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1. Introduction

1.1. Literature review

Neural network-based methods have recently gained significant attention for solving problems
in mathematical sciences, particularly in numerical analysis. There has been active research for
neural network-based methods to approximate solutions to various differential equations (see [25] and
references therein). For instance, if a true solution to a differential equation is not explicitly known,
one can train neural networks by minimizing a training loss associated with satisfying the differential
equation, without relying on any actual data points that the solution fulfills. These neural networks
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trained to satisfy differential equations are called physics-informed neural networks (PINN).
The basic idea for PINN may originate from [7, 13]. Particularly, in [7] one-layer neural network

is used to approximate a solution to a special form of the two-dimensional Poisson equation with
homogeneous boundary conditions. In [12], instead of using a neural network directly, the authors use
a trial function which is a slight variation in neural networks forcing to satisfy the initial or boundary
conditions. Indeed, it was discussed in [17,23] that using a trial function forcing to satisfy the boundary
condition is superior to using a standard neural network in terms of performance such as acceleration of
convergence. Recently in [3, 18], PINN-based methods have been potent tools for various differential
equations solvers with the advent of efficient utilities such as TensorFlow and the help of advanced
GPU capability. In particular, [18] demonstrates that the solution of the two-dimensional Navier-Stokes
equation and the Burgers equation can be approximated very effectively using PINN.

In addition to the success of empirical analysis in PINN, there has been various theoretical
research to show the convergence of neural networks to a solution for each case of differential
equations. One of the most important ingredients of using neural networks to approximate solutions
to differential equations is the universal approximation theorem (see [4,9,21]). Although the universal
approximation theorem mathematically guarantees that any continuous function on a compact interval
can be uniformly approximated by neural networks, the theorem is crucially based on a functional
analytic result, the Stone-Weierstrass theorem (see [20, Theorem 7.32]), making it difficult to find an
approximating neural network explicitly. To overcome this limitation, one can use a posteriori analysis
based on the stability estimates of PDEs. Indeed, one can show that the error related to the difference
between the true solution and the neural network is controlled by the training loss which we desire
to minimize. For this type of research, we refer to [1] which presents theoretical aspects of error
estimates for the Navier-Stokes equation through stability estimates based on a functional analytic
approach. We also refer to [22,24] which importantly use the Schauder estimates and H2-estimates for
their error analysis, respectively. We mention [15, 16], which provide error estimates in PINN in the
context of inverse and forward problems, respectively, within an abstract framework. Additionally, we
address [5,6], which rigorously derive error estimates in PINN, with explicit convergence rates for the
Kolmogorov equations and the Navier-Stokes equations, respectively. More recently, [26] shows error
estimates in PINN for initial value problems for ordinary differential equations, and [11] develops a
new error analysis in PINN based on classical finite element approximation. In [27], a new abstract
framework unifying forward and inverse problems in PINN is developed, and H1/2-error estimates are
obtained by utilizing Céa’s lemma and the coercivity of bilinear forms. In [1, 15–17, 22, 24, 27], while
the error estimates in PINN show that the error decreases as the loss decreases, the lack of explicit
calculation of the constants in these estimates makes it challenging to determine precise upper bounds
for the error-to-loss ratio.

1.2. Idea of the error estimates in PINN

Before explaining the main results in this paper, we first consider the following Dirichlet problem
related to a general linear differential operator L on a bounded open subset U of Rd with sufficiently
regular boundary ∂U: Lu = f in U,

u =g on ∂U,
(1.1)
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where u, f and g are included in some sufficiently regular function spaces. Assume that for each
f ∈ L2(U) and g ∈ L2(∂U) there exists a unique solution u to (1.1) such that the following L2-error
estimate holds:

∥u∥L2(U) ≤ CL
(
∥ f ∥L2(U) + ∥g∥L2(∂U)

)
,

where CL > 0 is a constant independent of u, f and g. Now let Φ be a smooth trial function (for
instance, one can choose Φ as a neural network). Then, replacing the above u, f and g by Φ − u,
L[Φ] − f and Φ − g, respectively, we get

∥Φ − u∥L2(U) ≤ CL
(
∥L[Φ] − f ∥L2(U) + ∥Φ − g∥L2(∂U)

)
. (1.2)

Then, as a consequence of Monte Carlo integration (see Proposition 2.3), we expect to obtain that for
sufficiently large n ∈ N

1
n

n∑
i=1

∣∣∣u(Xi) − Φ(Xi)
∣∣∣2︸                     ︷︷                     ︸

=:Error

≤ 2C2
L

( 1
n

n∑
i=1

∣∣∣L[Φ](Xi) − f (Xi)
∣∣∣2 + 1

n

n∑
i=1

∣∣∣Φ(Yi) − g(Yi)
∣∣∣2︸                                                           ︷︷                                                           ︸

=:Loss

)
, very likely,

where (Xi)i≥1 and (Yi)i≥1 are sequences of independent and identically distributed random variables on
a probability space (Ω,F ,P) that have continuous uniform distributions on U and ∂U, respectively.
Ultimately, we can expect a reduction of Error by attempting to minimize Loss.

Here one needs to observe the behavior of constant value CL. As the quantities of the coefficients
of L increase, one may expect that CL or Loss also increases. In that case, discrepancies in boundary
values between the neural networks and the true solutions are expected to remain. Indeed, we
observe in our numerical experiment that the Boundary Loss is larger than Error, regardless of
the coefficient (see Example 3.7). To overcome boundary mismatch, we can use a trial function
Ψ (Ψ = ΦA + ℓ in our case, see Section 3.2) that exactly satisfies the boundary value and can obtain
improved error analysis (cf. [17]). It has been difficult to find the existing literature that explicitly
calculates the constant CL. In many cases, the L2-error estimates are based on functional analytic
results, making it difficult to explicitly compute the constant CL though its existence is guaranteed
(cf. [27]). However, our main results, which will be explained in the next section, provide a concrete
value for the constant CL.

1.3. Main results

Now let us deal with our main problem − ε̃y′′ + b̃y′ + c̃y = f on I = (x1, x2),
ỹ(x1) = p, ỹ(x2) = q,

(1.3)

where ε > 0, p, q ∈ R and f , b, c ∈ C(I) with c ≥ λ on I for some constant λ > 0. We first show
rigorously the existence and uniqueness of a weak, strong, and classical solution ỹ to (1.3) by using the
Sobolev space theory with a variational approach. Under the assumption above, we can obtain some
error estimates (4.2) similarly to (1.2) (see Theorem 4.4), but the constant value CL highly depends
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on ε > 0 and the coefficients b, in fact, CL = 1
λ

exp
(∫

I
1
2ε |b|dx

)
. On the other hand, if we additionally

assume that for some constant γ > 0

−
1
2

b′ + c ≥ γ in I

and Ψ is a smooth function with Ψ(x1) = p, Ψ(x2) = q, our main result is the following error
estimate (see (5.3) in Section 5.2): for sufficiently large n ∈ N

1
n

n∑
i=1

|̃y(Xi) − Ψ(Xi)|2︸                     ︷︷                     ︸
=:Error

≤
1
γ2 ·

1
n

n∑
i=1

(
f̃ (Xi) − L[Ψ](Xi)

)2

︸                           ︷︷                           ︸
=:Loss

, very likely. (1.4)

Indeed, (1.4) is an expression in the Monte Carlo integration for the below (see Proposition 2.3 and
Theorem 5.5): (∫

I
|̃y − Ψ|2dx

)1/2

≤ CL

(∫
I
| f̃ − L[Ψ]|2dx

)1/2

,

where CL = 1
γ
. From the above estimates, we see that the trial function Ψ is not directly related to a

neural network but needs to be a smooth function satisfying the boundary condition, Ψ(x1) = p and
Ψ(x2) = q. However, for our a posteriori analysis, to make Loss practically small we will consider the
form

Ψ(x) := −(x − x1)(x − x2)N(x; θ) +
q − p

x2 − x1
(x − x1) + p, x ∈ I,

where N(x; θ) is a neural network. The main observation in this paper is that Error
Loss dramatically decreases

with the upper bound 1
γ2 as γ increases (see Examples 4.5, 5.6, 5.7). For instance, as γ increases, Loss

becomes large, so it is natural to imagine that Error may also increase. Actually, we can observe
that as γ increases, Loss tends to increase, but Error remains robust since Error

Loss , with the upper bound
1
γ2 , rapidly decreases. These observations are mathematically justified by our results where the upper
bound of Error

Loss is shown to be 1
γ2 .

