ)(η2)∥

=
∥∥∥∥F (
η1,Aυ +

AB
0I
µ
η1
υ(η), υ(η1)

)
− F

(
η2,Aυ +

AB
0I
µ
η2
υ(η), υ(η2)

)∥∥∥∥
≤ L|η1 − η2| +M

∥∥∥AB0I
µ
η1
υ(η) − AB

0I
µ
η2
υ(η)

∥∥∥ + N∥υ(η1) − υ(η2)∥

≤ L|η1 − η2| +M

∥∥∥∥∥∥
{

1 − µ
A(µ)

υ(η1) +
µ

A(µ)Γ(µ)

∫ η1

0
(η1 − ξ)µ−1υ(ξ)dξ

}
−

{
1 − µ
A(µ)

υ(η2) +
µ

A(µ)Γ(µ)

∫ η2

0
(η2 − ξ)µ−1υ(ξ)dξ

}∥∥∥∥∥∥ + N∥υ(η1) − υ(η2)∥

≤ L|η1 − η2| +
M(1 − µ)
A(µ)

∥υ(η1) − υ(η2)∥ +
Mµ

A(µ)Γ(µ)

∫ η1

0

{
(η1 − ξ)µ−1 − (η2 − ξ)µ−1

}
∥υ∥Cdξ

+
Mµ

A(µ)Γ(µ)

∫ η2

η1

(η2 − ξ)µ−1∥υ∥Cdξ + N∥υ(η1) − υ(η2)∥

≤ L|η1 − η2| +

(
M(1 − µ)
A(µ)

+ N

)
∥υ(η1) − υ(η2)∥ +

MRµ
A(µ)Γ(µ)

∫ η1

0

{
(η1 − ξ)µ−1 − (η2 − ξ)µ−1

}
dξ

+
MRµ
A(µ)Γ(µ)

∫ η2

η1

(η2 − ξ)µ−1dξ

≤ L|η1 − η2| +

(
M(1 − µ)
A(µ)

+ N

)
∥υ(η1) − υ(η2)∥ +

MRµ
A(µ)Γ(µ + 1)

{
−(η2 − η1)µ − ηµ1 + η

µ
2

}
+

MRµ
A(µ)Γ(µ + 1)

(η2 − η1)µ.

From the above inequality, it can be concluded that

∥(Tυ)η1 − (Tυ)η2∥ → 0 as |η1 − η2| → 0.

Therefore, the demonstration of the equicontinuity of T(BR) is complete. To finalize the proof, it is
necessary to confirm that the mapping T : BR → BR satisfies the following condition:

νc(T(V)) ≤ kνc(V),
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for any closed subset V of BR and 0 < k < 1. Employing the properties ν as described in Lemma 2.3,
we have

ν(T(υ)(η) : υ ∈ V)

= ν
(
F

(
η,Aυ +

AB
0I
µ
ηυ(η), υ(η)

)
: υ ∈ V

)
≤ Mν

(
Aυ +

AB
0I
µ
ηυ(η)

)
+ Nν(υ(η))

≤ Mν

(
1 − µ
A(µ)

υ(η) +
µ

A(µ)Γ(µ)

∫ η

0
(η − ξ)µ−1υ(ξ)dξ

)
+ Nν(υ(η))

≤ M

(
1 − µ
A(µ)

ν(υ(η)) +
µ

A(µ)Γ(µ)

∫ η

0
(η − ξ)µ−1ν(υ(ξ))dξ

)
+ Nν(υ(η))

≤ M

(
1 − µ
A(µ)

νc(V) +
µ

A(µ)Γ(µ)

∫ η

0
(η − ξ)µ−1νc(V)dξ

)
+ Nνc(V)

≤

{
M

A(µ)

(
1 − µ +

T µ

Γ(µ)

)
+ N

}
νc(V).

