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Abstract: Recent studies have actively employed persistent homology (PH), a topological data analysis
technique, to analyze the topological information in time series data. Many successful studies have
utilized graph representations of time series data for PH calculation. Given the diverse nature of
time series data, it is crucial to have mechanisms that can adjust the PH calculations by incorporating
domain-specific knowledge. In this context, we introduce a methodology that allows the adjustment of
PH calculations by reflecting relevant domain knowledge in specific fields. We introduce the concept of
featured time series, which is the pair of a time series augmented with specific features such as domain
knowledge, and an influence vector that assigns a value to each feature to fine-tune the results of the PH.
We then prove the stability theorem of the proposed method, which states that adjusting the influence
vectors grants stability to the PH calculations. The proposed approach enables the tailored analysis of a
time series based on the graph representation methodology, which makes it applicable to real-world
domains. We consider two examples to verify the proposed method’s advantages: anomaly detection of
stock data and topological analysis of music data.
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1. Introduction

Data that can be represented as one-dimensional variables is called time series data; this data format
is simple and widely prevalent across various fields. Time series data analysis has been a long-standing
field, including anomaly detection [1,2], forecasting [3–6], classification [7–10], and clustering [11–13].
Despite being extensively researched, time series analysis remains a challenging problem. Recent
advancements in topological data analysis (TDA) have led to a surge in research on analyzing time series
data using topological information. A prominent method within TDA is persistent homology (PH),

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241315


27029

wherein the duration for which a p-dimensional homology persists is calculated as the given data
undergoes sequential transformations, thereby revealing the underlying topological structure. Research
analyzing time series data using PH can be broadly classified into two categories: studies utilizing delay
embedding and those utilizing graph representation.

The delay embedding ϕτ for a time series T , as described by Packard et al. [14], is a function
into Rm defined by ϕτ(t) = (T (t),T (t − τ), . . . ,T (t − (d − 1)τ)), where τ is the delay lag and m is the
embedding dimension. This embedding method is employed to transform time series data into point
clouds (PCs) in Euclidean space Rm for PH analysis. Takens’ embedding theorem [15] ensures that
this transformation preserves the topological information of the data sampled from hidden dynamical
systems. The initial approach was used to analyze dynamical systems in [16], where the time series
sampled from these systems were transformed into PCs for PH analysis. Subsequent research [17, 18]
expanded this foundation by affirming the effectiveness of PH in identifying the periodicity within a time
series and extending its application to quasi-periodic systems. Research on the early detection of critical
transitions [19] based on [20] and analysis of the stability of dynamical systems [21] was conducted
using PH and delay embedding. Moreover, PH and delay embedding methodologies were adopted
for clustering [22] and classification [23] of time series data. The effectiveness of PH in multivariate
time series analysis for machine learning tasks such as room occupancy detection was demonstrated
in [24]. The versatility of PH has been further highlighted by demonstrating its broad applicability to
diverse fields, e.g., identifying wheezes in signals [25], detecting financial crises [26, 27], classifying
motions using motion-capture data [28], and distinguishing periodic biological signals from nonperiodic
synthetic signals [29].

On the other hand, in addition to delay embedding methods, several studies have successfully used
graph representation of time series data with PH. The graph representation G = (V, E) of a time series
T consists of a vertex set V and an edge set E, which are derived from the data points and their
relationships within T . This graph is then analyzed using PH to study the topological features of T .
Notably, functional magnetic resonance imaging (fMRI) data of the brain was converted into graph
data, called functional networks in [30], which was then analyzed using PH. In [31], the early signs
of critical transitions in financial time series were detected by converting the series into graph data,
called correlation networks, for PH analysis. In text mining, PH has been applied to graphs representing
the main characters in the text time series [32]. A study proposed the construction of graphs, called
music networks, for classifying Turkish makam music through PH analysis [33]. These music networks
were used in [34] to analyze traditional Korean music using PH and in [35] to study composition by
integrating machine learning. In addition, the time series data has been transformed into Tonnetz,
proposed by Euler, for music classification through PH analysis [36]. The authors of [37] addressed the
classification of music style by creating data called intervallic transition graphs from music time series
and applying PH. Graph representation of time series is also crucial in recent artificial intelligence-based
time series analysis utilizing graph neural networks (GNNs). The graph representation of time series
data was employed for forecasting [38], anomaly detection [39], and classification [40] with GNNs.

Given the extensive and diverse nature of time series data, in addition to delay embedding, various
other embedding methods such as derivative embedding [14], integral-differential embedding [41], and
global principal value embedding [42] have been used. Recently, selecting appropriate embeddings
from these various embeddings using PH was investigated in [43]. Similarly, choosing the appropriate
graph representation for each research field is also crucial. However, further research is still needed on
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how to adjust and select suitable graph representations. In this context, our study makes the following
contributions:

(1) We introduce a novel concept of featured time series data created by adding domain knowledge
(features) to the time series data and influence vectors that assign a value to each feature. This
allows the adjustment of graph representations to ensure suitability to the specific domain.

(2) We prove that adjusting the graph representations via the influence vectors provides stability to the
PH calculation, thereby demonstrating the robustness of the proposed method.

The remainder of this paper is organized as follows. Section 2 describes the frequency-based graph
representation and methods for calculating the PH of the graphs. We provide an example of potential
information loss that can occur during the PH computation process. In Section 3, we introduce the novel
concepts of featured time series data and influence vectors to analyze a time series by incorporating
domain knowledge. Furthermore, we show that the examples of information loss presented in Section 2
can be addressed by adjusting the influence vectors. In Section 4, we state the theorem that asserts the
stability property of the influence vectors when subjected to such adjustments. This theorem underscores
the reliability and robustness of the influence vector adjustments in mitigating information loss during
the graph representation process. In Section 5, we explore the effect of variations in the influence
vectors on the analysis of real-world time series data based on previous research, including anomaly
detection of stock data and topological analysis of music data. All codes used in this study are available
at https://github.com/AI-hew-math/Feat_time_series. In Section 6, we provide a detailed
proof of the main theorem introduced in Section 4. In Section 7, a brief concluding remark is provided.

2. Frequency-based PH analysis of time series data

In this study, we addressed the graph representation of time series data using the frequency of
occurrence of observations in the time series data.

2.1. Frequency-based graph construction

Consider a time series T : T → X, where X represents the set of all possible values that the time
series data can take, and T is assumed finite. Define the vertex or node set V as

V = {{T (t)} | t ∈ T}.

Enumerating T as {t1, t2, . . . , tn}, the edge set E is defined as

E = {{T (ti),T (ti+1)} | 1 ≤ i ≤ n − 1,T (ti) , T (ti+1)}.

Let fe represent the frequency of an edge e ∈ E in T given by

fe =
∣∣∣∣{ti ∈ T | e = {T (ti),T (ti+1)}}

∣∣∣∣.
Here, fe measures the total number of co-occurrences of the two nodes appearing side by side in T
associated with the edge e. Note that when defining the frequency fe as above, we did not consider these
two nodes’ specific order of appearance. The frequency of the edge e increases whenever the two nodes
are positioned adjacent to each other in T . Define a weight function WE on E as WE(e) = fe for any edge
e ∈ E. This weight measures how strongly the associated nodes are connected to each other in e ∈ E.

AIMS Mathematics Volume 9, Issue 10, 27028–27057.

https://github.com/AI-hew-math/Feat_time_series


27031

2.2. Distance on weighted graphs

To compute the PH over the graph, we define the distance between two nodes in the graph. In this
study, we considered the definition of natural distance, which is given below. However, note that the
distance definition is not unique but might be the best definition depending on the problem.

Definition 2.1. (Distance) Let G = (V, E,WE) be a connected weighted graph. Define the distance
between v and w in V such that d(v,w) = 0 if v = w; otherwise,

d(v,w) = min
p

∑
e∈p

(WE(e))−1

∣∣∣∣∣∣p is a path in G connecting v and w

 .
Note that the distance d satisfies the metric conditions. The proof is provided in Proposition 3.1, where
a more general case is presented. For d, we utilize the reciprocal of the edge weight function WE. This
implies that we consider the vertices v and w connected by the edge e as closer when the frequency fe

of the edge is higher. Define a distance matrix A as A = (ai j), where ai j = d(vi, v j) for every pair of
vertices vi, v j ∈ V .