Another interesting feature in the error estimate (1.4) is that 1
γ2 does not depend on ε > 0. If

ε > 0 is very small, then (1.3) is called a singularly perturbed convection-diffusion problem, which is
known to be quite difficult to solve numerically (see [8, 10, 19] and references therein). However, in
our estimates (1.4), Error

Loss (≤ 1
γ2 ) is robust independent of ε, and Loss does not increase as ε decreases

to 0. Thus, if γ is fixed, we observe that Error also would remain robust independent of ε. These
expectations are specifically confirmed in our numerical experiments (see Examples 5.6, 5.7).

1.4. Structure of this paper

This paper is structured as follows. Section 2 presents notations and conventions mainly used in
this paper, especially basic results related to one-dimensional Sobolev spaces and probability theory.
Section 3 derives energy estimates through a variational approach and rigorously shows the existence
and uniqueness of solutions. In addition, we will conduct experiments using a standard neural network
(PINN I) and a trial function that accurately satisfies the boundary conditions (PINN II) and will confirm
that (PINN II) demonstrates superior performance. We will also observe in Example 3.8 that the energy
estimate is not optimal in explaining the rapid decrease of the error-to-loss ratio as the quantity of the
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zero-order term increases. In Section 4, L2(I, µ)-contraction estimates and related error estimates are
derived, and in the subsequent numerical experiment (Example 4.2), we will analyze the error-to-loss
ratio for three ε. In Section 5, we present our main error estimates (5.3) which improve the error
estimates (4.2) by using L2(I, dx)-contraction estimates. The two subsequent numerical experiments
(Examples 5.6, 5.7) will effectively support our mathematical analysis. Section 6 briefly demonstrates
the conclusions and discussions of this paper.

2. Notations and basic results

Here we explain some notations and basic results in this paper. Write a ∨ b := max(a, b), a ∧ b :=
min(a, b). Let I be a (possibly unbounded) open interval on R. Let C(I) and C(I) denote the sets of
all continuous functions on I and I, respectively, and we write C0(I) := C(I) and C0(I) := C(I). For
each k ∈ N ∪ {∞}, denote by Ck(I) the set of all k-times continuously differentiable functions on I.
Now let k ∈ N ∪ {0,∞} and define Ck

0(I) := { f ∈ Ck(I) : f has a compact support in I.}, and write
C0(I) := C0

0(I). By the zero-extension on R, it directly follows that Ck
0(I) is naturally extended to

Ck
0(R). Define for each k ∈ N ∪ {∞}

Ck(I) := { f ∈ C(I) : there exists a function f̃ ∈ Ck(R) such that f̃ |I = f on I}.

Let ν be a locally finite measure on R. Denote by dx the Lebesgue measure on R and dx(I) by |I|.
For each r ∈ [1,∞), denote by Lr(I, ν) the space of all measurable functions f on I with

∫
I
| f |rdν < ∞

equipped with the norm ∥ f ∥Lr(I,ν) :=
(∫

I
| f |rdν

)1/r
. Denote by L∞(I, ν) the space of all ν-a.e. bounded

measurable functions f on I equipped with the norm

∥ f ∥L∞(I,ν) := inf{c > 0 : ν ({| f | > c}) = 0}.

Write Lp(I) := Lp(I, dx) for each p ∈ [1,∞]. For a locally integrable function u on I, if there exists a
locally integrable function g such that

∫
I
uφ′dx = −

∫
I
gφdx for all φ ∈ C1

0(I), then we write u′ = g and
we call u′ a weak derivative of u on I. Let p ∈ [1,∞]. The Sobolev space H1,p(I) is defined to be

H1,p(I) = {u ∈ Lp(I) : there exists g ∈ Lp(I) such that u′ = g on I. } ,

equipped with the norm ∥u∥H1,p(I) :=
(
∥u∥pLp(I) + ∥u

′∥
p
Lp(I)

)1/p
if p ∈ [1,∞) and ∥u∥H1,∞(I) := ∥u∥L∞(I) +

∥u′∥L∞(I). Of course, one can also use the notation W1,p(I) for H1,p(I), but here we stick to use the
notation H1,p(I). We also define

H2,p(I) :=
{
u ∈ H1,p(I) : there exists h ∈ Lp(I) such that (u′)′ = h on I.

}
.

equipped with the norm ∥u∥H2,p(I) :=
(
∥u∥pLp(I) + ∥u

′∥
p
Lp(I) + ∥u

′′∥
p
Lp(I)

)1/p
if p ∈ [1,∞) and ∥u∥H2,∞(I) :=

∥u∥L∞(I) + ∥u′∥L∞(I) + ∥u′′∥L∞(I). An important fact is that H1,p(I) and H2,p(I) are Banach spaces (see
Proposition 8.1). For r ∈ [1,∞), denote by H1,r

0 (I) the closure of C1
0(I) in H1,r(I). Let (Ω,F ,P) be a

probability space and X : Ω→ R be a random variable. Define

E[X] :=
∫
Ω

XdP, Var[X] := E
[(

X − E[X]
)2
]
.

The following well-known results presented in [2, Theorem 8.2] are important in our analysis which
describes a connection between weak and classical derivatives. Here we leave the statement for readers.
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Proposition 2.1. Let u ∈ H1,p(I), where p ∈ [1,∞] and I is a (possibly unbounded) open interval.
Then, the following hold:

(i) There exists ũ ∈ C(I) such that ũ = u a.e. on I and that

ũ(y) − ũ(x) =
∫ y

x
u′(t)dt, for all x, y ∈ I.

(ii) If there exists v ∈ C(I) such that u′ = v a.e. on I, then ũ as in (i) satisfies ũ ∈ C1(I) and that

lim
h→0

ũ(x + h) − ũ(x)
h

= v(x), for all x ∈ I.

(If x ∈ ∂I, then the limit above is defined as the one-side limit). In other words, the classical
derivative of ũ is the same as the weak derivative of u on I.

By the proposition above, every function u in the Sobolev space on an open interval I has a
continuous version ũ on I. Therefore, to get a meaning of u(x) for every point x ∈ I, we will consider u
as its (unique) continuous version ũ on I. The following is also a well-known result ( [2, Theorem 8.12])
that characterizes the space H1,r

0 (I)

Proposition 2.2. Let ũ ∈ H1,r(I) ∩C(I) with r ∈ [1,∞). Then, ũ ∈ H1,r
0 (I) if and only if ũ = 0 on ∂I.

Below are the basic probabilistic facts about well-known Monte Carlo integration, which will be
used in our numerical analysis. We explain it by using the weak law of large numbers. For readers, we
present the statement and its proofs.

Proposition 2.3. Let (Xi)i≥1 be a sequence of independent and identically distributed random variables
on a probability space (Ω,F ,P) that has a continuous uniform distribution on I. Let Ψ ∈ C(I) with
Ψ ≥ 0 on I. Then, for each n, k ∈ N

P


∣∣∣∣∣∣∣ 1
|I|

∫
I
Ψdx −

1
n

n∑
i=1

Ψ(Xi)

∣∣∣∣∣∣∣ ≤ kβ
√

n

 ≥ 1 −
1
k2 ,

where β :=
(

1
|I|

∫
I
Ψ2dx −

(
1
|I|

∫
I
Ψdx

)2
)1/2

.

Proof. For each i ≥ 1, we get E [Ψ(Xi)] = 1
|I|

∫
I
Ψdx =: α and

Var[Ψ(Xi)] = E
[
Ψ(Xi)2

]
− E

[
Ψ(Xi)

]2
=

1
|I|

∫
I
Ψ2dx −

(
1
|I|

∫
I
Ψdx

)2

= β2.

Define

Yn :=
1
n

n∑
i=1

Ψ(Xi).
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Note that E[Yn] = 1
n

∑n
i=1 E[Ψ(Xi)] = α. Since (Ψ(Xi))i≥1 is also a sequence of independent and

identically distributed random variables on a probability space (Ω,F ,P), we get

Var
[
Yn

]
=

1
n2

n∑
i=1

Var[Ψ(Xi)] =
β2

n
.

Using Chebyshev’s inequality, for each c > 0 we get

P
(
|Yn − α| ≥ c

)
≤
β2

c2n
.