This gives

νc(T(V)) ≤
{
M

A(µ)

(
1 − µ +

T µ

Γ(µ)

)
+ N

}
νc(V). (3.11)

Since

1 <
(
1 +

|β|

|α + β|

)
,

we get

N +
M

A(µ)

(
1 − µ +

T µ

Γ(µ)

)
< N +

M

A(µ)

(
1 +

|β|

|α + β|

) (
1 − µ +

T µ

Γ(µ)

)
.

The condition (3.8) allows us write

N +
M

A(µ)

(
1 − µ +

T µ

Γ(µ)

)
< 1.

Inequality (3.11) leads us to conclude that ν is a set contraction. In light of Lemma 2.4, the mapping T
possesses a fixed point, which is the solution to the functional fractional integral equation (3.2). After
adding this to Eq (3.1) the solution of problem (1.1)-(1.2) is provided.

In the subsequent theorem, we demonstrated that, with the same assumptions as given in
Theorem 3.1, the existence result for nonlinear implicit FDEs (1.1)-(1.2) can be proved using the
fixed point theorem of Mönch.

Theorem 3.2. Assume that the hypothesis (H1) hold. Then, the nonlinear implicit AB-FDEs (1.1)-(1.2)
has a solution.

Proof. Consider the set BR we used in the Theorem 3.1. Clearly BR is a convex, closed and
bounded subset of a Banach space E containing 0. Consider the operator T : BR → BR defined
as in Theorem 3.1. We show that T satisfies the requirement of Mönach’s fixed point theorem. As
established in the proof of Theorem 3.1, T is bounded and continuous. Hence, it suffices to prove that
the implication

V = ¯convT (V) or V = T (V) ∪ {0} =⇒ ν(V) = 0
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holds for every subset V of BR.
Let V be an equicontinuous subset of BR such that V ⊂ conv(T(V) ∪ {0}). Define

x : J → [0,∞) by x(η) = ν(V(η)).

Using Lemma 2.6, it follows that x is continuous. Further, utilizing Remark 3.2, Lemma 2.5 and the
properties of the measure ν, for each η ∈ J, we obtain

x(η) = ν(V(η)) = ν (T(V)(η) ∪ {0}) ≤ ν (T(V)(η))

= ν
(
F

(
η,AV +

AB
0I
µ
ηV(η),V(η)

))
≤ Mν

(
AV +

AB
0I
µ
ηV(η)

)
+ Nν(V(η)) ≤ Mν

(
AB

0I
ν
ηV(η)

)
+ Nν(V(η))

≤ Mν

(
1 − µ
A(µ)

V(η) +
µ

A(µ)Γ(µ)

∫ η

0
(η − ξ)µ−1

V(ξ)dξ
)
+ Nν(V(η))

≤ M

(
1 − µ
A(µ)

ν(V(η)) +
µ

A(µ)Γ(µ)

∫ η

0
(η − ξ)µ−1ν(V(ξ))dξ

)
+ Nν(V(η))

= M

(
1 − µ
A(µ)

x(η) +
µ

A(µ)Γ(µ)

∫ η

0
(η − ξ)µ−1x(ξ)dξ

)
+ Nx(η).

This gives

x(η) ≤
M

1 − N
AB

0I
µ
η(x)(η).

By an application of Lemma 2.2 with c(η) = 0 and d(η) =
M

1 − N
, we get x(η) = 0 for all η ∈ J. This

gives V(η) = 0 for all η ∈ J. Consequently, this gives νc(V) = 0. Applying Theorem 2.5, we conclude
that T has a fixed point υ ∈ BR, which act as a solution of functional equation (3.1). Utilizing this υ,
we are able to obtain the required solution of nonlinear implicit AB-FDEs (1.1)-(1.2).