2.3. Persistent homology of metric spaces

We now consider computing PH given a metric space (V, d). Suppose we have a metric space (V, d)
from graph G = (V, E,WE). The power set P(V) of the vertex set V is an abstract simplicial complex,
denoted as X. We define the Vietoris-Rips (Rips) filtration function h : X→ R as

h(σ) = max{d(vi, v j) | τ ⊆ σ, 1-simplex τ = {vi, v j}},

whenever p ≥ 1 for p-simplex σ ∈ X. For any 0-simplex v, we define h(v) = 0. Denote h−1((−∞, ϵ]) as
Xϵ for ϵ ∈ R. Then, for ϵn ≥ maxσ(h(σ)) and 0 = ϵ0 ≤ ϵ1 ≤ ϵ2 ≤ · · · ≤ ϵn,

Xϵ0 ⊆ Xϵ1 ⊆ · · · ⊆ Xϵn = X

forms the Rips filtration for an abstract simplicial complex X (see [44, 45]). A simplicial complex
can be associated with a sequence of abelian groups, termed chain groups. For each dimension p, the
p-chains Cp(X) are the formal sums of the p-simplices. For each dimension p, there exists a boundary
map ∂p : Cp(X) → Cp−1(X) that maps each p-simplex to its boundary. A crucial property is that the
boundary of the boundary of the simplices is always null, that is, ∂p−1 ◦ ∂p = 0. Given the chain groups
and boundary maps, the pth homology group is defined as the quotient group

Hp(X) =
ker(∂p)

Im(∂p+1)
.

This quotient captures the p-dimensional holes in a given topological space. As the filtration progresses,
these homology groups also change. The PH serves as an effective tool for tracing such changes. For
each dimension p and filtration value ϵi, we compute Hp(Xϵi). As ϵi changes, certain homological
features (e.g., loops) may emerge or disappear. A persistence diagram [46] (PD) is a multi-set that
visualizes the coordinates of these features on a plane. The x-coordinate of a point in the PD indicates
the birth of such a homological feature, and the y-coordinate indicates its death. The longer the
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persistence of the considered feature, the greater the deviation of the corresponding point from the
diagonal on the plane of the PD. Note that the computation of PH depends on the filtration choice, but
Rips filtration is one of the most popular filtration methods. Open-source libraries used for computing
the PH based on Rips filtration include JavaPlex [47] written in Java but easily usable in MATLAB,
GUDHI [48] written in C++ but also accessible in Python, and the recently developed Ripser [49],
which significantly reduces the computation time and memory usage when compared with the other
methods. Rip filtration allows the computation of PH not only on point clouds but also on general
abstract simplicial complexes, especially graphs. In [50], the authors demonstrated that Rips filtration
could approximate the topological shapes of the data’s manifolds, as discussed in [51].

2.4. Discussion of information loss through an example

Let us examine a simple example to see how PH computation for time series analysis of a specific
field can result in information loss. Here, we discuss a simple case of anomaly detection in a time series.
Consider a time series T consisting of 27 timestamps for temperature changes, as shown in Figure 1. We
can construct a graph from T , as shown in Figure 2. In the graph, each vertex represents a temperature
value, and the value associated with the edge represents the co-occurring frequency of the two adjacent
temperature values in T . From the definition of the distance d, the distance matrix is obtained as shown
in Figure 2. The matrix’s rows and columns correspond to the temperature values associated with the
vertices 21, 22, 23, 24, and 25. For example, the element at the position of (2, 3) in the matrix represents
the distance between the vertices 22 and 23. The complexity of computing the distance matrix depends
on the complexity of the pathfinding process O(|E| log|V |), which can be efficiently calculated using the
Dijkstra algorithm [52].

Timestamps

21

22

23

24

25

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27

Temperature
Anomaly

Figure 1. A time series of temperature with the anomaly region shaded.

21 23

24

22

25

Figure 2. Weighted graph G = (V, E,WE) of the time series T in Figure 1 (left) and the
corresponding distance matrix (right).
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We construct the Rips filtration for the distance matrix and compute the persistence barcode. The
upper row of Figure 3 illustrates how the Rips complex changes in the Rips filtration as the filtration
value ϵ varies. The bottom row shows the corresponding 0-dimensional persistence barcode. The
corresponding persistence barcode shown in Figure 3 illustrates the occurrence of information loss
during filtration. The time series T in Figure 1 undergoes abnormal temperature changes in the shaded
area, where temperatures (nodes) 21 and 25 are connected twice. As shown in Figure 3, the information
regarding the frequency between nodes 21 and 25 in the anomaly region and its distance 1

2 are not
reflected in the computation of homology. The birth and death of the 0-dimensional homology occur
at 0, 1

6 , and∞, with no occurrence at 1
2 . Moreover, the 1-dimensional homology is not detected either.

This is because the interior of the pentagon is filled in advance at 1
3 preceding 1

2 . Therefore, if the
change in temperature from 21 to 25 is considered an anomaly, then it must be reflected in this loss of
information. For example, instead of simply increasing the frequency by 1 at each appearance of 21
and 25 in T , we can assign a larger value. This can generate 1-dimensional homology because if the
distance d(21, 25) becomes smaller than 1

3 , a 1-cycle is formed before any interior edge of the pentagon
is created. In addition, if the distance d(21, 25) becomes less than 1

6 , the edge {21, 25} will be the first to
emerge in the filtration; thus, d(21, 25) becomes the death time in the 0-dimensional barcode. This is
discussed in detail in Example 3.5 later. These examples underscore the critical need for domain-specific
adjustments in analysis to accurately perform PH computations for time series data within particular
fields.

22

21 23

2425

22

21 23

2425

22

21 23

2425

22

21 23

2425

0 0.1 0.2 0.3 0.4 0.5

Figure 3. Rips filtration (Top) and its persistence barcode (Bottom).

3. Introduction of featured time series data

We propose the featured time series data below to enable adjustments in the PH calculation that
reflect each field’s domain knowledge.

3.1. Featured time series data

Definition 3.1. (Feature set) Let F p denote finite sets, where p = 0, 1. The Cartesian product of the
power set of F p is called the feature set, denoted by F . That is, F = P(F0) × P(F1).We call F p the
pth feature set. The elements of F p are called the pth features.
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As demonstrated below, the pth feature is associated with the p-simplex in a graph in our proposed
method.

Definition 3.2. (Influence vectors) Consider a nonnegative real value function g : F0 ∪ F1 ∪ {∅0, ∅1} →

R, where the symbols ∅0 and ∅1 represent the states of the given time series without any feature.
This function g is called the influence vector with the size of |F0| + |F1| + 2. For any element z in
F0 ∪ F1 ∪ {∅0, ∅1}, the value g(z) is referred to as the influence of z.

Definition 3.3. (Featured time series) Let T : T→ X be a time series, F be a feature set, and g be an
influence vector. Consider a function T̂ : T→ X× F such that T̂ (t) = (T (t),T f (t)) ∈ X × F for t ∈ T,
where T f : T → F represents any function. The pair (T̂ , g) is called a featured time series of T by g.
The function T f is termed the feature component of the T̂ .

For example, let F0 = {r1, r2, r3} and F1 = {s1, s2} represent the zeroth and first feature sets,
respectively. Consider a time series T : T → X such that T (ti) = xti , where T = {ti | i ∈ N}. The
following sequence illustrates an example of T̂ :

(xt1 , {r1, r3}, {s1, s2}), (xt2 , {r2, r3}, ∅
1), . . . , (xti , Ati , Bti), . . . ,

where Ati ⊆ {r1, r2, r3} and Bti ⊆ {s1, s2}. For any influence vector g, (T̂ , g) is a featured time series.

3.2. Graph representation of featured time series data

Consider a featured time series (T̂ , g) as defined in Definition 3.3. A connected graph G = (V, E,WE)
is constructed using T as explained in Section 2.1. The main goal of the proposed method is to generalize
the weight function WE in G, yielding a more flexible and adaptive PH analysis by fully utilizing the
given information in the time series. For such generalization, we use T f and g.

Consider two time series T 0
f : T → P(F0) and T 1

f : T → P(F1) such that T f (t) = (T 0
f (t),T

1
f (t)) for

any t ∈ T. Write F0 = {r1, . . . , rm} and V = {v1, v2, . . . , v|V |} as ordered sets. Define the zeroth count
matrix C0 = (c0

i j) using F0 such that

c0
i j B


∣∣∣{t ∈ T | vi = T (t), r j ∈ T 0

f (t)}
∣∣∣ if j = 1, . . . ,m,∣∣∣{t ∈ T | vi = T (t),T 0

f (t) = ∅
0}
∣∣∣ if j = 0,

where
∣∣∣ · ∣∣∣ denotes the cardinality of the set. The c0

i j represents the total number of timestamps t ∈ T
when the vertex vi in V and feature r j in F0 are encountered together in T̂ . The ith element of the first
column of C0 represents the total number of timestamps when vi appears without any zeroth features.