By choosing c := kβ
√

n and considering the complement event, the assertion follows. □

Based on Proposition 2.3, for sufficiently large but fixed k ∈ N if we choose n much larger than k,
then we can write that

P

 1
|I|

∫
I
Ψdx ≈

1
n

n∑
i=1

Ψ(Xi)

 ≈ 1. (2.1)

If (2.1) holds, then we will use the following notation that for sufficiently large n ∈ N

1
|I|

∫
I
Ψdx =

1
n

n∑
i=1

Ψ(Xi), very likely. (2.2)

3. Energy estimates

3.1. Existence and uniqueness with energy estimates

Lemma 3.1. Let u ∈ H1,1
0 (I) where I = (x1, x2) is a bounded open interval. Then, there exists ũ ∈

C0(R) ∩ H1,1
0 (R) with ũ = 0 on R \ I such that ũ = u a.e. on I and

∥u∥L∞(I) = ∥̃u∥L∞(R) ≤ ∥u′∥L1(I).

In particular, if u ∈ H1,2(I), then

|I|−1/2∥u∥L2(I) ≤ ∥u∥L∞(I) ≤ |I|1/2∥u′∥L2(I).

Proof. Since u ∈ H1,1
0 (I), there exists a sequence of functions (un)n≥1 ⊂ C∞0 (I) such that

lim
n→∞

un = u, in H1,1(I).

For each n ≥ 1, let ūn ∈ C∞0 (R) be the standard zero-extension of un on R. Thus, there exists ū ∈ H1,1
0 (R)

such that ū(x) = 0 for a.e. x ∈ R\I and limn→∞ ūn = ū in H1,1(R), and hence ū = u a.e. on I. Meanwhile,
by Proposition 2.1(i) there exists ũ ∈ C(R) such that ũ = ū a.e. on R. Thus, ũ ∈ C(R) ∩ H1,1(R)
satisfying that ũ(x) = 0 for all x ∈ R \ I and ũ = u a.e. on I. By the fundamental theorem of calculus
(Proposition 2.1(i)), for each x ∈ I

|̃u(x)| =

∣∣∣∣∣∣ ũ(x1) +
∫ x

x1

ũ′(t)dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ x

x1

ũ′(t)dt

∣∣∣∣∣∣ ≤
∫

I
|̃u′(t)|dt = ∥u′∥L1(I),

as desired. The rest follows from the Hölder inequality. □
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We are now interested in solving the following Dirichlet boundary value problem for a one-
dimensional second-order linear elliptic operator on I = (x1, x2): − ε̃y ′′ + b̃y ′ + c̃y = f̃ on I,

ỹ(x1) = p, ỹ(x2) = q,
(3.1)

where p, q ∈ R and ε > 0 are constants, b ∈ L1(I) and c ∈ L1(I) with c ≥ 0. By using the linearity
and considering an affine function defined by ℓ(x) = p−q

x2−x1
(x − x1) + p and replacing ỹ by y = ỹ − ℓ

in (3.1), it is enough to study the existence and uniqueness of solutions to the following homogeneous
boundary value problem:  − εy′′ + by′ + cy = f̃ − bℓ′ − cℓ on I,

y(x1) = 0, y(x2) = 0.
(3.2)

The main idea for solving (3.2) is to convert the non-divergence form of (3.2) to the symmetric
divergence form and to apply the Lax-Milgram theorem on the Sobolev space which is H1,2

0 (I).

Theorem 3.2. Let I = (x1, x2) be a bounded open interval in R and let ε > 0 be a constant, b ∈ L1(I),
c ∈ L1(I) with c ≥ 0 and f ∈ L1(I). Then, the following hold:

(i) Let

ρ(x) := exp
(∫ x

x1

−b(s)
ε

ds
)
, x ∈ R, (3.3)

where b is considered as the zero-extension of b ∈ L1(I) on R. Then, there exists a unique weak
solution y ∈ H1,2

0 (I) ∩C(I) to

−(ερy′)′ + ρcy′ = ρ f on I, (3.4)

i.e., ∫
I
εy′ψ′ρdx +

∫
I
cyψρdx =

∫
I

fψρdx, for all ψ ∈ H1,2
0 (I). (3.5)

(ii) Indeed, y ∈ H1,2
0 (I) ∩C(I) in (i) satisfies y ∈ H2,1(I) ∩C1(I) and y is a unique strong solution to − εy′′ + by′ + cy = f on I,

y(x1) = 0, y(x2) = 0,
(3.6)

i.e.,
(−εy′′ + by′ + cy)(x) = f (x), for a.e. x ∈ I and y(x1) = y(x2) = 0. (3.7)

(iii) If b, c, f ∈ C(I), then y in (ii) satisfies y ∈ C2(I) and y is a unique classical solution to (3.6), i.e.,

(−εy′′ + by′ + cy)(x) = f (x), for all x ∈ I and y(x1) = y(x2) = 0.
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Proof. (i) Observe that by [2, Corollary 8.11], ρ ∈ H1,1(I)∩C(I) and that ρ(x) > 0 for all x ∈ I. Define
a bilinear form E on H1,2

0 (I) × H1,2
0 (I) by

E(u, v) :=
∫

I
εu′v′dµ +

∫
I
cuv dµ, u, v ∈ H1,2

0 (I),

where µ = ρdx. Then, we obtain from Lemma 3.1 that for each u, v ∈ H1,2
0 (I)

|E(u, v)| ≤ ε
(∫

I
|u′|2 dµ

)1/2 (∫
I
|v′|2 dµ

)1/2

+ ∥ρc∥L1(I)∥u∥L∞(I)∥v∥L∞(I)

≤ ε

(∫
I
|u′|2 dµ

)1/2 (∫
I
|v′|2 dµ

)1/2

+ |I| · ∥ρc∥L1(I)

(∫
I
|u′|2dx

)1/2 (∫
I
|v′|2dx

)1/2

≤ (ε + |I| · ∥c∥L1(I))
(
max

I
ρ

)
︸                         ︷︷                         ︸

=:K

·

(∫
I
|u′|2dx

)1/2 (∫
I
|v′|2dx

)1/2

≤ K ∥u∥H1,2(I)∥v∥H1,2(I).

Moreover,

E(u, u) ≥ ε
∫

I
|u′|2dµ ≥ ε

(
min

I
ρ

)
1
2

∫
I
|u′|2dx + ε

(
min

I
ρ

)
1
2
|I|−1∥u∥2L∞(I)

≥ ε

(
min

I
ρ

)
1
2

∫
I
|u′|2dx + ε

(
min

I
ρ

)
1
2
|I|−2

∫
I
|u|2dx

≥ δ∥u∥2
H1,2

0 (I)
,

where δ =
ε

2
min

I
ρ · (1 ∧ |I|−2) > 0. By the Lax-Milgram theorem (see [2, Corollary 5.8]), there exists

a unique y ∈ H1,2
0 (I) such that

E(y, ψ) =
∫

I
fψdµ, for all ψ ∈ H1,2

0 (I),

and hence (3.5) follows.
(ii) Observe that y′ ∈ H1,1(I) ∩ C(I). Indeed, (3.5) yields that ρy′ ∈ H1,1(I) ∩ C(I). Since 1

ρ
∈

H1,1(I)∩C(I), we have y′ ∈ H1,1(I)∩C(I) by the product rule, so that y ∈ C1(I) by Proposition 2.1(ii).
Moreover, (3.5) is equivalent to∫

I

(
−εy′′ + by′ + cy

)
ψρdx =

∫
I

(
−εy′′ −

ερ′

ρ
y′ + cy

)
ψρdx =

∫
I

fψρdx, for all ψ ∈ H1,2
0 (I),

and hence (3.7) holds. Conversely, as the above equivalence if y is a strong solution to (3.6), then y is
a weak solution to (3.4). Thus, the uniqueness of weak solutions as in (i) implies that y = y on I, and
hence the uniqueness of strong solutions to (3.6) is shown.
(iii) Assume that b, c, f ∈ C(I). Then, εy′′ = by′ + cy − f on I. Since by′ + cy − f ∈ C(I), we have
y′′ ∈ C(I) by Proposition 2.1(ii) . Therefore, y ∈ C2(I) is a unique classical solution to (3.6). □
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Theorem 3.3 (Energy estimates). Let ε > 0 be a constant, b ∈ L1(I), c ∈ L1(I) with c ≥ 0 on I and
f ∈ L1(I), where I is a bounded open interval. Let y ∈ H1,2

0 (I) ∩ H2,1(I) ∩ C1(I) be a unique strong
solution to (3.7) as in Theorem 3.2(ii). Then, it holds that

∥y′∥L2(I) ≤

(
maxI ρ

εminI ρ

)
|I|1/2∥ f ∥L1(I), (3.8)

where ρ is the function defined in (3.3). In particular, if f ∈ L2(I), then

∥y∥L2(I) ≤ |I|1/2∥y∥L∞(I) ≤ |I|∥y′∥L2(I) ≤

(
maxI ρ

εminI ρ

)
|I|3/2∥ f ∥L1(I) (3.9)

≤

(
maxI ρ

εminI ρ

)
|I|2∥ f ∥L2(I).