4. Implicit FDEs with non-local condition

Essential conditions are established in this section for the solution to exist about the following
implicit FDE:

AB
0D
µ
ηζ(η) = F

(
η, ζ(η), AB0D

µ
ηζ(η)

)
, η ∈ J = [0,T ], T > 0, (4.1)

subject to nonlocal initial condition
ζ(0) + g(ζ) = ζ0. (4.2)

Lemma 4.1. Let ζ, AB0D
µ
ηζ ∈ E and F(0, ζ(0), 0) = 0. Then, ζ ∈ E is a solution of nonlinear implicit

AB-FDEs (4.1)-(4.2) if and only if

ζ(η) = ζ0 − g(ζ) + AB
0I
µ
ηυg(η), η ∈ J, (4.3)

where υζ is a solution of functional equation

υζ(η) = F
(
η, ζ0 − g(ζ) + AB

0I
µ
ηυζ(η), υζ(η)

)
, η ∈ J. (4.4)
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Proof. Corresponding to ζ ∈ E, we put

AB
0D
µ
ηζ(η) = υζ(η), η ∈ J. (4.5)

Operating AB
0I
µ
η on both sides of Eq (4.5), and using Lemma 2.1 and the nonlocal initial

condition (1.3), we obtain (4.3).
Utilizing Eqs (4.3) and (4.5) in Eq (4.1), one can see that υζ(η) satisfies the functional equation (4.4).
On the other hand, suppose that ζ ∈ E is a solution of functional equation (4.3). Operating AB0D

µ
η

on both sides of Eq (4.3) and using Lemma 2.1, we get

AB
0D
µ
ηζ(η) =

AB
0D
µ
η

[
ζ0 − g(ζ) + AB

0I
µ
ηυζ(η)

]
= AB

0D
µ
η

[
AB

0I
µ
ηυζ(η)

]
= υζ(η), η ∈ J. (4.6)

By utilizing Eqs (4.3) and (4.6), the functional represented by Eq (4.10) reduces to (4.1). Next, we
verify that non-local initial condition stated in Eq (4.2). Since F(0, ζ(0), 0) = 0, from Eq (4.3), we have

ζ(0) = ζ0 − g(ζ) +
[
1 − µ
A(µ)

υζ(η) +
µ

A(µ)Γ(µ)

∫ η

0
(η − ξ)µ−1υζ(ξ)dξ.

]
η=0

= ζ0 − g(ζ) +
1 − µ
A(µ)

υζ(0) = ζ0 − g(ζ) +
1 − µ
A(µ)

F(0, ζ(0), 0)

= ζ0 − g(ζ),

which is the nonlocal condition (4.2).
The subsequent theorem establishes both the existence and uniqueness results for non-local initial

value problem (4.1)-(4.2).

Theorem 4.1. Let the function F ∈ C1(J × E × E, E) satisfies hypothesis (H1) and the function g
satisfies the condition

(H2) ∥g(ζ) − g(ζ1)∥ ≤ K∥ζ − ζ1∥C, K ∈ R.

Then, the non-local initial value problem (4.1)-(4.2) has a solution provided

K(1 + J) < 1, and
M

1 − N
<
A(µ)
1 − µ

, (4.7)

where

J =
MA(µ)

(1 − N)A(µ) −M(1 − µ)
Eµ

(
µMT µ

(1 − N)A(µ) −M(1 − µ)

)
. (4.8)

Proof. Considering Lemma 4.1, we define the mapping T̃ : C → C, C = C(J, E) as follows:

(T̃ζ)(η) = ζ0 − g(ζ) + AB
0I
µ
ηυζ(η), η ∈ J, (4.9)

where υζ is a solution of functional equation

υζ(η) = F
(
η, ζ0 − g(ζ) + AB

0I
µ
ηυζ(η), υζ(η)

)
, η ∈ J. (4.10)
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We demonstrate that the mapping T̃ fulfills all the conditions outlined in Lemma 2.4. For the
continuity of T̃, consider any sequence {ζm} in C converging to ζ ∈ C. Then, for any η ∈ J, using
hypothesis (H2), we obtain

∥(T̃ζm)η − (T̃ζ)η∥ ≤ ∥g(ζm) − g(ζ)∥ + ∥ AB0I
µ
η(υζm(η) − υζ(η))∥

≤ K∥ζm − ζ∥C +
AB

0I
µ
η∥υζm(η) − υζ(η))∥, (4.11)

where υζm and υζ are the solutions of functional equations

υζm(η) = F
(
η, ζ0 − g(ζm) + AB

0I
µ
ηυζm(η), υζm(η)