Similarly, write F1 = {s1, . . . , sl} and E = {e1, e2, . . . , e|E|} as ordered sets and define the first count
matrix C1 = (c1

i j) using F1 such that

c1
i j B


∣∣∣{tk ∈ T | ei = {T (tk),T (tk+1)}, s j ∈ T 1

f (tk)}
∣∣∣ if j = 1, . . . , l,∣∣∣{tk ∈ T | ei = {T (tk),T (tk+1)},T 1

f (tk) = ∅1}
∣∣∣ if j = 0.

The c1
i j represents the total number of timestamps t ∈ T when the edge ei and feature s j in F1 are

encountered together in T̂ . The ith element of the first column of C1 represents the total number of the
timestamps when ei appears without any first features.
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Set g⃗0 = (g(∅0), g(r1), g(r2), . . . , g(rm)) and g⃗1 = (g(∅1), g(s1), g(s2), . . . , g(sl)) for an influence vector
g. Consider two vectors C0 · g⃗0 and C1 · (g⃗1 + 1⃗). Here, · denotes matrix multiplication, and 1⃗ means
the vector whose elements are all 1. The use of 1⃗ in C1 · (g⃗1 + 1⃗) is to ensure that when g⃗1 = 0, the
value (C1 · 1⃗)i aligns with the frequency fe defined in Section 2.1 for edge e in E.

Define a vertex weight function ŴV : V → R as ŴV(vi) = (C0 · g⃗0)i for vi ∈ V and an edge weight
function ŴE : E → R as ŴE(ei) = (C1 · (g⃗1 + 1⃗))i for ei ∈ E. Write ŴE(ei) as f̂ei . The weight f̂e is called
the weighted frequency of an edge e. It is a generalization of the frequency explained in Section 2.1.
The weight ŴV(v) is called the weighted frequency of a vertex v associated with the zeroth features,
r1, r2, . . . , rm. When g⃗0 = 1⃗ , the ŴV(v) is simply the frequency of appearance of vertex v in T̂ .

We then obtain the vertex- and edge-weighted graph Ĝg = (V, E, ŴV , ŴE) from the featured time
series (T̂ , g). These weight functions are used to define the metric space in the following section.

3.3. Distance on vertex-edge weighted graphs

Suppose that we have a graph Ĝg = (V, E, ŴV , ŴE). Let α = mine∈E(ŴE(e))−1. Take an increasing
function ρ : R → (−1, 1) into the open interval (−1, 1) such that ρ(0) = 0. We call ρ an activation
function. Define the length function Lg : E → R of the graph Ĝg as

Lg(e) = (ŴE(e))−1 − α
(
ρ(ŴV(a) + ŴV(b))

)
for any edge e = {a, b} ∈ E.

Here, α ensures that the length Lg(e) = (ŴE(e))−1 − α
(
ρ(ŴV(a) + ŴV(b))

)
remains positive for any

edge e. The distance d̂ of the graph Ĝg is defined below.

Definition 3.4. (Distance) Let v,w ∈ V be any vertices. If v = w, define d̂(v,w) = 0. Otherwise, the
distance d̂ between v and w is defined as

d̂(v,w) = min

∑
e∈p

Lg(e)
∣∣∣∣p is a path in G from v to w

 .
The motivation for defining distance d̂ is as follows. Consider an edge e = {a, b} in the graph Ĝg. As
discussed in Section 2.2, we fundamentally use the reciprocal of ŴE for the distance d̂. The stronger the
relevance between a and b, the closer they should be positioned. Compared with WE, in particular, ŴE

is a function that further assigns the sum of the influences on the features, meaning the more frequent
the appearance of the first feature, which has a significant influence on the featured time series T̃ , the
stronger the connection becomes. Additionally, we used the vertex weight function ŴV for the distance
d̂. This is designed to reflect the influence of a single node a on the other nodes in the entire network.
The greater the vertex weight assigned to a, the shorter the distance from a to all other nodes. For
example, consider a social network G in which node a is a famous influencer in the network and node b
is connected to a. Even if there is no direct interaction between nodes a and b, it is natural to consider
the distance between them to be small if a’s influence is strong. To achieve this, in the definition of
the length function Lg, we subtract the sum of the influences of nodes a and b from ŴE(e), resulting in
ŴE(e) − (ŴV(a) + ŴV(b)). However, as ŴV and ŴE are independent functions, they can be negative.
Therefore, we ultimately define the length Lg for any edge e = {a, b} ∈ E as

Lg(e) = (ŴE(e))−1 − α
(
ρ(ŴV(a) + ŴV(b))

)
.
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Figure 4 presents a schematic illustration of how the graph Ĝg = (V, E, ŴV , ŴE) changes as we consider
more general vertex weights ŴV and edge weights ŴE.

Figure 4. Schematic illustrations of the weighted graph Ĝg = (V, E, ŴV , ŴE) for various
influence vectors g. (i) represents the case where ŴV = 0 and ŴE = WE, (ii) shows the
changes when only the edge weight is varied, and (iii) illustrates the changes in the vertex
weights from those in (ii).

The distance d̂ satisfies the metric conditions, making it a more appropriate distance measure that
naturally approximates the actual data space more closely than general distance measures without metric
conditions.

Proposition 3.1. Let d̂ be the distance as defined in Definition 3.4. Then, d̂ is a metric.

Proof. Let v,w, z ∈ V be any vertices. If v = w, we have d̂(v,w) = 0 by Definition 3.4. In addition, the
length function Lg is positive; therefore, d̂(v,w) = 0 implies v = w. Suppose that v , w. For any path
p from v to w, we can create a path p−1 from w to v by simply reversing the order of the vertices in p.
Therefore, the distance d̂ satisfies d̂(v,w) = d̂(w, v). Finally, let us prove the condition of the triangle
inequality. Denote the path satisfying the minimality in the definition of d̂(v, z) as p1, and the path in
d̂(z,w) as p2. Consider a path p1 ∪ p2, which is obtained by concatenating p1 and p2. Sum all values
Lg(e) according to any edge e in path p1 ∪ p2, then it is d̂(v, z) + d̂(z,w). Because p1 ∪ p2 is a path from
v to w, by the property of minimality in the definition of d̂(v,w), we have d̂(v,w) ≤ d̂(v, z) + d̂(z,w). □

Corollary 3.1. (V, d̂) is a metric space for graph Ĝg = (V, E, ŴV , ŴE).

The distance d̂ defined on Ĝg can be considered a generalization of the distance d from Definition 2.1
from the perspective of the following proposition:

Proposition 3.2. If the influence vector g is zero, then the two distances d in Definition 2.1 and d̂ in
Definition 3.4 are identical on V.

Proof. Because g⃗0 is zero, the vertex weight function ŴV is zero. From ρ(0) = 0, we get∑
e∈p

Lg(e) =
∑

e={a,b}
e∈p

(
(ŴE(e))−1 − αρ(ŴV(a) + ŴV(b))

)
=

∑
e∈p

(ŴE(e))−1.

As g⃗1 is zero, it follows that f̂ei = (C1 · (g⃗1 + 1⃗))i = (C1 · 1⃗)i = fe, leading to ŴE(e) = f̂e = fe = WE(e).
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Consequently, by the definition of d̂, we obtain

d̂(v,w) = min

∑
e∈p

Lg(e)
∣∣∣∣∣p is a path between v and w


= min

∑
e∈p

(WE(e))−1
∣∣∣∣∣p is a path between v and w

 = d(v,w).

□

3.4. Activation function

The role of ρ is to ensure that the values of the sum of any two vertex weights exist between 0 and
1 in the ascending order. If ρ is not appropriately chosen, all the elements of ρ(ŴV(a) + ŴV(b)) in
Definition 3.4 may become nearly identical for any edge e = (a, b). It is crucial to select ρ so that the
distribution of the elements of ρ(ŴV(a) + ŴV(b)) facilitates effective analysis. Although the choice of
the activation function can vary depending on the problem, this process can also be efficiently automated.
We consider the following activation function:

ρ(z) =

1 − e−z2
if z ≥ 0,

0 if z < 0.