Proof. Substituting y for ψ in (3.5) and using Lemma 3.1 and the Hölder inequality, we get

ε

(
min

I
ρ

) ∫
I
|y′|2dx ≤ ε

∫
I
|y′|2ρdx ≤ ε

∫
I
|y′|2ρdx +

∫
I
cy2ρdx =

∫
I

f yρdx

≤

(
max

I
ρ

)
∥y∥L∞(I)∥ f ∥L1(I) ≤

(
max

I
ρ

)
|I|1/2

(∫
I
|y′|2dx

)1/2

∥ f ∥L1(I),

and hence (3.8) follows. The rest follows by Lemma 3.1 and the Hölder inequality. □

Theorem 3.4. Let ε > 0 be a constant, b ∈ L1(I), c ∈ L1(I) with c ≥ 0 on I and f̃ ∈ L1(I), where
I = (x1, x2) is a bounded open interval. Let p, q ∈ R be given. Then, there exists a unique strong
solution ỹ ∈ H2,1(I) ∩C1(I) to the following boundary value problem − ε̃y′′ + b̃y′ + c̃y = f̃ on I,

ỹ(x1) = p, ỹ(x2) = q,
(3.10)

i.e.,
(−ε̃y′′ + b̃y′ + c̃y)(x) = f̃ (x), for a.e. x ∈ I and ỹ(x1) = p, ỹ(x2) = q.

In particular, if f̃ ∈ L2(I), then ỹ fulfills the following estimate:

∥̃y∥L2(I) ≤ K1∥ f̃ ∥L2(I) + K2(|p| ∨ |q|),

where K1 =

(
maxI ρ

εminI ρ

)
|I|2 and K2 =

(
maxI ρ

εminI ρ

) (
|I|1/2∥b∥L1(I) + |I|3/2∥c∥L1(I)

)
+ |I|1/2 and ρ is the function

defined in (3.3). Moreover, if b, c ∈ C(I), then ỹ ∈ C2(I) and it is a unique classical solution to (3.10).

Proof. Let ℓ(x) := q−p
x2−x1

(x−x1)+p, x ∈ R. Then, it is easy to check that ∥ℓ∥L∞(I) ≤ |p|∨|q| and ∥ℓ′∥L∞(I) =

|I|−1|p−q|. Then, ỹ ∈ H2,1(I)∩C(I) is a strong solution to (3.10) if and only if y ∈ H1,2
0 (I)∩H2,1(I)∩C(I)

is a strong solution to  − εy′′ + by′ + cy = f̃ − bℓ′ − cℓ on I,

y(x1) = 0, y(x2) = 0,
(3.11)
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where y = ỹ−ℓ. Indeed, by Theorem 3.2 there exists a unique strong solution y ∈ H1,2
0 (I)∩H2,1(I)∩C1(I)

to (3.11). Define ỹ := y + ℓ. Then, ỹ is a unique strong solution ỹ ∈ H2,1(I) ∩ C1(I) to (3.10).
Moreover, (3.9) in Theorem 3.3 implies that

|I|1/2∥̃y − ℓ∥L∞(I) ≤

(
maxI ρ

εminI ρ

)
|I|3/2∥ f̃ − bℓ′ − cℓ∥L1(I).

In particular, if f̃ ∈ L2(I), then

∥̃y∥L2(I) ≤ |I|1/2∥̃y∥L∞(I) ≤ |I|1/2∥̃y − ℓ∥L∞(I) + |I|1/2∥ℓ∥L∞(I)

≤

(
maxI ρ

εminI ρ

) (
|I|2∥ f̃ ∥L2(I) + |I|1/2∥b∥L1(I)|q − p| + |I|3/2∥c∥L1(I)(|p| ∨ |q|)

)
+ |I|1/2(|p| ∨ |q|)

≤

(
maxI ρ

εminI ρ

)
|I|2 · ∥ f̃ ∥L2(I) +

(( maxI ρ

εminI ρ

)(
|I|1/2∥b∥L1(I) + |I|3/2∥c∥L1(I)

)
+ |I|1/2

)
(|p| ∨ |q|),

as desired. □

Theorem 3.5. Let ε > 0 be a constant, b ∈ L2(I), c ∈ L2(I) with c ≥ 0 on I and f̃ ∈ L2(I), where
I = (x1, x2) is a bounded open interval. Let p, q ∈ R be given and ỹ ∈ H2,1(I) ∩ C1(I) be the unique
strong solution to (3.10) as in Theorem 3.4. Let Φ ∈ H2,2(I) ∩C1(I). Then,

∥̃y − Φ∥L2(I) ≤ K1

∥∥∥ f̃ − L[Φ]
∥∥∥

L2(I)
+ K2

(∣∣∣p − Φ(x1)
∣∣∣ ∨ ∣∣∣q − Φ(x2)

∣∣∣),
where K1,K2 > 0 are constants in Theorem 3.4 and L is a differential operator defined by

L[w] := −εw′′ + bw′ + cw, w ∈ H2,1(I). (3.12)

Proof. Let u := ỹ−Φ. Then, u ∈ H2,2(I)∩C1(I). Since f̃ −L[Φ] ∈ L2(I), it follows from Theorem 3.2
that u is a (unique) strong solution to the following problem: − εu′′ + bu′ + cu = f̃ − L[Φ] on I,

u(x1) = p − Φ(x1), u(x2) = q − Φ(x2).

By Theorem 3.4,

∥u∥L2(I) ≤ K1∥ f̃ − L[Φ]∥L2(I) + K2

(∣∣∣p − Φ(x1)
∣∣∣ ∨ ∣∣∣q − Φ(x2)

∣∣∣),
as desired. □

Theorem 3.6. Let ε > 0 be a constant, b ∈ L2(I), c ∈ L2(I) with c ≥ 0 on I and f̃ ∈ L2(I), where I =
(x1, x2) is a bounded open interval. Let p, q ∈ R be given. Let ỹ ∈ H2,1(I) ∩C1(I) be the unique strong
solution to (3.10) as in Theorem 3.4. Let ΦA ∈ H1,2

0 (I) ∩ H2,2(I) ∩ C1(I) and ℓ(x) := q−p
x2−x1

(x − x1) + p,
x ∈ R. Then, ∥∥∥̃y − (ΦA + ℓ)

∥∥∥
L2(I)
≤

(
maxI ρ

εminI ρ

)
|I|2

∥∥∥ f̃ − L[ΦA + ℓ]
∥∥∥

L2(I)
,

where L is a differential operator defined by (3.12).

Proof. Since (ΦA + ℓ)(x1) = p and (ΦA + ℓ)(x2) = q, the assertion follows from Theorem 3.5 where Φ
there is replaced by ΦA + ℓ here. □
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3.2. Numerical experiments for PINN with energy estimates

Let ε > 0 be a constant, b ∈ C(I), c ∈ C(I) with c ≥ 0 on I and f̃ ∈ C(I), where I = (x1, x2) is a
bounded open interval. Let p, q ∈ R be given and ρ be the function defined in (3.3). Let ỹ ∈ C2(I) be
the unique classical solution to (3.10) as in Theorem 3.4. Let (Xi)i≥1 be a sequence of independent and
identically distributed random variables on a probability space (Ω,F ,P) that has a continuous uniform
distribution on I. Let Φ ∈ C2(I). Then, by using Theorem 3.5 with the Monte Carlo integration as
in (2.2), we obtain that for sufficiently large n ∈ N

(PINN I):

1
n

n∑
i=1

|̃y(Xi) − Φ(Xi)|2︸                     ︷︷                     ︸
=:Error

≤

(
maxI ρ

εminI ρ

)2

|I|4 ·

1
n

n∑
i=1

(
f̃ (Xi) − L[Φ](Xi)

)2


+

(( maxI ρ

εminI ρ

)(
∥b∥L1(I) + |I|∥c∥L1(I)

)
+ 1

)2 ( ∣∣∣p − Φ(x1)
∣∣∣2 + ∣∣∣q − Φ(x2)

∣∣∣2︸                            ︷︷                            ︸
=:Boundary Loss

)

≤

( (
maxI ρ

εminI ρ

)2

|I|4 +
(( maxI ρ

εminI ρ

)(
∥b∥L1(I) + |I|∥c∥L1(I)

)
+ 1

)2 )
×(

1
n

n∑
i=1

(
f̃ (Xi) − L[Φ](Xi)

)2
+

∣∣∣p − Φ(x1)
∣∣∣2 + ∣∣∣q − Φ(x2)

∣∣∣2︸                                                                    ︷︷                                                                    ︸
=:Loss

)
, very likely. (3.13)

On the other hand, let ΦA ∈ H1,2
0 (I) ∩ C2(I) and ℓ(x) := q−p

x2−x1
(x − x1) + p, x ∈ R. Then, by using

Theorem 3.6 with the Monte Carlo integration as in (2.2), we find that for sufficiently large n ∈ N

(PINN II):

1
n

n∑
i=1

|̃y(Xi) − (ΦA + ℓ)(Xi)|2︸                              ︷︷                              ︸
=:Error

≤

(
maxI ρ

εminI ρ

)2

|I|4 ·
1
n

n∑
i=1

(
f̃ (Xi) − L[ΦA + ℓ](Xi)

)2

︸                                  ︷︷                                  ︸
=:Loss

, very likely.