)
, η ∈ J,

and
υζ(η) = F

(
η, ζ0 − g(ζ) + AB

0I
µ
ηυζ(η), υζ(η)

)
, η ∈ J,

respectively. Using the hypothesis (H1), for any η ∈ J, we obtain

∥υζm(η) − υζ(η)∥ ≤ M∥g(ζm) − g(ζ)∥ +M AB
0I
µ
η∥υζm(η) − υζ(η)∥ + N∥υζm(η) − υζ(η)∥

≤ MK∥ζm − ζ∥C +M
AB

0I
µ
η∥υζm(η) − υζ(η)∥ + N∥υζm(η) − υζ(η)∥.

This gives

∥υζm(η) − υζ(η)∥ ≤
1

1 − N

(
MK∥ζm − ζ∥C +M

AB
0I
µ
η∥υζm(η) − υζ(η)∥

)
.

Application of Lemma 2.2 with c(η) =
MK∥ζm − ζ∥C

1 − N
and d(η) =

M

1 − N
gives

∥υζm(η) − υζ(η)∥ ≤
MKB(µ)

(1 − N)B(µ) −M(1 − µ)
Eµ

(
µMηµ

(1 − N)B(µ) −M(1 − µ)

)
∥ζm − ζ∥C, η ∈ J.

This gives

∥υζm − υζ∥C ≤
MKB(µ)

(1 − N)B(µ) −M(1 − µ)
Eµ

(
µMT µ

(1 − N)B(µ) −M(1 − µ)

)
∥ζm − ζ∥C.

Since ∥ζm − ζ∥C → 0, from above inequality we get ∥υζm − υζ∥C → 0. Taking into account the previous
estimates, using the inequality (4.11), we obtain ∥T̃ζm − T̃ζ∥C → 0. Therefore, T̃ is continuous.

Define
R̃ =

(∥ζ0∥ + ∥g(0)∥)(1 + J) + JMF
1 − K(1 + J)

, where MF = sup
η∈J
∥F(η, 0, 0)∥.

Condition (3.8) leads us to conclude R̃ > 0. With this particular choice of R̃ > 0, we define the set
BR̃ =

{
ζ ∈ C : ∥ζ∥C ≤ R̃

}
.

Next, we demonstrate that T̃(BR̃) ⊆ BR̃. Let any η ∈ J and ζ ∈ Br. Then applying hypothesis (H2),
we obtain

∥(T̃ζ)η∥ ≤ ∥ζ0∥ + ∥g(ζ) − g(0)∥ + ∥g(0)∥ + AB
0I
µ
η∥υζ(η)∥

≤ ∥ζ0∥ + K∥ζ∥C + ∥g(0)∥ + AB
0I
µ
η∥υζ(η)∥

≤ ∥ζ0∥ + KR + ∥g(0)∥ + AB
0I
µ
η∥υζ∥. (4.12)
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For any η ∈ J, we discover that

∥υζ(η)∥ ≤ ∥F
(
η, ζ0 − g(ζ) + AB

0I
µ
ηυζ(η), υζ(η)

)
− F (η, 0, 0) ∥ + ∥F (η, 0, 0) ∥

≤ M∥ζ0 − g(ζ) + AB
0I
µ
ηυζ(η)∥ + N∥υζ(η)∥ +MF

≤ M
(
∥ζ0∥ + KR + ∥g(0)∥ + AB

0I
µ
η∥υζ(η)∥

)
+ N∥υζ(η)∥ +MF.

Therefore,

∥υζ(η)∥ ≤
1

1 − N

{
MF +M (∥ζ0∥ + KR + ∥g(0)∥) +M AB

0I
µ
η∥υζ(η)∥

}
.