Let M be the maximum value of {ŴV(vi)+ŴV(v j) | i , j}, where M ≥ 0. Define the automatic activation
function ρ∗(z) as ρ∗(z) = ρ

(
2z

M+1

)
.

Proposition 3.3. The function ρ∗(z) is Lipschitz continuous with a constant that is independent of the
influence vector g, although M depends on ŴV .

Proof. We know that ρ is Lipschitz continuous owing to the boundness of its derivative ρ′. There
exists a constant k, independent of ŴV , such that we have |ρ′(z)| ≤ k for any z. We can infer that
|ρ′∗(z)| = 2

M+1 |ρ
′( 2z

M+1 )| ≤ 2k. □

In the stability theorem proved in Section 6, the independence of the Lipschitz constant of the
activation function from the influence vectors g becomes crucial. Proposition 3.3 means that using the
automatic activation function ρ∗ is permissible.

3.5. Example: addressing information loss in PH calculation

Consider the time series T , as shown in Figure 1. We define the zeroth feature set F0 as {L,H},
representing humidity levels including low (L) and high (H), and the first feature set F1 as {|T (t +
1) − T (t)| | t ∈ T}, representing the magnitude of the temperature changes. As shown in Figure 5, T
is complemented by a tuple of features ( f1, f2) ∈ F0 × F1, providing additional information. This is
denoted as T̂ .
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Figure 5. A time series T̂ with features added from the original time series T shown in
Figure 1.

To emphasize the sudden changes in temperature, define the influence vector g such that g(4) = 5
for 4 ∈ F1 and g(x) = 0 for all other features of x. In other words, g⃗0 and g⃗1 are expressed as

0 0 0
( )T

g⃗0 =

∅0 H L

0 0 5
( )T

g⃗1 =

∅1 1 4

and
.

For the featured time series (T̂ , g), the vertex weight function ŴV is zero, as g⃗0 = 0⃗. The edge weight
function ŴE can be obtained using the first count matrix C1 as follows:

0 6 0

0 6 0

0 6 0

0 6 0

0 0 2





(21, 22)

(22, 23)

(23, 24)

(24, 25)

(21, 25)

∅1 1 4

1

1

6




g⃗1 + 1⃗ 6

6

6

6

12





C1 · (g⃗1 + 1⃗)

× =

.
Figure 6a illustrates the Rips filtration for the metric space (V, d̂), which is constructed from the graph

Ĝg = (V, E, ŴV , ŴE). In the filtration, the edge {21, 25} first appears in Xϵ when ϵ = d(21, 25) = 1
12 .

Unlike the example discussed in Section 2.4, by assigning an influence value of 5 to 4 ∈ F1, we
emphasize the importance of the edge {21, 25}. This not only results in the formation of a point in
the 1-dimensional PD, as observed in Figure 6a, but also leads to the emergence of a point in the
0-dimensional PD with a death time of d(21, 25) = 1

12 . These developments are illustrated in Figures 6a
and 6c, which contrast with the scenario in Figures 3 and 6b, where the latter displays a single
point representing four 0-dimensional points. This example illustrates that by adjusting the influence
vector g, previously unrepresented domain-specific information can now be effectively preserved in the
computation of PH.

In this example, the humidity was used as the zeroth feature. Figures 6d and 6e show that the
influence on the zeroth features affects the persistence (death time-birth time) of each point rather
than the existence of 1-dimensional points. Although not extensively covered in this example, the
zeroth feature is considered significant in the stock data, as discussed in Section 5.1. Furthermore, in
Section 5.1, the area of the shaded region S in Figure 6c is used for anomaly detection on the stock data.
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(a) Rips filtration when g⃗0 = (0, 0, 0) and g⃗1 = (0, 0, 5).
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(c) PD when g⃗0 = (0, 0, 0) and g⃗1 = (0, 0, 5).

(d) All points of the PDs for g⃗0 = (0, i, j) with
i, j ∈ I =

{
n

100 | 0 ≤ n ≤ 500, n ∈ N
}

when g⃗1 =

(0, 0, 0).

(e) All points of the PDs for g⃗0 = (0, i, j) with i, j ∈
I =

{
n

100 | 0 ≤ n ≤ 500, n ∈ N
}

when g⃗1 = (0, 0, 5).

Figure 6. Rips filtration and persistence diagrams (PDs) for various influence vectors for Ĝg.

3.6. Feature selection

Feature selection is problem-dependent, and features should be properly categorized for analysis.
Suppose that we have a time series T and a collection O of objects, including the various domain
knowledge that we want to consider as features. To classify O into the zeroth and first features, it is
important to understand that the ith features of the featured time series data determine the weights of
i-simplices in graphs. The vertex set of graphs consists of single observations {T (t)}, making it sensible
to associate any feature s0 ∈ O closely related to a single observation with the zeroth feature. In addition,
because the first features influence the weights of edges {T (t),T (t + 1)} for some t ∈ T, if any feature
s1 ∈ O relates to any two observations simultaneously, it would be proper to regard it as the first feature.

In Example 3.5, humidity is considered the zeroth feature because it pertains to the information
from a single observation T (t) at each timestamp t ∈ T. Furthermore, the magnitude of the temperature
change is classified as the first feature because it is derived from two consecutive observations T (t) and
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T (t + 1) at each timestamp t ∈ T.

4. Stability theorem for influence vectors

The stability theorem for persistence diagrams is crucial for ensuring reliable topological inferences.

Lemma 4.1. (Cohen-Steiner et al. [53]) Let X be a finite abstract simplicial complex. For any two
functions h1, h2 : X→ R, the persistence diagrams dgmp(h1) and dgmp(h2) satisfy

DB(dgmp(h1), dgmp(h2)) ≤ ||h1 − h2||∞

for any dimension p, where DB is the bottleneck distance.

If the change in the function h : X→ R is small, then the change in the PD is also tiny. We prove
that the PD remains stable when adjusting the influence vector g for the featured time series (T̂ , g).

Theorem 4.1. (Stability of the proposed method) Let T̂ be a time series with augmented feature
information derived from a times series T . If the activation function ρ, which defines d̂ in Definition 3.4,
is Lipschitz continuous, then there exists a constant C = C(T̂ , ρ) > 0 such that for any two influence
vectors g and g′, the persistence diagrams dgmp(g) and dgmp(g′) satisfy

DB(dgmp(g), dgmp(g′)) ≤ C∥g − g′∥∞

for any dimension p, where DB is the bottleneck distance.

The function Φ : g 7→ dgmp(g) is Lipschitz continuous. For the count matrices C0 = (c0
i j) and

C1 = (c1
i j), define Cmax

0 and Cmin
1 , respectively, as follows:

Cmax
0 := max

v∈V

∑
j

c0
iv j and Cmin

1 := min
e∈E

∑
j

c1
ie j.

By the Lipschitz continuity of the activation function ρ, we can find a constant k such that

|ρ(x) − ρ(y)| ≤ k |x − y| for any x, y.

The constant C of Theorem 4.1 is

C =
(
kCmax

0 + 1
) 2

Cmin
1

(|V | − 1).

This theorem guarantees the robustness of the proposed method. This robustness ensures that small
perturbations in the influence vectors, commonly encountered in real-world scenarios, do not lead
to significant changes in the resulting persistence diagrams. Consequently, the stability property
underscored by this theorem provides a reliable foundation for utilizing featured time series data in
various applications, particularly in conditions where data input may be uncertain or noisy.
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5. Applications and experiments

This section aims to demonstrate the potential applications of adjusting the influence vector in PH
analysis of actual time series based on the main theorem introduced in Section 4. In Sections 5.1 and 5.2,
we explore the analysis of stock and music data, respectively.

However, these analyses are not the main focus of this study. Instead, we aim to demonstrate that
by using our proposed method of adjusting the appropriate influence vector when employing graph
representations, it is possible to achieve outcomes comparable to the previous methods for some cases.
Moreover, we highlight the possibility of conducting various other analyses that were not attempted
in the previous research. The first example aims to improve the time series analysis by adjusting
the influence vector and determining its value suitable for analysis. For this purpose, we apply our
methodology to the stock data analyzed in previous PH studies. The second example focuses on
analyzing the effect of features on the time series data. For this purpose, we apply the proposed method
to the music data and observe how the PH results change when the influence assigned to each feature
varies.