(3.14)

Let N(x; θ) be a real-valued neural network defined on R and let χ(x) = −(x − x1)(x − x2). In the
following example, we will apply (PINN I) and (PINN II) where Φ(x) and ΦA(x) + ℓ(x) are replaced
by N(x; θ) and χ(x)N(x; θ) + ℓ(x), respectively. Both methods can reduce the error by reducing Loss,
but (PINN I) has a limitation in that the discrepancy of the boundary value remains. In addition,
the following example confirms that (PINN II) is superior to (PINN I) in terms of error reduction
performance.

Example 3.7. Let I = (0, 1). Let ε := 1, c(x) = 10, b(x) = x and ỹ(x) = x(1 − x)ex, x ∈ R. Note that

ỹ′(x) = (1 − x − x2)ex, ỹ′′(x) = (−3x − x2)ex, x ∈ R.

Let f̃ (x) = −ỹ′′(x) + b(x)̃y′(x) + c(x)̃y(x) =
(
(4 + c)x − cx2 − x3)ex, x ∈ R. Then, ỹ is a unique strong

solution to (3.10) with p = q = 0.
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For the following experiment, a three-layer neural network with an architecture configured as
(1, 16, 32, 1) was utilized. The hyperbolic tangent function (tanh) was used as the activation function
throughout the network. The Adam optimizer was used with an initial learning rate of 0.1 and batch
size of 10000. To optimize training, an exponential learning rate scheduler was attached, which
methodically decreased the learning rate at each epoch to ensure convergence.

Figure 1 (a) describes the graph of the model prediction (neural network N(x; θ)) and the exact
solution (̃y(x)) on I where the model prediction does not accurately capture the exact solution.
Meanwhile, Figure 2 (a) describes the graph of the model prediction (x(1 − x)N(x, θ)) and the exact
solution (̃y(x)) for which the model prediction accurately captures the exact solution. Figure 1 (b)
and Figure 2 (b) describe the graphs of Loss and Error along epoch increases, respectively, and we
can observe that (PINN II) is more efficient than (PINN I) in reducing Error and Loss. Furthermore,
Figure 3 describes that (PINN II) gives a more precise model prediction compared to (PINN I) in the
perspective of Relative error. The Relative errors are defined as

Relative error (PINN I) =
∑n

i=1 |̃y(Xi) − Φ(Xi)|2∑n
i=1 |̃y(Xi)|2

,

Relative error (PINN II) =
∑n

i=1 |̃y(Xi) − (ΦA + ℓ)(Xi)|2∑n
i=1 |̃y(Xi)|2

.

In Example 3.7, we can observe that (PINN I) exhibits significant boundary discrepancies, where
Boundary Loss is larger than Error. In contrast, (PINN II) accurately captures the exact solution.
Therefore, from now on we exclusively use (PINN II) where the trial function ΦA + ℓ exactly satisfies
the boundary conditions of (3.10).

(a) Model prediction comparison with exact
solution after 500 epochs (PINN I)

(b) The behaviors of Loss and Error as epoch
increases (PINN I)

Figure 1. Not effective (PINN I).
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(a) Model prediction comparison with exact
solution after 500 epochs (PINN II)

(b) The behaviors of Loss and Error as epoch
increases (PINN II)

Figure 2. Successful (PINN II).

Figure 3. Comparison of Relative error between two methods as epoch increases.

Example 3.8. Let I = (0, 1). Let ε := 1, c(x) = λ, b(x) = tan πx
6 , and ỹ(x) = sin πx

6 , x ∈ R. Note that

ỹ ′(x) =
π

6
cos

πx
6
, ỹ ′′(x) = −

π2

36
sin

π

6
, x ∈ R.

Let f̃ (x) = −ỹ′′(x) + b(x)̃y′(x) + c(x)̃y(x) =
(
π2

36 +
π
6 + λ

)
sin π

6 x, x ∈ R. Then, ỹ is a unique strong
solution to (3.10) with p = 0 and q = 1

2 .

For the following experiment, a three-layer neural network with an architecture configured as
(1, 50, 50, 1) was utilized to describe a solution for a more complex differential equation. All
experimental details are identical to those described in Example 3.7.

In Figure 4(a), increasing the zero-order coefficient λ leads to a more robust Error, although the
Loss increases as well. We investigated this phenomenon and found that the ratio Error

Loss decreases,
and this ratio is sharply bounded by the function 1

λ2 in Figure 4(b). However, this observation is not
explained by our energy estimates 3.14, as it does not account for zero-order terms. This discrepancy
suggests the need for further investigation into this topic.
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(a) Loss and Error as λ increases after 500 epochs as
λ increases

(b) Error
Loss bounded by the upper bound 1

λ2 as λ

increases

Figure 4. As λ increases, Loss increases but Error remains robust due to the decrease of
Error
Loss .

4. Error analysis via L2(I, µ)-contraction estimates

4.1. L2(I, µ)-contraction estimates

Theorem 4.1 (L2(I, µ)-contraction estimates). Let ε > 0 be a constant, b ∈ L2(I), c ∈ L2(I) with
c ≥ λ on I for some constant λ > 0 and f ∈ L2(I), where I is a bounded open interval. Let ρ be
a function defined in (3.3), where b above is considered as the zero extension of b in R. Let y ∈
H1,2

0 (I) ∩ H2,1(I) ∩C1(I) be a unique strong solution to (3.6) as in Theorem 3.2. Then,

∥y∥L2(I,µ) ≤
1
λ
∥ f ∥L2(I,µ), (4.1)

where µ = ρdx. In particular,

∥y∥L2(I) ≤

(
maxI ρ

minI ρ

)1/2 1
λ
∥ f ∥L2(I,µ) ≤ exp

(∫
I

1
2ε
|b|dx

)
1
λ
∥ f ∥L2(I).

Proof. By Theorem 3.2, the unique strong solution y to (3.6) satisfies that∫
I
εy′ψ′ρdx +

∫
I
cyψρdx =

∫
I

fψρdx, for all ψ ∈ H1,2
0 (I).

Substituting y for ψ, we get

λ

∫
I
y2ρdx ≤

∫
I
ε|y′|2ρdx +

∫
I
cy2ρdx =

∫
I

f yρdx ≤
(∫

I
f 2ρdx

)1/2 (∫
I
y2ρdx

)1/2

,

and hence the result follows. □
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Theorem 4.2. Let p, q ∈ R, ε > 0 be constants, b ∈ L2(I), c ∈ L2(I) with c ≥ λ on I = (x1, x2) for some
constant λ > 0 and f ∈ L2(I), where I is a bounded open interval. Let ρ be a function defined in (3.3).
Then, the unique strong solution ỹ ∈ H2,1(I) ∩C1(I) to (3.10) as in Theorem 3.4 satisfies

∥̃y∥L2(I,µ) ≤
1
λ
∥ f̃ ∥L2(I,µ) + K3(|p| ∨ |q|),

where µ = ρdx and K3 =
1
λ
∥b∥L2(I,µ)|I|−1 + 1

λ
∥c∥L2(I,µ) + |I|1/2(maxI ρ)1/2. In particular,

∥̃y∥L2(I) ≤
1
λ

(
maxI ρ

minI ρ

)1/2

∥ f̃ ∥L2(I) +

(
maxI ρ

minI ρ

)1/2

K̃3(|p| ∨ |q|),

where K̃3 =
1
λ
∥b∥L2(I)|I|−1 + 1

λ
∥c∥L2(I) + |I|1/2.