As an application of Lemma 2.2 with c(η) = MF+M(∥ζ0∥+KR+∥g(0)∥)
1−N and d(η) = M

1−N , we get

∥υζ(η)∥ ≤
[
MF +M (∥ζ0∥ + KR + ∥g(0)∥)

]
A(µ)

A(µ)(1 − N) − (1 − µ)M
Eµ

(
µMηµ

B(µ)(1 − N) −M(1 − µ)

)
, η ∈ J.

This gives

∥υζ(η)∥ ≤
[
MF +M (∥ζ0∥ + KR + ∥g(0)∥)

]
A(µ)

A(µ)(1 − N) − (1 − µ)M
Eµ

(
µMT µ

B(µ)(1 − N) −M(1 − µ)

)
, η ∈ J.

Utilizing the value of J defined in (4.8), from above inequality, we obtain

∥υζ(η)∥ ≤
(
∥ζ0∥ + KR + ∥g(0)∥ +MF

)
J

1−µ
A(µ) +

µ

A(µ)Γ(µ)
Tµ
µ

:= δ.

Thus from inequality (4.12), we have

∥(T̃ζ)η∥ ≤ ∥ζ0∥ + KR + ∥g(0)∥ + AB
0I
µ
ηδ

= ∥ζ0∥ + KR + ∥g(0)∥ + δ
{

1 − µ
A(µ)

+
µ

A(µ)Γ(µ)

∫ η

0
(η − ξ)µ−1dξ

}
≤ KR + ∥ζ0∥ + ∥g(0)∥ + δ

{
1 − µ
A(µ)

+
µ

A(µ)Γ(µ)
T µ

µ

}
≤ KR + ∥ζ0∥ + ∥g(0)∥ +

(
∥ζ0∥ + KR + ∥g(0)∥ +MF

)
J

= KR(1 + J) +
{
(∥ζ0∥ + ∥g(0)∥)(1 + J) + JMF

}
= KR(1 + J) + R {1 − K(1 + J)} = R̃.

Thus, ∥T̃(ζ)∥C ≤ R̃ for any ζ ∈ BR̃ and the proof of T̃(BR̃) ⊆ BR̃ is completed. For any ζ ∈ BR̃, we have
∥T̃ζ∥C ≤ R̃ and hence T̃(BR̃) is bounded.

To prove the equicontinuity of T̃(BR̃), take any η1, η2 ∈ J with η1 < η2. Then, we have

∥(T̃ζ)(η1) − (T̃ζ)(η2)∥

=
∥∥∥∥(ζ0 − g(ζ) + AB

0I
µ
ηυζ(η)

)
η=η1
−

(
ζ0 − g(ζ) + AB

0I
µ
ηυζ(η)

)
η=η2

∥∥∥∥
≤

(1 − µ)
A(µ)

∥υζ(η1) − υζ(η2)∥ +
µ

A(µ)Γ(µ)

∫ η1

0

{
(η1 − ξ)µ−1 − (η2 − ξ)µ−1

}
∥υζ(ξ)∥dξ
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+
µ

A(µ)Γ(µ)

∫ η2

η1

(η2 − ξ)µ−1∥υζ(ξ)∥dξ

≤
(1 − µ)
A(µ)

∥υζ(η1) − υζ(η2)∥ +
δµ

A(µ)Γ(µ)

∫ η1

0

{
(η1 − ξ)µ−1 − (η2 − ξ)µ−1

}
dξ

+
δµ

A(µ)Γ(µ)

∫ η2

η1

(η2 − ξ)µ−1dξ

≤
(1 − µ)
A(µ)

∥υζ(η1) − υζ(η2)∥ +
δµ

A(µ)Γ(µ + 1)

{
−(η2 − η1)µ − ηµ1 + η

µ
2

}
+

δµ

A(µ)Γ(µ + 1)
(η2 − η1)µ.

Since ζ ∈ BR, from above inequality it follows that ∥(T̃ζ)η2 − (T̃ζ)η1∥ → 0 whenever ∥η2 − η1∥ → 0.
This proves that T̃(BR) is equicontinuous.