5.1. Application to stock data

Recent studies in finance explore a wide range of topics. As [54] examined the interconnectedness
between financial assets during the COVID-19 pandemic, similar research has studied the spillover
effects between assets. Moreover, predicting financial assets remains a key area of research, where [55]
introduces an enhanced artificial electric field algorithm (EOAEFA) that improves higher-order neural
networks (HONNs) for more accurate financial time series prediction. Additionally, research utilizing
high-frequency data to analyze rapidly evolving key trends is critical, and [56] provides a bibliometric
analysis of high-frequency data in cryptocurrency research, identifying key trends and major research
streams from 2015 to 2022. Conversely, studying signals of global financial changes over longer periods
is also significant. Recently, [57] shows that TDA can detect early warning signals of financial bubbles,
focusing on Bitcoin’s historical price data using the log-periodic power law singularity (LPPLS) model.
In this research, our goal is to enhance the precision through our proposed method for global anomaly
detection. Specifically, this section aims to enhance the precision by adjusting the influence vector g
based on the stability described in Theorem 4.1, as applied to the global anomaly detection analysis
performed in [26]. A previous study [26] employed four time series, specifically the Standard and
Poor’s 500 (S&P 500), the Dow Jones Industrial Average (DJIA), the National Association of Securities
Dealers Automated Quotations (NASDAQ), and Russell 2000, and treated them as the 4-dimensional
time series. In [26], the time series was transformed into a point cloud using the sliding window, and the
persistence landscape [58] was computed. Calculating the Lp-norm of the persistence landscape yields
a real number value for anomaly scores. Curves were created by advancing the sliding window stepwise
and repeating the same process. In [26], these curves were used to detect anomalies such as the collapse
of the Dotcom bubble on 03/10/2000 and the bankruptcy of Lehman Brothers on 09/15/2008.

For a given date t, define P(t) as the closing price of a stock. Consider a time series X defined as
X(t) = log P(t + 1) − log P(t) for each date t. Because the closing price P is already aggregated over
time t, we further perform an aggregation on the price by partitioning the values of X into 30 equal
intervals, denoted as I = {I1, I2, . . . , I30}. This aggregation process enhances the robustness of our
analysis, ensuring reliable results even in the presence of noisy data. We obtain an aggregated time
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series T : T → I defined by T (t) = Ikt such that X(t) ∈ Ikt for any t ∈ T. The zeroth feature (T 0
f ) is

chosen as the day of the week. For the first feature (T 1
f ), we partition the set {X(t + 1) − X(t) | t ∈ T}

into 4 intervals of equal length, denoted as {J1, J2, J3, J4}. The time series T̂ = (T,T f ) is characterized
as

(1) T (t) = Ikt such that X(t) ∈ Ikt for each date t
(2) The zeroth feature set F0 used in T f is {∅0,Mon,Tue,Wed,Thu,Fri}
(3) The first feature set F1 used in T f is {∅1, J1, J2, J3, J4}.

Let T̂ i represent the time series obtained from the index Pi, where Pi represents S&P 500, DJIA,
NASDAQ, and Russell 2000, for i = 1, 2, 3, 4, respectively. For each influence vector g, we obtain the
featured time series (T̂ i, g). For a fixed date t, define T̂ i|wt as the function obtained by slicing T̂ i from t
to t + w, where w is the window size. Let dgm1(T̂ i|wt ) denote the one-dimensional PD obtained for the
sliced time series T̂ i|wt .

We use the persistence landscape [58] as a tool to measure the PD, defined as follows: Let dgmp be a
p-dimensional PD consisting of points (b, d) where b and d represent the birth and death times of the
homological features, respectively. To begin, transform each point (bm, dm) in dgmp into a tent function,
ϕm(x) = [min{x − bm, dm − x}]+, where [z]+ = max{z, 0} denotes the positive part of z. The persistence
landscape of dgmp is defined as the sequence of functions λk, k ≥ 1, where

λk(x) = kth largest value of {ϕm(x)}m≥1.

If there are fewer than k functions ϕm(x) at a given point x, we set λk(x) = 0.
We define the anomaly score curve (ASC) of a single time series Pi as follows: for each date t,

AS C(Pi)(t) =
1

Mi

∞∑
k=1

∥λk(dgm1(T̂ i|wt ))∥∞,

where Mi is the normalization factor such that the maximum value of AS C(Pi)(t) is 1 and ∥·∥∞ denotes
the L∞-norm. The norm of the persistence landscape in the definition of the ASC curve is related to the
area of the shaded region S mentioned in Figure 6c. If dgm1 contains only one point (b, d), then we
have

∑∞
k=1∥λk(dgm1(·)∥∞ = (d − b)/2 =

√
Area(S )/2 because the area of S is given by (d − b)2/2.

The total anomaly score curve (TASC) of four time series Pi is defined as follows: for each date t,

T AS C(t) =
1
M

4∏
i=1

AS C(Pi)(t),

where M is the normalization factor such that the maximum value of T AS C(t) is 1. The rationale behind
taking the product of the four AS C(Pi) is to ensure that the total score approaches zero if any of them
are close to zero. This is a cautious approach to minimize the error in the anomaly score. In the ASC
and TASC curves, values closer to 1 indicate the presence of anomalies. Note that in the computation
of TASC, the anomaly scores for each sliced time series T̂ i|wt are computed independently for any t,
facilitating parallel processing. This capability enables the efficient analysis of large datasets.

Experiments were conducted to identify the influence vector g that enhances the anomaly detection
performance. According to the stability theorem for influence vectors introduced in Section 4, slight
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variations in the influence vector g cause subtle changes in the ASC and TASC. Therefore, the
components of g were altered to 0, 10, and 20 to observe significant changes. Because the zeroth and
first features are always present in the stock data for each date t, the influence related to ∅0 and ∅1 was
set to 0. In Figure 7, the date 03/10/2000 (denoted as tDot) is marked as the starting point of the collapse
of the Dotcom bubble, and the shaded areas are colored according to the window size from the starting
point. Similarly, 09/15/2008 (denoted as tLeh) corresponds to the bankruptcy of Lehman Brothers. The
values of g⃗0 represent the influence values for (∅0,Mon,Tue,Wed,Thu,Fri), whereas those of g⃗1

correspond to (∅1, Ji
1, J

i
2, J

i
3, J

i
4).
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Figure 7. The first row presents the ASC for each of the S&P 500 (GSPC), DJIA (DJI),
NASDAQ (IXIC), and Russell 2000 (RUT) indices, with g⃗0 = 0⃗, g⃗1 = 0⃗ and the window size
w = 360. The second row shows the TASC0 derived from these four ASCs.

To identify the optimal influence vector, the experiment employed a grid search strategy with a
window size of w = 360 over g⃗0 = (0, a1, 0, a2, 0, a3) and g⃗1 = (0, a4, a5, a6, a7), where ai ∈ {0, 1, 2}
for all i. Table 1 summarizes the detection ratios for identifying the Dotcom and Lehman crises among
the 37 = 2187 possible (g⃗0, g⃗1) pairs. In the table, Dot represents the set of (g⃗0, g⃗1) pairs where the
max value of the TASC curve exceeds the threshold ϵ = 0.9999 within the interval [tDot, tDot + w] and
is less than 0.25 in all other regions. This can be formally expressed as max(T AS C |[tDot ,tDot+w]) > ϵ,
max(T AS C |[−∞,tDot]) < 0.25, and max(T AS C |[tDot+w,tDot+2w]) < 0.25. Similarly, Leh represents the set
of (g⃗0, g⃗1) pairs where the max value of the TASC curve exceeds the threshold ϵ = 0.9999 within
the interval [tLeh, tLeh + w] and is less than 0.25 in all other regions except the interval [tDot, tDot +

w]. This is formally expressed as max(T AS C |[tLeh,tLeh+w]) > ϵ and max(T AS C |[−∞,tDot]) < 0.25,
max(T AS C |[tDot+w,tLeh]) < 0.25, and max(T AS C |[tLeh+w,tLeh+2w]) < 0.25.

Table 1. Detection ratios for Dotcom and Lehman crises.

Dot Leh Dot ∩ Leh Dot \ Leh Leh \ Dot
Detect ratio (%) 20.58 17.88 6.22 14.36 11.66

Dot: The set of (g⃗0, g⃗1) pairs detecting the collapse of the Dotcom bubble as an anomaly; Leh: The set of (g⃗0, g⃗1) pairs detecting the
bankruptcy of Lehman Brothers as an anomaly, where g⃗0 = (0, a1, 0, a2, 0, a3) and g⃗1 = (0, a4, a5, a6, a7), with ai ∈ {0, 1, 2}.