Proof. Let ℓ(x) := q−p
x2−x1

(x − x1) + p, x ∈ R. Then, we can check that ∥ℓ∥L∞(I) ≤ |p| ∨ |q| and ∥ℓ′∥L∞(I) ≤

|I|−1|p − q|. Let y := ỹ − ℓ. Then, y ∈ H1,2
0 (I) ∩ H2,1(I) ∩ C1(I) is a strong solution to (3.11) where f̃ is

replaced by f̃ − bℓ′ − cℓ. Then, we derive from (4.1) in Theorem 4.1 that y = ỹ − ℓ and that

∥̃y − ℓ∥L2(I,µ) = ∥y∥L2(I,µ) ≤
1
λ

∥∥∥ f̃ − bℓ′ − cℓ
∥∥∥

L2(I,µ)

≤
1
λ
∥ f̃ ∥L2(I,µ) +

1
λ
∥b∥L2(I,µ)∥ℓ

′∥L∞(I) +
1
λ
∥c∥L2(I,µ)∥ℓ∥L∞(I).

Therefore,

∥̃y∥L2(I,µ) ≤ ∥̃y − ℓ∥L2(I,µ) + ∥ℓ∥L2(I,µ) ≤ ∥̃y − ℓ∥L2(I,µ) + |I|1/2(max
I
ρ)1/2∥ℓ∥L∞(I)

≤
1
λ
∥ f̃ ∥L2(I,µ) +

1
λ
∥b∥L2(I,µ)|I|−1|p − q| +

(
1
λ
∥c∥L2(I,µ) + |I|1/2(max

I
ρ)1/2

)
(|p| ∨ |q|)

≤
1
λ
∥ f̃ ∥L2(I,µ) +

(
1
λ
∥b∥L2(I,µ)|I|−1 +

1
λ
∥c∥L2(I,µ) + |I|1/2(max

I
ρ)1/2

)
(|p| ∨ |q|).

The rest immediately follows from the above. □

Theorem 4.3. Let b ∈ L2(I), c ∈ L2(I) with c ≥ λ on I for some constant λ > 0 and f̃ ∈ L2(I), where
I = (x1, x2) is a bounded open interval. Let ρ be a function defined in (3.3). Let ỹ ∈ H2,1(I) ∩ C1(I) be
the unique strong solution to (3.10) as in Theorem 3.4. Let Φ ∈ H2,2(I) ∩C1(I). Then,

∥̃y − Φ∥L2(I) ≤

(
maxI ρ

minI ρ

)1/2 1
λ

∥∥∥ f̃ − L[Φ]
∥∥∥

L2(I)
+

(
maxI ρ

minI ρ

)1/2

K̃3

(∣∣∣p − Φ(x1)
∣∣∣ ∨ ∣∣∣q − Φ(x2)

∣∣∣),
where K̃3 > 0 is a constant as in Theorem 4.2 and L is a differential operator defined by (3.12).

Proof. Note that L[̃y] = −ỹ′′ + b̃y′ + c̃y = f̃ ∈ L2(I) and L[Φ] = −εΦ′′ + bΦ′ + cΦ ∈ L2(I). Let
u = ỹ − Φ. Then, u ∈ H2,2(I) ∩ C1(I) and L[u] = f̃ − L[Φ] ∈ L2(I). Moreover, by Theorem 3.2 u is a
uniqe strong solution to the following problem: − εu′′ + bu′ + cu = f̃ − L[Φ] on I,

u(x1) = p − Φ(x1), u(x2) = q − Φ(x2).
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By Theorem 4.2,

∥u∥L2(I) ≤

(
maxI ρ

minI ρ

)1/2 1
λ
∥ f̃ − L[Φ]∥L2(I) +

(
maxI ρ

minI ρ

)1/2

K̃3

(∣∣∣p − Φ(x1)
∣∣∣ ∨ ∣∣∣q − Φ(x2)

∣∣∣),
as desired. □

Theorem 4.4. Let ε > 0 be a constant, b ∈ L2(I), c ∈ L2(I) with c ≥ λ on I for some constant λ > 0
and f̃ ∈ L2(I), where I = (x1, x2) is a bounded open interval. Let p, q ∈ R be given. Let ρ be a function
defined in (3.3). Let ỹ ∈ H2,1(I) ∩ C1(I) be the unique strong solution to (3.10) as in Theorem 3.4. Let
ΦA ∈ H1,2

0 (I) ∩ H2,2(I) ∩C1(I) and ℓ(x) := q−p
x2−x1

(x − x1) + p, x ∈ R. Then,

∥∥∥̃y − (ΦA + ℓ)
∥∥∥

L2(I)
≤

(
maxI ρ

minI ρ

)1/2 1
λ

∥∥∥ f̃ − L[ΦA + ℓ]
∥∥∥

L2(I)

≤ exp
(∫

I

1
2ε
|b|dx

)
1
λ

∥∥∥ f̃ − L[ΦA + ℓ]
∥∥∥

L2(I)
,

where L is a differential operator defined by (3.12).

Proof. Since (ΦA + ℓ)(x1) = p and (ΦA + ℓ)(x2) = q, the assertion follows from Theorem 4.3, where Φ
there is replaced by ΦA + ℓ here. □

4.2. Numerical experiments for PINN with L2(I, µ)-contraction estimates

Let us consider the conditions as in Section 3.2 and additionally assume that c ≥ λ for some
λ > 0. Then, by using Theorem 4.4 with the Monte Carlo integration as in (2.2), we discover that
for sufficiently large n ∈ N

1
n

n∑
i=1

|̃y(Xi) − (ΦA + ℓ)(Xi)|2︸                              ︷︷                              ︸
=:Error

≤
1
λ2

(
maxI ρ

minI ρ

)
·

1
n

n∑
i=1

(
f̃ (Xi) − L[ΦA + ℓ](Xi)

)2
,

≤
1
λ2 exp

(∫
I

1
ε
|b|dx

)
·

1
n

n∑
i=1

(
f̃ (Xi) − L[ΦA + ℓ](Xi)

)2

︸                                  ︷︷                                  ︸
=:Loss

, very likely.

(4.2)

Example 4.5. Let I = (0, 1). Assume that b = 2, p = 0, q = 1 and f̃ = 0. Let λ > 0 be a constant and
c := λ. Then, (3.10) is expressed as − ε̃y′′ + 2̃y′ + λ̃y = f̃ on I,

ỹ(0) = 0, ỹ(1) = 1,
(4.3)

which has a unique solution by Theorem 3.4. All experimental details are identical to those described
in Example 3.8.
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(1) Let ε = 1. Then,

ỹ(x) :=
1

e1+
√

1+λ − e1−
√

1+λ
e(1+

√
1+λ)x +

−1

e1+
√

1+λ − e1−
√

1+λ
e(1−

√
1+λ)x, x ∈ R

is a unique solution to (4.3).

In Figure 5(a), we can observe that as λ increases, Loss increases whereas Error is relatively stable.
The main reason for this is explained by Figure 5(b), where Error

Loss decreases with the upper bound 1
λ2 as

λ increases. In the error estimates (4.2), we derive the upper bound of Error
Loss as 1

λ2 exp
(∫

I
1
ε
|b|dx

)
= e2

λ2 .

However, by Figure 5(b), one can see that 1
λ2 is a more suitable upper bound for Error

Loss than e2

λ2 .

(a) Loss and Error after 500 epochs as λ increases
(b) Error

Loss bounded by the upper bound 1
λ2 as λ

increases

Figure 5. As λ increases, Loss increases but Error remains robust due to the decrease of
Error
Loss .

(2) For general ε > 0, we obtain that

ỹ(x) :=
1

e
1
ε+

√
1
ε2 +

λ
ε − e

1
ε−

√
1
ε2 +

λ
ε

e
(

1
ε+

√
1
ε2 +

λ
ε

)
x
+

−1

e
1
ε+

√
1
ε2 +

λ
ε − e

1
ε−

√
1
ε2 +

λ
ε

e
(

1
ε−

√
1
ε2 +

λ
ε

)
x
, x ∈ R

is a unique solution to (4.3) by Theorem 3.4.

Figure 6(a) describes the behavior of Error for each case when ε = 1, 0.5, 0.1. In Figure 6(a),
if λ is small, there are rapid changes of Error, but if λ is over 100, Error remains relatively stable.
Figure 6(b) describes the behaviors of the ratios (Error

Loss ) which rapidly decrease as λ increases. The
rapid decrease of Error

Loss as the increase of λ in Figure 6(b) explains the reason Error remains relatively
stable in Figure 6(a). Here, we point out that the upper bound of Error

Loss is 1
λ2 in Figure 6(b). Indeed, if

ε = 0.1, then one can derive an upper bound of Error
Loss as 1

λ2 exp
(∫

I
1
ε
|b|dx

)
= e20

λ2 as in (4.2), which is
much bigger than 1

λ2 . Therefore, we have to derive sharper error estimates than (4.2), which will be
presented in the next section.
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(a) Comparison of Errors after 500 epochs as λ

increase when ε = 1, 0.5, 0.1
(b) Comparison of the ratios ( Error

Loss ) as λ increases
when ε = 1, 0.5, 0.1 and the upper bound 1

λ2

Figure 6. The change of ε does not significantly affect Error behavior.