Finally, we show that function T̃ : BR → BR satisfies the following requirement:

νc(T̃(V)) ≤ kνc(V),

for any closed subset V of BR and 0 < k < 1. Utilizing the properties of µ as outlined in Lemma 2.3,
we deduce

ν(T̃(ζ)(η) : ζ ∈ V) = ν
(
ζ0 − g(ζ) + AB

0I
µ
ηυζ(η) : ζ ∈ V

)
= ν(ζ0 − g(ζ)) + ν(AB0I

µ
ηυζ(η)))

= ν(AB0I
µ
ηυζ(η))) ≤

AB
0I
µ
ην(υζ(η)).

Thus,
ν(T̃(ζ)(η) : ζ ∈ V) ≤ AB

0I
µ
ην(υζ(η)). (4.13)

Using functional relation (4.10), we find

ν(υζ(η)) = ν
(
F

(
η, ζ0 − g(ζ) + AB

0I
µ
ηυζ(η), υζ(η)

))
≤ Mν(ζ0 − g(ζ) + AB

0I
µ
ηυζ(η)) + Nν(υζ(η))

≤ M AB
0I
µ
ην(υζ(η)) + Nν(υζ(η)).

This gives

ν(υζ(η)) ≤
M

1 − N
AB

0I
µ
ην(υζ(η))).

An application of Lemma 2.2 with c(η) = 0 and d(η) =
M

1 − N
gives

ν(υζ(η)) = 0, η ∈ J. (4.14)

Using the Eq (4.14), the inequality (4.13) becomes

ν(T̃(ζ)(η) : ζ ∈ V) = 0, η ∈ J,

and hence we obtain
νc(T̃(V)) = 0. (4.15)
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For any ζ ∈ V, we have ν(ζ(η)) ≥ 0, η ∈ J, hence for any k ∈ (0, 1), we get kν(ζ(η)) ≥ 0, η ∈ J, which
gives

kνc(V) ≥ 0. (4.16)

Combining (4.15) and (4.16), we obtain

νc(T̃(V)) ≤ kνc(V).

This proves that ν is a set contraction. Accordingly, Lemma 2.4 states that T̃ has a fixed point, which
is the desired solution of the problem (1.1) subject to non-local initial condition (1.3).

Theorem 4.2. Assume that the hypotheses (H1) and (H2) hold. Then, the nonlinear implicit AB-FDEs
(4.1)-(4.2) has a solution if K < 1.

Proof. Consider the set BR̃ defined in Theorem 4.1. Note that BR̃ is bounded, closed and convex subset
of a Banach space C such that 0 ∈ BR̃. Further, we consider the same operator T̃ : BR̃ → BR̃ defined in
the proof of Theorem 4.1. We prove that T̃ satisfies the requirement of Monach fixed point theorem.

The boundedness and continuity of T̃ have previously been demonstrated in the proof of
Theorem 4.1. Thus, all we have to do is demonstrate that the implication

V = ¯convT̃(V) or V = T̃(V) ∪ {0} =⇒ νc(V) = 0

holds for every subset V of BR̃. Let V equicontiniuos subset of BR̃ such that V ⊂ conv(T̃(V) ∪ {0}).
Define

x : J → [0,∞) by x(η) = ν(V(η)).

It is obvious from Lemma 2.6 that x is continuous. Lemma 2.5, Remark 3.2, and the properties of the
measure µ allow us to get, for any η ∈ J,

x(η) = ν(V(η)) = ν
(
T̃(V)(η) ∪ {0}

)
≤ ν

(
T̃(V)(η)

)
= ν

(
ζ0 − g(V)(η) + AB

0I
µ
ηV(η)

)
= ν(g(V)(η)) + ν( AB0I

µ
ηV(η)).

As mentioned in Remark 3.2, based on hypothesis (H2), we can write

ν(g(V)(η)) ≤ Kν(V(η)).