As shown in the second row of Figure 7, the TASC0 successfully detects the Lehman crisis but fails
to detect the Dotcom bubble collapse. The pair (g⃗0, g⃗1) ∈ Dot ∩ Leh, where g⃗0 = (0, 20, 0, 0, 0, 0) and
g⃗1 = (0, 0, 10, 0, 20), successfully detects both the Dotcom bubble collapse and the Lehman Brothers
crisis as anomalies. Figure 8 illustrates the normalized one-dimensional persistence diagrams for
four stock indices at the peak anomaly day, denoted as tpeak, of TASC with g⃗0 = (0, 20, 0, 0, 0, 0) and
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g⃗1 = (0, 0, 10, 0, 20) in the Dotcom collapse region. Here, the normalized one-dimensional persistence
diagram refers to c · dgm1 with c = 1/(Mi 4√M), where Mi and M are normalization factors defined for
ASC and TASC, respectively, ensuring the maximum values are scaled to 1. This normalization stems
from the definition of TASC, which is given by:

T AS C(t) =
1
M

4∏
i=1

AS C(Pi)(t) =
4∏

i=1

 1

Mi 4√M

∞∑
k=1

∥λk(dgm1(T̂ i|wt ))∥∞


=

4∏
i=1

 ∞∑
k=1

∥∥∥∥∥∥λk

(
1

Mi 4√M
dgm1(T̂ i|wt )

)∥∥∥∥∥∥
∞

 .
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Figure 8. Normalized one-dimensional persistence diagrams for four stock indices at tpeak.
(Before) Points when g⃗0 and g⃗1 are both zero vectors. (After) Points when g⃗0 = (0, 20, 0, 0, 0, 0)
and g⃗1 = (0, 0, 10, 0, 20).

In Figure 8, the label ‘Before’ refers to the case where (g⃗0, g⃗1) are both zero vectors, while the
label ‘After’ refers to the case where g⃗0 = (0, 20, 0, 0, 0, 0) and g⃗1 = (0, 0, 10, 0, 20). In the before case,
the one-dimensional points for the four stock indices are close to the y = x line, indicating a lower
anomaly score, whereas in the after case, the points diverge further from the y = x line, suggesting a
higher anomaly score.

Figure 9 shows the TASC results for various window sizes w. For window sizes
w = 180, 210, 240, and 270, the TASCs fail to detect the Dotcom bubble. With larger window sizes
of 300, 330, and 360, the TASCs identify the Dotcom bubble area. For window sizes of
w = 180, 210, and 240, high anomaly scores are observed in the regions starting at 11/26/2004
and 11/14/2014. Increasing the window size to 270, 300, 330, and 360 results in the disappearance of
high anomaly scores in these regions. This suggests that the Dotcom and Lehman crises, which have led
to a sustained global economic crisis, are predominantly measured when the window size is extended.
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Figure 9. TASCs for varying window sizes w with g⃗0 = (0, 20, 0, 0, 0, 0) and g⃗1 =

(0, 0, 10, 0, 20) for each w ∈ {180, 210, 240, 270, 300, 330, 360}.

In the experiment discussed in Section 3.5, the adjustment of the zeroth feature did not significantly
influence the birth of points, as shown in Figure 6d. However, the zeroth feature is crucial for anomaly
detection in this section. Figure 10 illustrates the outcomes of the same experiment as in Figure 9 but
with g⃗0 set as the zero vector. The anomaly scores in the shaded areas resemble those in Figure 9, but
noisier anomalies were observed in the mid-region, as shown in Figure 10. One approach to analyze the
stock volatility is to examine the prices only for a specific day of the week and analyze them weekly.
This approach reduces short-term, repetitive noise and focuses more on long-term trends and patterns.
In our methodology, by setting g⃗0 = (0, 20, 0, 0, 0, 0), we emphasize the information for Monday to
enable a focused analysis of the effect of this particular day of the week. Similar results are observed
when focusing on Tuesday, Wednesday, Thursday, and Friday. As demonstrated here, the proposed
method generates various domain-specific and interpretable results by adjusting both g0 and g1.
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Figure 10. TASCs for varying window sizes w with g⃗0 = 0⃗ and g⃗1 = (0, 0, 10, 0, 20) for each
w ∈ {180, 210, 240, 270, 300, 330, 360}.

5.2. Application to music data

Music data is time series data containing information beyond pitch and rhythm. Although music is
a challenging form of art to quantify, the authors of [34] analyzed the hidden topological information
in traditional Korean music. We analyze the Celebrated Chop Waltz as a simple example, where
each note is played simultaneously with both the right and left hands. Define the pair of pitches
played simultaneously using the left and right hands as a pitch pair. We define the time series T as
T (tm) = (P(tm),D(tm)), where P(tm) is a pitch pair and D(tm) is the playing length of each note played
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at the mth timestamp tm. For instance, in the left part of Figure 11, the pitch pair (F,G) is repeated six
times with an eighth note duration.

Figure 11. Musical notations used in the Celebrated Chop Waltz. (Left) When a staccato
symbol is attached, the note is played briefly as if it were popping. (Right) If multiple notes
are tied together with a slur symbol, these notes are played smoothly and connectedly.

As shown in Figure 11, the Celebrated Chop Waltz contains staccato and slur musical notations.
We aim to understand how the changes in the influence of these musical notations affect the results
of PH calculations. Staccato is a technique in which notes are played very briefly. Slur indicates that
two distinct notes should be played as if they are connected smoothly. We define staccato related to a
single note as the zeroth feature and slur related to two or more notes as the first feature. The time series
T̂ = (T,T f ) is characterized as

(1) T (tm) = (P(tm),D(tm)) at the timestamp tm.
(2) The zeroth feature set F0 used in T f is {∅0, staccato}.
(3) The first feature set F1 used in T f is {∅1, slur}.

We conducted experiments to investigate the effects of changes in influence values on the resulting
PDs. Figure 12 shows the topological information about the one-dimensional PD as influence values
for the staccato and slur vary. In Figure 12, the x-axis represents the cases where g⃗0 is (0, x), which
corresponds to the influence of the staccato being x. The y-axis signifies when g⃗1 is (0, y), indicating the
value of the slur as y. Figures 12a and 12b plot the longest and shortest persistence among all points in
dgm1, respectively. Here, the persistence is defined as d − b for each point (b, d) ∈ dgm1(g⃗0, g⃗1). The
function z = z(x, y) in Figure 12a is

z(x, y) = max{d − b| (b, d) ∈ dgm1(g⃗0, g⃗1)} with g⃗0 = (0, x) and g⃗1 = (0, y)

and that in Figure 12b is

z(x, y) = min{d − b| (b, d) ∈ dgm1(g⃗0, g⃗1)} with g⃗0 = (0, x) and g⃗1 = (0, y).

Figure 12c shows the total number of points in dgm1(g⃗0, g⃗1). The function z = z(x, y) in Figure 12c is
defined as

z(x, y) = |dgm1(g⃗0, g⃗1)| with g⃗0 = (0, x) and g⃗1 = (0, y),
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where | · | represents the number of elements in the multi-set. Figure 12d illustrates the sum of the
L∞-norm of the k-th persistence landscape λk of dgm1(g⃗0, g⃗1), which can be considered as information
related to the overall total persistence. The function z = z(x, y) in Figure 12d is

z(x, y) =
∞∑

k=1

∥λk(dgm1(g⃗0, g⃗1))∥∞ with g⃗0 = (0, x) and g⃗1 = (0, y).

The continuity of the surface observed in Figure 12d is a consequence of Theorem 4.1.

(a) (b)

(c) (d)

Figure 12. Topological information about the one-dimensional persistence diagrams (PDs)
while the influence vectors g of the staccato and slur are varied. (a) The longest persistence
among the elements of the one-dimensional PD as g is varied. (b) The shortest persistence
among the elements of the one-dimensional PD as g is varied. (c) The total number of
points in the one-dimensional PD as g is varied. (d) The L∞-norm of the landscape of the
one-dimensional PD as g is varied.
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From Figure 12c, we observe that when (x, y) = (0, 0), the number of points in dgm1 is the highest.
However, as x and y increase, the number of points gradually decreases. If x and y are sufficiently large,
only the two points with longer persistence remain. The disappearing points with smaller persistence
cause the discontinuities shown in Figure 12b. In Figures 12a and 12b, the variation in the shortest
persistence is greater than that in the longest persistence. Therefore, the changes in Figure 12d are
primarily due to the variation of the points with shorter persistence. This suggests that points with
shorter persistence can provide important information about the overall topological structure of the
music. The authors of [34] also considered all points representing the music’s hidden structure as
important, regardless of the persistence. From this perspective, when the influences of staccato and
slur are zero, the highest number of hidden topological structures of the music are observed. However,
when the influences of staccato and slur are sufficiently large, only two structures remain. In summary,
starting with six points when (x, y) = (0, 0), changes in the x and y values cause points with relatively
shorter persistence to vary dramatically, with up to four disappearances. This illustrates how the overall
PH outcome changes with variations in the influence of staccato and slur.