5. Error analysis via L2(I, dx)-contraction estimates

5.1. L2(I, dx)-contraction estimates

Theorem 5.1 (L2(I, dx)-contraction estimates). Let ε > 0 be a constant, b ∈ H1,1(I), c ∈ L1(I) with
c ≥ 0 on I and f ∈ L2(I), where I is a bounded open interval. Assume that there exists a constant γ > 0
such that −1

2b′+ c ≥ γ on I. Let y ∈ H1,2
0 (I)∩H2,1(I)∩C1(I) be a unique strong solution to (3.6). Then,

∥y∥L2(I) ≤
1
γ
∥ f ∥L2(I). (5.1)

Proof. Multiplying both sides of (3.6) by y and integrating over I with respect to dx, we have

γ

∫
I
y2dx ≤

∫
I
ε|y′|2ρdx +

∫
I

(
−

1
2

b′ + c
)
y2dx =

∫
I
ε|y′|2dx +

∫
y

by′ydx +
∫

I
cy2dx

=

∫
I

f ydx ≤
(∫

I
f 2dx

)1/2 (∫
I
y2dx

)1/2

,

and hence the assertion follows. □

Remark 5.2. The above contraction estimates can be extended to the case of the multidimensional
linear elliptic equations. As a general form of L2-contraction estimates, one can derive Lr-contraction
estimates with r ∈ [1,∞] by using the sub-Markovian property and the Riesz-Thorin interpolation with
a duality argument (see [14]).

Theorem 5.3. Let ε > 0 be a constant, b ∈ H1,1(I), c ∈ L2(I) with c ≥ 0 on I and f̃ ∈ L2(I), where I is
a bounded open interval. Assume that there exists a constant γ > 0 such that −1

2b′ + c ≥ γ on I. Then,
the unique strong solution ỹ ∈ H2,1(I) ∩C1(I) to (3.10) as in Theorem 3.4 satisfies

∥̃y∥L2(I) ≤
1
γ
∥ f̃ ∥L2(I) + K̃4(|p| ∨ |q|),

where K̃4 := 1
γ
∥b∥L2(I)|I|−1 + 1

γ
∥c∥L2(I) + |I|1/2.
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Proof. Let ℓ(x) := q−p
x2−x1

(x − x1) + p, x ∈ R. Then, we can verify that ∥ℓ∥L∞(I) ≤ |p| ∨ |q| and ∥ℓ′∥L∞(I) ≤

|I|−1|p−q|. Let y := ỹ−ℓ. Then, by Theorem 3.4 y ∈ H1,2
0 (I)∩H2,1(I)∩C1(I) is a unique strong solution

to (3.11) where f is replaced by f̃ − bℓ′ − cℓ, and hence it follows from (5.1) in Theorem 5.1 that

∥̃y − ℓ∥L2(I) = ∥y∥L2(I) ≤
1
γ

∥∥∥ f̃ − bℓ′ − cℓ
∥∥∥

L2(I)

≤
1
γ
∥ f̃ ∥L2(I) +

1
γ
∥b∥L2(I)∥ℓ

′∥L∞(I) +
1
γ
∥c∥L2(I)∥ℓ∥L∞(I).

Therefore,

∥̃y∥L2(I) ≤ ∥̃y − ℓ∥L2(I) + ∥ℓ∥L2(I) ≤ ∥̃y − ℓ∥L2(I,µ) + |I|1/2∥ℓ∥L∞(I)

≤
1
γ
∥ f̃ ∥L2(I) +

1
γ
∥b∥L2(I)|I|−1|p − q| +

(
1
γ
∥c∥L2(I) + |I|1/2

)
(|p| ∨ |q|)

≤
1
γ
∥ f̃ ∥L2(I) +

(
1
γ
∥b∥L2(I)|I|−1 +

1
γ
∥c∥L2(I) + |I|1/2

)
(|p| ∨ |q|),

as desired. □

Theorem 5.4. Let ε > 0 be a constant, b ∈ H1,1(I), c ∈ L2(I) with c ≥ 0 on I and f̃ ∈ L2(I),
where I = (x1, x2) is a bounded open interval. Assume that there exists a constant γ > 0 such that
−1

2b′ + c ≥ γ on I. Let p, q ∈ R be given and ỹ ∈ H2,1(I)∩C1(I) be the unique strong solution to (3.10)
as in Theorem 3.4. Let Φ ∈ H2,2(I) ∩C1(I). Then,

∥̃y − Φ∥L2(I) ≤
1
γ

∥∥∥ f̃ − L[Φ]
∥∥∥

L2(I)
+ K̃4

(∣∣∣p − Φ(x1)
∣∣∣ ∨ ∣∣∣q − Φ(x2)

∣∣∣),
where K̃4 > 0 is a constant in Theorem 5.3 and L is a differential operator defined as in (3.12).

Proof. Let u := ỹ − Φ. Then, u ∈ H2,2(I) ∩ C1(I) and L[Φ] ∈ L2(I). Moreover, by Theorem 3.4 u is a
(unique) strong solution to the following problem: − εu′′ + bu′ + cu = f̃ − L[Φ] on I,

u(x1) = p − Φ(x1), u(x2) = q − Φ(x2).

By Theorem 3.4, the result follows. □

Theorem 5.5. Let ε > 0 be a constant, b ∈ H1,1(I), c ∈ L2(I) with c ≥ 0 on I and f̃ ∈ L2(I), where
I = (x1, x2) is a bounded open interval. Assume that there exists a constant γ > 0 such that −1

2b′+c ≥ γ
on I. Let p, q ∈ R be given and ỹ ∈ H2,1(I)∩C1(I) be the unique strong solution to (3.10) as in Theorem
3.4. Let ΦA ∈ H1,2

0 (I) ∩ H2,2(I) ∩C1(I) and ℓ(x) := q−p
x2−x1

(x − x1) + p, x ∈ R. Then,∥∥∥̃y − (ΦA + ℓ)
∥∥∥

L2(I)
≤

1
γ

∥∥∥ f̃ − L[ΦA + ℓ]
∥∥∥

L2(I)
,

where L is a differential operator defined by (3.12).

Proof. Since (ΦA + ℓ)(x1) = p and (ΦA + ℓ)(x2) = q, the assertion follows from Theorem 5.4 where Φ
there is replaced by ΦA + ℓ here. □
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5.2. Numerical experiments for PINN with L2(I, dx)-contraction estimates

Let us consider the conditions in Section 3.2 and also assume that b ∈ H1,1(I), c ∈ L2(I) with c ≥ 0
on I and f ∈ L2(I), where I is a bounded open interval. Additionally, assume that

−
1
2

b′ + c ≥ γ, for some γ > 0. (5.2)

Then, by using Theorem 5.5 with the Monte Carlo integration as in (2.2), we obtain that for sufficiently
large n ∈ N

1
n

n∑
i=1

|̃y(Xi) − (ΦA + ℓ)(Xi)|2︸                              ︷︷                              ︸
=:Error

≤
1
γ2 ·

1
n

n∑
i=1

(
f̃ (Xi) − L[ΦA + ℓ](Xi)

)2

︸                                  ︷︷                                  ︸
=:Loss

, very likely. (5.3)

Example 5.6. Let I = (0, 1). Let λ, k ≥ 0 be constants. Let b(x) = −kx, c(x) = λ and ỹ(x) =
x(1 − x)ex + x2, x ∈ R. Then,

ỹ′(x) = (1 − x − x2)ex + 2x, ỹ′′(x) = (−3x − x2)ex + 2, for all x ∈ R.

Let f (x) := −ε̃y′′(x) + b(x)̃y′(x) + c(x)̃y(x) =
(
kx3 + (k − λ + ε)x2 + (3ε − k + λ)x

)
ex + λx2 − 2kx2 − 2ε,

x ∈ R. Then, ỹ is a unique strong solution to (3.10) with p = 0 and q = 1. Moreover, we can choose

γ =
1
2

k + λ = −
1
2

b′ + c.

Therefore, the upper bound of Error
Loss is expressed as

1
γ2 =

4
(k + 2λ)2 .