Therefore,

x(η) ≤ Kν(V(η)) + AB
0I
µ
ην(V(η)) = Kx(η) + AB

0I
µ
ηx(η).

This gives

x(η) ≤
1

1 − K
AB

0I
µ
ηx(η), η ∈ J.

Applying Lemma 2.2 with c(η) = 0 and d(η) =
1

1 − K
, we obtain x(η) = 0 for all η ∈ J. Theorem 2.5

is then used to determine that T̃ has a fixed point x ∈ BR̃, which forms a solution of (1.1) subject
to nonlocal initial condition (1.3).
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5. Examples

Example 5.1. Consider the following non-linear implicit AB-FDE:

AB
0D

1
2
η ζ(η) =

ζ(η)
5
+

(
9
2
η2E 1

2 ,3
(−
√
η) −

η2 + 1
5

)
+

1
10

∣∣∣∣ AB0D
1
2
η ζ(η)

∣∣∣∣ , η ∈ J = [0, 1], (5.1)

with boundary condition

ζ(0) + 2ζ(1) = 4. (5.2)

Choose the normalizing function A(µ) = µ − µ2 + 1, µ ∈ [0, 1]. Then B(0) = B(1) = 1. Define,
F : J × R × R→ R such that

F(η, ζ, y) =
ζ

5
+

(
9
2
η2E 1

2 ,3
(−
√
η) −

η2 + 1
5

)
+

1
10
|y| .

Let any (ηi, ζi, yi) ∈ J × R × R, (i = 1, 2). Then,

|F(η1, ζ1, y1) − Fη2, ζ2, y2)|

≤

∣∣∣∣∣∣
(
ζ1
5
+

(
9
2
η2

1E 1
2 ,3

(−
√
η1) −

η2
1 + 1
5

)
+

1
10
|y1|

)
−

(
ζ2
5
+

(
9
2
η2

2E 1
2 ,3

(−
√
η2) −

η2
2 + 1
5

)
+

1
10
|y2|

)∣∣∣∣∣∣
≤

1
5
|ζ1 − ζ2| +

1
10

∣∣∣∣(45η2
1E 1

2 ,3
(−
√
η1) − 5η2

1

)
−

(
45η2

2E 1
2 ,3

(−
√
η2) − 5η2

2

)∣∣∣∣ + 1
10
||y1| − |y2||

≤
1
5
|ζ1 − ζ2| +

1
10

∣∣∣∣45η2
1E 1

2 ,3
(−
√
η1) − 45η2

2E 1
2 ,3

(−
√
η2)

∣∣∣∣ + 1
2
|η2

2 − η
2
1| +

1
10
|y1 − y2|

≤
1
5
|ζ1 − ζ2| +

1
10

∣∣∣∣45η2
1E 1

2 ,3
(−
√
η1) − 45η2

2E 1
2 ,3

(−
√
η2)

∣∣∣∣ + |η2 − η1| +
1
10
|y1 − y2| .

Note that

d
dη

(
45η2E 1

2 ,3
(−
√
η)

)
= 45

2ηE 1
2 ,3

(−
√
η) + η2 d

dt

∞∑
k=0

(−1)kη
k
2

Γ( k
2 + 3)


= 90tE 1

2 ,3
(−
√
η) + 45η2

∞∑
k=1

(−1)k k
2η

k
2−1

Γ( k
2 + 3)

:= p(η),

which exists for all η ∈ [0, 1]. Thus, 45η2E 1
2 ,2

(−
√
η) is continuous and differentiable on [0, 1], by mean

value theorem there exists ξ lying between η1, η2 such that∣∣∣∣45η2
1E 1

2 ,2
(−
√
η1) − 45η2

2E 1
2 ,2

(−
√
η2)

∣∣∣∣ ≤ p(ξ) |η1 − η2|.

Let L = 1 +
p

10
,where p = maxη∈J p(η). Then,

|F(η1, ζ1, y1) − F(η2, ζ2, y2)| ≤
1
5
|ζ1 − ζ2| + L|η2 − η1| +

1
10
|y1 − y2| .
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This proves that the function F satisfies hypothesis (H1) with Lipschitz constants

L = 1 +
p

10
, M =

1
5

and N =
1

10
.