In [34], the authors analyzed the hidden topological structures in music using the cycle
representatives of each point in dgm1. They introduced the overlapping percentage to quantify the
topological repetitiveness in music. Assume that dgm1 contains m points [b1, d1], . . . , [bm, dm]. For each
point [bi, di], we fix a corresponding one-dimensional cycle representative σi ⊆ V . Although σi is
generally not unique, the authors of [34] used the JavaPlex algorithm [47] to select σi. The chosen
cycle representatives σi correspond closely with the 2-simplex, which directly results in the
disappearance of the 1-cycle. For a music time series T : T→ X, define

Nc =
∣∣∣{t ∈ T | T (t) ∈

m⋃
i=1

σi}
∣∣∣ and Ns =

∣∣∣{t ∈ T | T (t) ∈
⋃

1≤i< j≤m

(σi ∩ σ j)}
∣∣∣.

Then, the overlapping percentage is defined as (Ns/Nc) × 100(%). This value represents the percentage
of timestamps in a time series that belongs simultaneously to multiple cycle representatives. Figure 13
shows the overlapping percentage obtained by varying the influence vector g. In Figure 13, the
overlapping percentage increases for the staccato influence x when x > 0 rather than x = 0. This suggests
that the presence of staccato adds greater topological repetitiveness than its absence; however, increasing
the value does not necessarily enhance it further. Moreover, as the influence of the slur y increases, the
overlapping percentage decreases. Slurs appear less frequently in scores than staccato. Emphasizing the
slurs gradually decreases the overlapping percentage, reducing the topological repetitiveness.

In this section, we described the effect of adjusting the influence vector g on the overall PH outcome.
This analysis allows us to examine the impact of features on the time series. As shown in this section,
the proposed method yields a more flexible analysis by varying g from the music data.
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Figure 13. The z-axis represents the overlapping percentage for each influence vector.

6. Proof of the stability theorem for influence vectors

This section is devoted to the proof of Theorem 4.1.

Proof. Consider any featured time series (T̂ , g). We append g to all notations if they are variables
dependent on g. Consider the connected graph Ĝg = (V, E, Ŵg

V , Ŵ
g
E) and the metric space (V, d̂g).

Recall that in Section 2.3, we defined the filtration value function hg : X → R, where X = P(V).
By Lemma 4.1, we have DB

(
dgmp(g), dgmp(g′)

)
≤ ∥hg − hg′∥∞ for any two influence vectors g and

g′. Therefore, it suffices to show that there exists a constant C independent of g and g′, satisfying
∥hg − hg′∥∞ ≤ C∥g − g′∥∞.

Since X is finite, we have ∥hg − hg′∥∞ = |(hg − hg′)(σ∗)| for a p-simplex σ∗ ∈ X. By the maximality
of hg and hg′ , hg(σ∗) = d̂g(vg,wg) and hg′(σ∗) = d̂g′(vg′ ,wg′) for edges (vg,wg), (vg′ ,wg′) ⊆ σ∗. Consider
an interpolation map q(t) = (1 − t)g + tg′ for a real number t, where q(0) = g and q(1) = g′. Define a
function H(t) = d̂q(t)(vg,wg) − d̂q(t)(vg′ ,wg′), where d̂q(t) is the distance in the graph Ĝq(t), as defined in
Definition 3.4. By the maximality of the functions hg and hg′ , we have H(0) ≥ 0 and H(1) ≤ 0. Because
H is continuous on the closed interval [0, 1], by the intermediate value theorem, there exists a real
number t0 ∈ [0, 1] such that H(t0) = 0. If we denote q(t0) as g∗, we have

|(hg − hg′)(σ∗)| = |d̂g(vg,wg) − d̂g′(vg′ ,wg′)|

≤ |d̂g(vg,wg) − d̂g∗(vg,wg)| + |d̂g∗(vg′ ,wg′) − d̂g′(vg′ ,wg′)|
= |hg − hg∗ |((vg,wg)) + |hg∗ − hg′ |((vg′ ,wg′)).

If we can prove there exists a constant C such that |hg1 − hg2 |(e) ≤ C∥g1 − g2∥∞ for any influence vectors
g1, g2 and edge e ∈ E, then we have

|hg − hg∗ |((vg,wg)) + |hg∗ − hg′ |((vg′ ,wg′)) ≤ C∥g − g∗∥∞ +C∥g′ − g∗∥∞
= Ct0∥g − g′∥∞ +C(1 − t0)∥g − g′∥∞
= C∥g − g′∥∞,
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which completes the proof. Therefore, it suffices to show that for any influence vectors g, g′ and edge
e ∈ E, there exists a constant C such that |hg − hg′ |(e) ≤ C∥g − g′∥∞.

Take any influence vectors g, g′ and edge e∗ = (v,w) ∈ E. Consider an interpolation map q(t) =
(1 − t)g + tg′ for the real number t such that q(0) = g and q(1) = g′. For any influence vector q(t), we
have d̂q(t)(v,w) =

∑
e∈pq(t) Lq(t)(e) for some path pq(t) from v to w, as described in Definition 3.4. Define

a function K(t) =
∑

e∈pg Lq(t)(e) −
∑

e∈pg′ Lq(t)(e). By the minimality of paths pg and pg′ , we deduce
K(0) ≤ 0 and K(1) ≥ 0. By the intermediate value theorem, there exists t1 ∈ [0, 1] such that K(t1) = 0.
If we denote q(t1) as g∗, then

|(hg − hg′)(e∗)| =
∣∣∣∣d̂g(v,w) − d̂g′(v,w)

∣∣∣∣ = ∣∣∣∣∑
e∈pg

Lg(e) −
∑
e∈pg′

Lg′(e)
∣∣∣∣

=
∣∣∣∣∑

e∈pg

Lg(e) −
∑
e∈pg

Lg∗(e) +
∑
e∈pg′

Lg∗(e) −
∑
e∈pg′

Lg′(e)
∣∣∣∣

≤
∑
e∈pg

|Lg(e) − Lg∗(e)| +
∑
e∈pg′

|Lg∗(e) − Lg′(e)|. (6.1)

Consider the first summation in inequality (6.1) as follows:∑
e∈pg

|Lg(e) − Lg∗(e)|

=
∑
e∈pg

∣∣∣∣(Ŵg
E(e))−1 − (Ŵg∗

E (e))−1 − αg(ρ(Ŵg
V(a) + Ŵg

V(b)) + αg∗(ρ(Ŵg∗

V (a) + Ŵg∗

V (b))
∣∣∣∣

≤
∑
e∈pg

∣∣∣∣(Ŵg
E(e))−1 − (Ŵg∗

E (e))−1
∣∣∣∣ + ∣∣∣∣αg(ρ(Ŵg

V(a) + Ŵg
V(b)) − αg∗(ρ(Ŵg∗

V (a) + Ŵg∗

V (b))
∣∣∣∣.

