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1. Introduction and definition

LetA represent the class of functions of the form

φ(ξ) = ξ + a2ξ
2 + a3ξ

3 + . . . = ξ +

∞∑
n=2

anξ
n, (1.1)

which are analytic in the open unit disc ∆ = {ξ : |ξ| < 1}, and normalized by the conditions f (0) = 0
and f ′(0) = 1. Further, let S denote the class of all functions in A which are univalent in ∆. The two
well-known subclasses of S, namely the classes of starlike and convex functions will be denoted by S∗

and C respectively. Refer to [1, 2] for formal definitions of various subclasses of S.
Based on Koebe’s one-quarter theorem [1], every φ ∈ S has the compositional inverse φ−1 satisfying

φ−1(φ(ξ)) = ξ, (ξ ∈ ∆) and φ(φ−1(w)) = w, (w ∈ ∆ρ),

where ρ ≥ 1
4 is the radius of the image φ(∆). From [3, p. 57], it is known that φ−1(w) has the normalized

Taylor-Maclaurin series

φ−1(w) = w +
∞∑

n=2

bnwn, (w ∈ ∆ρ), (1.2)

where

bn =
(−1)n+1

n!
|Ai j|,

and |Ai j| is the (n − 1)th order determinant whose entries are denoted by

|Ai j| =

{
[(i − j + 1)n + j − 1]ai− j+2, if i + 1 ≥ j,
0, if i + 1 < j.

Then,

χ(w) = φ−1(w) = w − a2w2 + (2a2
2 − a3)w3 −

(
5a2

2 − 5a2a3 + a4

)
w4 + · · · . (1.3)

Bi-starlike functions of the order α(0 < α ≤ 1) denoted by S∗
Σ
(α) and bi-convex functions of

the order α denoted by CVΣ(α) were presented by Brannan and Taha in [4]. The first two Taylor-
Maclaurin coefficients, namely |a2| and |a3|, were shown to have non-sharp estimates for each of the
function classes S∗

Σ
(α) and CVΣ(α) [4, 5]. Unfortunately, there is still an unresolved problem for each

of the Taylor-Maclaurin coefficients |an| (n ∈ N \ {1, 2}). After studying many interesting subclasses
of Σ, a number of authors (see [6–14] and the references cited therein) came to the conclusion that the
estimations of the first two Taylor-Maclaurin coefficients, |a2| and |a3|, are not sharp.

Let P signify the category of functions that are analytic in ∆ with p(0) = 1 and Re {p(ξ)} > 0 for all
ξ in ∆. Throughout this paper, due to Ma and Minda [15], we let ψ to be an analytic function belonging
to the class P, and which has a series expansion of the form

ψ(ξ) = 1 + M1ξ + ξ
2 + M3ξ

3 + · · · , (M1 > 0; ξ ∈ ∆). (1.4)
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Using the notion of subordination, several scholars have recently examined the subclass of starlike
functions S∗(ψ) subjected to satisfying the following criteria,

S∗(ψ) =
{
φ ∈ A :

ξφ
′

(ξ)
φ(ξ)

≺ ψ(ξ)
}
. (1.5)

Recently, the notion of subordination has been used to develop several analytic function classes
based on the geometrical interpretation of their image domains, such as the right half plane, circular
disc, oval and petal type domains, conic domain, generalized conic domains, and the leaf-like domain,
by varying ψ in (1.5). Lately, Gandhi [16] defined the class of starlike functions connected with three
leaf functions as:

S∗3L =

{
φ ∈ A :

ξφ
′

(ξ)
φ(ξ)

≺ 1 +
4
5
ξ +

1
5
ξ4, ξ ∈ ∆

}
,

and studied certain subclasses of analytic functions defined by subordination to the three-leaf function.

1.1. Miller-Ross function (MRF)

Miller and Ross [17] proposed the special function as the basis of the solution of fractional order
initial value problem, which is called the Miller-Ross function defined as

Eν,µ(ξ) = ξνeµξΘ∗(ν, µξ),

where Θ∗ is the incomplete gamma function ( [17], p. 314 ). Using the properties of the incomplete
gamma functions, the Miller-Ross function (MRF) can easily be written as

Eν,µ(ξ) := ξν
∞∑

n=0

(µξ)n

Γ(n + ν + 1)
, ν, µ, ξ ∈ C, with Re ν > 0, Re µ > 0, (1.6)

which can be stated as
Eν,µ(ξ) ≡ ξνE1,1+ν(µξ),

where E1,1+ν(µξ) is the Mittag-Leffler function (MLF) of two parameters [18]. Some of the special
values of the MRF can be given as follows:

Eν,µ(0) = 0, Re(ν) > 0
E0,µ(ξ) = eµξ,

E0,1(ξ) = eξ.