All experimental details are identical to those described in Example 3.8.

(1) Let ε = 1 and k = 7.

(a) Loss and Error after 500 epochs as λ increases
(ε = 1, k = 7)

(b) Ratio ( Error
Loss ) bounded by the upper bound 1

γ2 =
4

(7+2λ)2 (ε = 1, k = 7)

Figure 7. As λ increases, Loss increases but Error remains robust (Example 5.6).
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In Figure 7(a), we can observe that as λ increases, Loss also increases but Error remains stable.
This phenomenon is well-explained by Figure 7(b) where the ratio (Error

Loss ) rapidly decreases with the
upper bound 1

γ2 =
4

(7+2λ)2 as λ increases. Furthermore, it is observed in Figure 7(b) that the upper bound
of Error

Loss is very sharp when λ is large enough.

(2) Let ε = 1 and λ = 7.

(a) Loss and Error after 500 epochs as k increases
(ε = 1, λ = 7)

(b) Ratio ( Error
Loss ) bounded by the upper bound 1

γ2 =
4

(k+14)2 as k increases (ε = 1, λ = 7)

Figure 8. As k increases, Loss increases but Error remains robust (Example 5.6).

In Figure 8(a), we can observe that as λ increases, Loss also increases but Error remains stable.
This phenomenon is well-explained by Figure 8(b) where the ratio (Error

Loss ) rapidly decreases with the
upper bound 1

γ2 =
4

(k+14)2 as k increases.

(3) Let k = 10 and λ = 15.

(a) Loss and Error after 500 epochs as ε decreases
(k = 10 and λ = 15)

(b) Ratio ( Error
Loss ) bounded by the upper bound 1

γ2 =
1

400 as ε decreases (k = 10 and λ = 15)

Figure 9. As ε decreases, Loss and Error remain stable (Example 5.6).

In Figure 9(a), we can observe that as ε decreases, Loss and Error remain robust. Since ε is
a very small value, the stability of Loss is well-explained. Since k and λ are fixed as 10 and 15,
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respectively and ε only decreases, we can expect that by our error estimates (5.3), Error
Loss does not change

dramatically. This expectation is realized by Figure 9(b), where Error
Loss are bounded by 1

γ2 =
1

400 , and
hence the robustness of Error is well-explained.

Example 5.7. Let I = (0, 1). Let λ, k ≥ 0 be constants. Let b(x) = −kx, c(x) = λ and ỹ(x) =
sin πx + cos πx, x ∈ R. Then,

ỹ′(x) = π cos πx − π sin πx, ỹ′′(x) = −π2 sin πx − π2 cos πx, for all x ∈ R.

Let f (x) := −ε̃y′′(x)+ b(x)̃y′(x)+ c̃y(x) =
(
επ2 + πkx+ λ

)
sin πx+

(
επ2 − πkx+ λ

)
cos πx, x ∈ R. Then,

ỹ is a unique strong solution to (3.10) with p = 1, q = −1. As in Example 5.6, the upper bound of Error
Loss

is expressed as 1
γ2 =

4
(k+2λ)2 .

All experimental details are identical to those described in Example 3.8.

(1) Let ε = 1 and k = 7.

(a) Loss and Error after 500 epochs as λ increases
(ε = 1, k = 7)

(b) Ratio ( Error
Loss ) bounded by the upper bound 1

γ2 =
4

(7+2λ)2 as λ increases (ε = 1, k = 7).

Figure 10. As λ increases, Loss increases but Error remains robust (Example 5.7)

In Figure 10(a), we can observe that as λ increases, Loss also increases but Error remains stable.
This phenomenon is well-explained by Figure 10(b), where the ratio (Error

Loss ) rapidly decreases with the
upper bound 1

γ2 =
4

(7+2λ)2 as λ increases.

(2) Let ε = 1 and λ = 7.
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(a) Loss and Error after 500 epochs as k increases
(ε = 1, λ = 7).

(b) Ratio ( Error
Loss ) bounded by the upper bound 1

γ2 =
4

(k+14)2 as k increases (ε = 1, λ = 7)

Figure 11. As k increases, Loss increases but Error remains robust (Example 5.7).

In Figure 11(a), we can observe that as λ increases, Loss also increases but Error remains stable.
This phenomenon is well-explained by Figure 11(b), where the ratio (Error

Loss ) rapidly decreases with the
upper bound 1

γ2 =
4

(k+14)2 as k increases.

(3) Let k = 10 and λ = 15.

(a) Loss and Error after 500 epochs as ε decreases
(k = 10, λ = 15)

(b) Ratio ( Error
Loss ) bounded by the upper bound 1

γ2 =
1

400 as ε decreases (k = 10, λ = 15)

Figure 12. As ε decreases, Loss and Error remain stable (Example 5.7).

In Figure 12(a), we can observe that as ε decreases, Loss and Error remain stable. Since ε is
a very small value, the stability of Loss is well-explained. Since k and λ are fixed as 10 and 15,
respectively and ε only decreases, we can expect that by our error estimates (5.3), Error

Loss does not change
dramatically. This expectation is realized by Figure 12(b), where Error

Loss are bounded by 1
γ2 =

1
400 , and

hence the robustness of Error is well-explained.
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6. Conclusions and discussion

Based on the universal approximation theorem derived from the Stone-Weierstrass theorem,
solutions to differential equations can be uniformly approximated by neural networks. However, due to
the abstract nature of the Stone-Weierstrass theorem, finding explicit neural networks that approximate
a solution to a differential equation would be very challenging. As an alternative, through a posteriori
analysis, we have demonstrated that Error is controlled by Loss (see (3.13), (3.14), (4.2), (5.3)), and
hence we can obtain effective error bounds in terms of Loss.

Our analysis is specifically based on the Sobolev space theory with a variational approach. Initially,
we rigorously established the existence and uniqueness of solutions to one-dimensional boundary value
problems for second-order linear elliptic equations with highly irregular coefficients. There are two
approaches for selecting a trial function to approximate the solution to a differential equation (see
Section 3.2): The first approach is to directly use a neural network itself as a trial function (PINN
I), and the second approach is to use a function based on the neural network that exactly fulfills the
given boundary conditions (PINN II). Experimentally, we confirmed that (PINN II) is more efficient in
approximating the solution.

Ultimately, our main error estimate is (5.3) which demonstrates that under the assumption of (5.2),
Error
Loss decreases rapidly with the upper bound 1

γ2 as γ increases, so that Error is robustly maintained even
though Loss increases. These results refute the conventional belief that numerical cost increases as
the quantities of the coefficients increase. Our research indicates that PINN can be efficient numerical
solvers for differential equations with large quantities of coefficients.

In the case of the upper bound of the ratio, Figure 7(b) and Figure 10(b) describe very sharp upper
bounds for Error

Loss , while Figure 8(b) and Figure 11(b) present less sharp bounds, and hence further
studies can be conducted to derive sharper upper bounds. Further discussion is required to determine
under what additional conditions the rapid decrease in Error

Loss can be expected. Empirically, it is observed
that the larger quantities of the first-order coefficients b and the zero-order coefficients c imply the
small values of Error

Loss . In future research, a rigorous mathematical demonstration is required to present
additional explicit conditions on the coefficients that guarantee a rapid decrease in Error

Loss beyond the
condition (5.2).

The most innovative aspect of this paper is that we specifically calculated the constant arising in the
L2-estimate and, in particular, verified through L2-contraction estimates that this constant decreases
rapidly as the lower bound of the zero-order term increases. This is highly significant as it provides a
concrete upper bound for the error-to-loss ratio in a posteriori error analysis of PINN, which enables
us to estimate L2-error by calculating L2-training loss. Our research emphasizes the importance of
precisely calculating constants in L2-estimates in future studies. However, the current results are
limited to the one-dimensional Dirichlet boundary value problem, and the condition on the coefficients
for obtaining L2-contraction estimates is somewhat restrictive because we need a constant γ > 0 that is
not small and satisfies −1

2b′ + c ≥ γ in I. Further research is necessary to overcome these limitations.
Through this paper, it was confirmed that robust error estimates are guaranteed regardless of the

quantities of coefficients in one-dimensional boundary value problems for linear elliptic equations.
Moreover, we could confirm the possibility of an efficient numerical solution through PINN for
differential equations with very large quantities of coefficients, and we expect that this will be applied
to more general multidimensional elliptic and parabolic differential equations with singular coefficients
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and general boundary conditions.
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Supplementary

The code used for numerical experiments in this paper is available at https://github.com/
hahmYoo/Robust-error-estimates-of-PINN.
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