Then,

N +M

(
1 +

|β|

|α + β|

) (
1 − µ
A(µ)

+
T µ

A(µ)Γ(µ)

)
=

1
10
+

1
5
·

2
3

 1
2
5
4

+
1
Γ(1

2 )

 = 0.3273 < 1.

Since the function F meets every requirement of Theorem 3.1, the non-linear implicit AB-FDE (5.1)
subject to boundary condition (5.2) has a solution according to Theorem 3.1. One can verify that

ζ(η) = η2 + 1, η ∈ [0, 1]

is the solution of the problem (5.1)-(5.2). Note that with this solution we find ζ(0) = 1, which yields

F(0, ζ(0), 0) =
ζ(0)

5
−

1
5
=

1
5
−

1
5
= 0.

Example 5.2. Consider the non-linear implicit AB-FDE (5.1) subject to nonlocal initial condition

ζ(0) + g(ζ) = 1.7, (5.3)

where g : C(J,R)→ R is the function defined by

g(ζ) = 0.4 ζ(0.5) + 0.1 ζ(1).

For any ζ, ζ1 ∈ C(J,R), we have

|g(ζ) − g(ζ1)| ≤ 0.5 |ζ − ζ1|.

This proves g satisfies the hypothesis with K = 0.5. Next, consider

J =
MA(µ)

(1 − N)A(µ) −M(1 − µ)
Eµ

(
µMT µ

(1 − N)A(µ) −M(1 − µ)

)
=

0.2 × 1.25
0.9 × 1.25 − 0.2 × 0.5

E 1
2

(
0.5 × 0.2

0.9 × 1.25 − 0.2 × 0.5

)
=

0.5
1.025

E 1
2

(
0.5 × 0.2

1.025

)
= 0.4878E 1

2
(0.0975). (5.4)

Using expansion of one parameter Mittag-Leffler function, we have

E 1
2
(0.0975) =

∞∑
k=0

0.0975k

Γ( k
2 + 1)

=

(
1 +

0.09752

1!
+

0.09754

2!
+ · · ·

)
+

0.0975
Γ( 3

2 )
+

0.09753

Γ( 5
2 )
+

0.09755

Γ(7
2 )
+ . . .


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= e0.09752
+

0.0975
1
2

√
π

(
1 +

2
3

0.09752 +
22

3 × 5
0.09754 +

23

3 × 5 × 7
0.09756 + · · ·

)
≤ e0.09752

+
2 × 0.0975
√
π

(
1 −

2 × 0.09752

3

)−1

= 1.0095 + 0.11 × 0.9936−1

= 1.1202. (5.5)

Utilizing estimation (5.5) in Eq (5.4), we obtain

J < 0.4878 × 1.1202 = 0.5464.

Therefore,
K(1 + J) < 0.5 × 1.5464 = 0.7732 < 1.

Meeting all the conditions outlined in Theorem 4.1, it follows that the non-linear implicit AB-FDE
given by Eq (5.1), accompanied by the non-local initial condition (5.3), have a solution. Further, one
can verify that

ζ(η) = η2 + 1, η ∈ [0, 1]

is the solution of non-linear implicit AB-FDEs (5.1) with non-local initial condition (5.3).

6. Conclusions

We successfully proved significant existence results for nonlinear implicit fractional differential
equations involving the nonsingular version of the Caputo fractional derivative defined by Atangana
and Baleanu. The investigation of implicit fractional differential equations encompassed both boundary
and nonlocal conditions, shedding light on the complexities of such equations. The foundational tools
employed in this analysis were Kuratowski’s measure of non-compactness and associated fixed point
theorems, namely Darbo’s fixed point theorem and Mönch’s fixed point theorem. To illustrate our
findings, we provided concrete examples and solutions to the considered problems with both boundary
and non-local initial conditions.
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