Recently, Eker and Ece [19] showed that for µ > 0 and if ν > 2µ − 1, then the normalized Miller-
Ross function Eν,µ is univalent and starlike in ∆ 1

2
= {ξ ∈ C : |ξ| < 1

2 }. They also proved that if

ν > (2+
√

2)µ− 1, then the normalized MRF is univalent and convex in ∆ 1
2
. For more details, we refer

the reader to Miller and Ross [17].
In geometric function theory, the elementary distributions such as the Pascal, Poisson, logarithmic,

binomial, and beta negative binomial have been partially studied from a theoretical point of view. For a
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detailed study, we refer the readers to [20–24]. The probability mass function of the Miller-Ross-type
Poisson distribution (MRPD) is given by

Pν,µ(m, k) :=
(mµ)k mν

Eν,µ(m)Γ(ν + k + 1)
, k = 0, 1, 2, 3, · · · (1.7)

where ν > −1, µ > 0, m > 0, and Eν,µ is the MRF given in (1.6). The Miller-Ross-type Poisson
distribution is given by

M
m
ν,µ(ξ) = ξ +

∞∑
n=2

(mµ)n−1 mν

Eν,µ(m)Γ(ν + n)
ξn. (1.8)

The study of operators plays an important role in geometric function theory. Many differential and
integral operators can be written in terms of convolution of certain analytic functions. It is observed
that this formalism brings an ease in further mathematical exploration and also helps to understand the
geometric and symmetric properties of such operators better. We consider the following operator:

Y
m
ν,µφ (ξ) = φ (ξ) ∗Mm

ν,µ(ξ)

= ξ +

∞∑
n=2

Υnanξ
n, (1.9)

where

Υn =
(mµ)n−1 mν

Eν,µ(m)Γ(ν + n)
, (1.10)

and the symbol ∗ specifies the convolution (Hadamard product) of two series.

1.2. Multiplicative calculus

Bashirov, Kurpinar, and Özyapıin [25, pg. 37], (also see [26–28]) highlighted the importance
of a calculus called multiplicative calculus, which is not versatile with respect to applications when
compared with classical calculus, but is, nevertheless, very interesting and a useful mathematical tool
for economics and finance. For a positive, real valued function φ∗ : R −→ R, the multiplicative
derivative is defined by

φ∗(x) = lim
h→0

(
φ(x + h)
φ(x)

) 1
h

= e
φ′(x)
φ(x) = e[lnφ(x)]′ ,

where φ′(x) is the classical derivative. In a similar way, the n-th ∗-derivative of φ, which is denoted by
φ∗(n) for n = 0, 1, . . . , with φ∗(0) = φ, can be defined by φ∗(n) = e[lnφ(x)](n)

, provided the n-th derivative
of φ at x exists.

The ∗-derivative of φ at a point ξ in a neighborhood of the complex plane where it is non-vanishing
is given by

φ∗(ξ) = eφ
′(ξ)/φ(ξ) and φ∗(n)(ξ) = e[φ′(ξ)/φ(ξ)](n)

, n = 1, 2, . . . .

Motivated by the definition of a ∗-derivative, Karthikeyan and Murugusundaramoorthy in [29] (also
see [30]) introduced and studied a classR(ψ) consisting of functions φ ∈ A satisfying the subordination
condition

ξe
ξ2φ′(ξ)
φ(ξ)

φ(ξ)
≺ ψ(ξ), (1.11)
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where ψ is defined as in (1.4). Similarly, we let BR(ψ) to denote the class of functions satisfying the
conditions

ξe
ξ2φ′(ξ)
φ(ξ)

φ(ξ)
≺ ψ(ξ), and

we
w2χ′(w)
χ(w)

χ(w)
≺ ψ(w). (1.12)

Example 1.1. In this example, we will illustrate that a function φ ∈ S satisfying the condition (1.11)
does not imply that its inverse function would satisfy the condition (1.11). Let φ(ξ) = ξ

5−ξ . The function
φ(ξ) = ξ

(5−ξ) is convex univalent and maps ∆ onto a circular-shaped region in the w-plane, see Figure
1(a). Whereas, the inverse function of φ is given by χ(w) = 5w

w+1 . χ(w) is convex univalent in ∆ and
maps the unit disc onto the left-hand side of 2

5 , see Figure 2(a). For χ = φ−1, let

Ω(ξ) =
ξe

ξ2φ′(ξ)
φ(ξ)

φ(ξ)
= (5 − ξ)e

5ξ
5−ξ and Υ(w) =

we
w2χ′(w)
χ(w)

χ(w)
=

(1 + w)
5

e
w

1+w .