We can express (Ŵg
E(e))−1 = 1/

(∑
j(g1(s j) + 1)c1

ie j

)
, where ie designates the position of e in the rows of

the first count matrix C1 = (c1
i j). Observe that

∑
e∈pg

∣∣∣∣(Ŵg
E(e))−1 − (Ŵg∗

E (e))−1
∣∣∣∣ =∑

e∈pg

∣∣∣∣∣∣∣ 1∑
j(g1(s j) + 1)c1

ie j

−
1∑

j(g∗1(s j) + 1)c1
ie j

∣∣∣∣∣∣∣
=

∑
e∈pg

∣∣∣∣∣∣∣
∑

j c1
ie j(g1(s j) − g∗1(s j))

(
∑

j(g1(s j) + 1)c1
ie j)(

∑
j(g∗1(s j) + 1)c1

ie j)

∣∣∣∣∣∣∣
≤

∑
e∈pg

∣∣∣∣∣∣∣
∑

j c1
ie j(g1(s j) − g∗1(s j))

(
∑

j c1
ie j)(

∑
j c1

ie j)

∣∣∣∣∣∣∣
≤

∑
e∈pg

∣∣∣∣∣∣∣ (
∑

j c1
ie j)

(
∑

j c1
ie j)(

∑
j c1

ie j)

∣∣∣∣∣∣∣ ∥g − g∗∥∞

≤t1

∑
e∈pg

 1
(
∑

j c1
ie j)

 ∥g − g′∥∞ by g − g∗ = t1(g − g′)

≤t1

∑
e∈pg

 1
(
∑

j c1
ie j)

 ∥g − g′∥∞
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≤t1

∑
e∈pg

(
1

Cmin
1

)
∥g − g′∥∞ by Cmin

1 = min
e∈E

∑
j

c1
ie j

≤t1
1

Cmin
1

∥g − g′∥∞(|V | − 1). (6.2)

In the last inequality (6.2), we utilize the fact that the number of edges in a path p, without repeated
vertices, is precisely |Vp| − 1, where |Vp| denotes the number of vertices in p. The path pg does not
contain any repeated vertices owing to its minimality in the definition of the distance d.

We demonstrate that αg is bounded for any given g; recall that αg = mine∈E(Ŵg
E(e))−1. Given that all

elements of an influence vector are nonnegative,∑
j

(g1(s j) + 1)c1
ie j ≥

∑
j

c1
ie j ≥ mine∈E{

∑
j

c1
ie j} = Cmin

1

holds for any edge e ∈ E. Therefore, we can assert that αg ≤ 1
Cmin

1
for any g.

Lemma 6.1. Given any pair of influence vectors g and g′, it holds true that |αg − αg′ | ≤ 1
Cmin

1
∥g − g′∥∞ .

Proof. Observe that for any edge e ∈ E,

|(Ŵg
E(e))−1 − (Ŵg′

E (e))−1| =

∣∣∣∣∣∣∣∣
∑

j c1
ie j(g1 − g′1)(t j)(∑

j(g1(s j) + 1)c1
ie j

) (∑
j(g′1(t j) + 1)c1

ie j

)
∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
(∑

j c1
ie j

)
∥g − g′∥∞(∑

j c1
ie j

) (∑
j c1

ie j

)
∣∣∣∣∣∣∣∣ = 1(∑

j c1
ie j

)∥g − g′∥∞

≤
1

Cmin
1

∥g − g′∥∞. (6.3)

Assume that |αg−αg′ | > 1
Cmin

1
∥g−g′∥∞. Without a loss of generality, suppose αg > αg′ . Because the set of

edges E is finite, there exist edges e1, e2 ∈ E such that αg = (Ŵg
E(e1))−1 and αg′ = (Ŵg′

E (e2))−1. From the
inequality 6.3, we derive that |αg′−(Ŵg

E(e2))−1| ≤ 1
Cmin

1
∥g−g′∥∞, leading to (Ŵg

E(e2))−1 ≤ αg′+ 1
Cmin

1
∥g−g′∥∞.

However, by assumption, we obtain αg′ + 1
Cmin

1
∥g − g′∥∞ < αg. This implies (Ŵg

E(e2))−1 < αg, which
contradicts the definition of αg as the minimum value across all edges e ∈ E for a given g. □

For any edge e = (a, b), if we write ρ(Ŵg
V(a) + Ŵg

V(b)) as D(g, e), then∑
e∈pg

∣∣∣∣αg(ρ(Ŵg
V(a) + Ŵg

V(b)) − αg∗(ρ(Ŵg∗

V (a) + Ŵg∗

V (b))
∣∣∣∣ =∑

e∈pg

∣∣∣∣αgD(g, e) − αg∗D(g∗, e)
∣∣∣∣.

The vertex weight Ŵg
V(v) can be expressed as Ŵg

V(v) =
∑

j g0(r j)c0
iv j, where iv designates the position

of vertex v in the rows of the zeroth count matrix C0 = (c0
i j). Because ρ is Lipschitz continuous, there

exists a positive constant k such that |ρ(z) − ρ(z′)| ≤ k|z − z′| for any two real numbers z and z′. Hence,

|D(g, e) − D(g∗, e)| =
∣∣∣∣ρ(Ŵg

V(a) + Ŵg
V(b)) − ρ(Ŵg∗

V (a) + Ŵg∗

V (b))
∣∣∣∣
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≤ k
∣∣∣∣(Ŵg

V(a) + Ŵg
V(b)) − (Ŵg∗

V (a) + Ŵg∗

V (b))
∣∣∣∣

= k

∣∣∣∣∣∣∣
∑

j

c0
ia j(g0 − g∗0)(s j) +

∑
j

c0
ib j(g0 − g∗0)(s j)


∣∣∣∣∣∣∣

≤ k∥g − g∗∥∞
∑

j

(c0
ia j + c0

ib j)

≤ 2kCmax
0 ∥g − g∗∥∞ by Cmax

0 = max
v∈V

∑
j

c0
iv j.

Therefore, we have∑
e∈pg

∣∣∣∣αgD(g, e) − αg∗D(g∗, e)
∣∣∣∣ =∑

e∈pg

∣∣∣∣αgD(g, e) − αgD(g∗, e) + αgD(g∗, e) − αg∗D(g∗, e)
∣∣∣∣

≤
∑
e∈pg

|αg| |D(g, e) − D(g∗, e)| +
∑
e∈pg

|αg − αg∗ | |D(g∗, e)|

≤
∑
e∈pg

1
Cmin

1

|D(g, e) − D(g∗, e)| +
∑
e∈pg

|αg − αg∗ |

≤
∑
e∈pg

2
Cmin

1

kCmax
0 ∥g − g∗∥∞ +

∑
e∈pg

1
Cmin

1

∥g − g∗∥∞

= (2kCmax
0 + 1)

∥g − g∗∥∞
Cmin

1

∑
e∈pg

1

≤ (2kCmax
0 + 1)

∥g − g∗∥∞
Cmin

1

(|V | − 1)

= t1(2kCmax
0 + 1)

∥g − g′∥∞
Cmin

1

(|V | − 1) by g − g∗ = t1(g − g′). (6.4)

If we set a constant C := (2kCmax
0 + 1) 1

Cmin
1

(|V | − 1), then by the inequalities (6.2) and (6.4), we have∑
e∈pg

|Lg(e) − Lg∗(e)|

≤
∑
e∈pg

∣∣∣∣(Ŵg
E(e))−1 − (Ŵg∗

E (e))−1
∣∣∣∣ + ∣∣∣∣αg(ρ(Ŵg

V(a) + Ŵg
V(b)) − αg∗(ρ(Ŵg∗

V (a) + Ŵg∗

V (b))
∣∣∣∣

≤ t1
1

Cmin
1

∥g − g′∥∞(|V | − 1) + t1(2kCmax
0 + 1)

∥g − g′∥∞
Cmin

1

(|V | − 1)

= t1C∥g − g′∥∞.

Similarly, we have ∑
e∈pg

∣∣∣Lg∗(e) − Lg′(e)
∣∣∣ ≤ (1 − t1)C∥g − g′∥∞.

Therefore, by the inequality (6.1), we conclude

|(hg − hg′)(e∗)| ≤ t1C∥g − g′∥∞ + (1 − t1)C∥g − g′∥∞ = C∥g − g′∥∞,

which completes the proof.
□
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7. Conclusions

In this paper, we introduced a novel concept of the featured time series data and proposed a method
based on persistent homology with varying influence vectors. With the featured time series and influence
vectors, the proposed method allows customizing PH calculations to reflect domain-specific knowledge
effectively. Our approach enhances the adaptability of domain-specific PH analysis across different types
of time series data and ensures the stability of the PH calculations. The application of our methodology
to real-world datasets, such as stock data for anomaly detection and musical data for feature impact
analysis, has shown promising results. These applications demonstrate the practical feasibility and
effectiveness of our proposed method. However, there remain limitations within applications that
necessitate further improvements. The selection of an optimal influence vector depends on a grid
search method, as a specialized algorithm for determining the optimal influence vector has not yet been
developed. Additionally, the computational complexity of persistent homology calculations presents
significant challenges for real-time analysis. Future research will focus on extending this framework to
other applications and exploring the optimization method of the influence vectors that can further refine
the accuracy and applicability of PH under various settings.
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