We can see that the function Ω(ξ) maps the unit disc onto a cardioid region in the right-half plane,
see Figure 1(b). In addition, the function Υ(w) = (1+w)

5 e
w

1+w maps the unit disc onto a cardioid region
but the image does not lie in the right-half plane, see Figure 2(b). Further, Figures 1 and 2 illustrate
that the function φ(ξ) = ξ

5−ξ is in class R(ψ) but does not belong to BR(ψ).

-0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

(a) φ(ξ) = ξ
5−ξ

4 6 8 10 12 14

-6

-4

-2

0

2

4

6

(b) Ω(ξ) = (5 − ξ)e
5ξ

5−ξ

Figure 1. The images of |ξ| < 1 under φ(ξ) = ξ

5−ξ and Ω(ξ), respectively.
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(a) χ(w) = 5w
1+w (b) Υ(w) = (1+w)

5 e
w

1+w

Figure 2. The images of the unit disc under χ(w) = 5w
1+w and Υ(w) = (1+w)

5 e
w

1+w , respectively.

Example 1.2. In this example, we will show that the class BR(ψ) is non-empty. Let φ(ξ) = 3ξ
3−ξ . The

function φ(ξ) = 3ξ
(3−ξ) satisfies the normalization φ(0) = φ′(ξ) − 1 = 0. Whereas, the inverse function of

φ is given by χ(w) = 3w
w+3 . Figure 3 illustrates that the function φ(ξ) = 3ξ

3−ξ is in class BR(ψ).

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.0

0.5

1.0

(a) L(ξ) = 3−ξ
3 e

3ξ
3−ξ

0.0 0.5 1.0 1.5 2.0 2.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

(b) M(w) = 3+w
3 e

3w
3+w

Figure 3. The images of the unit disc under L(ξ) = 3−ξ
3 e

3ξ
3−ξ and M(w) = 3+w

3 e
3w

3+w , respectively.

Motivated by the study on bi-univalent functions, see [7–14,31–34] and the references cited therein,
and by the definition of BR(ψ), in Sections 2 and 3 of this article, we will obtain the initial coefficients
of |a2|, |a3|, and the bounds on Fekete-Szegö results, of the function class defined in Definitions 2.1 and
3.1 related to the three leaf function Ξ(ξ) = 1 + ξ + 1

5ξ
4, ξ ∈ ∆.
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2. Bi-starlike functions Ym
ν,µ(Ξ)

Definition 2.1. For ν > −1, µ > 0, m > 0 and Ym
ν,µφ (ξ) defined as in (1.9), we denote the family Ym

ν,µ(Ξ)
to be the class of functions φ ∈ A which satisfy the following conditions

ξ e
ξ2(Ym

ν,µφ(ξ))′

Ym
ν,µφ(ξ)[

Ym
ν,µφ(ξ)

] ≺ Ξ(ξ) = 1 + ξ +
1
5
ξ4, ξ ∈ ∆,

and

w e
w2(Ym

ν,µχ(w))′

Ym
ν,µχ(w)[

Ym
ν,µχ(w)

] ≺ Ξ(w) = 1 + w +
1
5

w4,w ∈ ∆,

where χ = φ−1 is defined as in (1.3).

Remark 2.1. Notice that the function Ξ(ξ) defined in Definition 2.1 is different from the function used in
S∗3L. The deviation was necessary so that we could obtain the coefficient inequalities for class Ym

ν,µ(Ξ).
The function Ξ(ξ) = 1 + ξ + 1

5ξ
4 is in the class P and maps the unit disc onto the three leaf region in

the right-half plane, see Figure 4.

0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

Figure 4. The image of the unit disc under Ξ(ξ) = 1 + ξ + 1
5ξ

4.

Lemma 2.1. [2] Let P be the family of all functions h that are analytic in ∆ withℜ(h(ξ)) > 0 and is
given by

h(ξ) = 1 + p1ξ + p2ξ
2 + · · · , (ξ ∈ ∆).

Then,
|pk| ≤ 2,∀ k.

Theorem 2.2. Let φ ∈ Ym
ν,µ(Ξ) and let χ be the inverse of φ defined by (1.3) as

AIMS Mathematics Volume 9, Issue 10, 26983–26999.
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χ(w) = φ−1(w) = w − a2w2 + (2a2
2 − a3)w2 −

(
5a2

2 − 5a2a3 + a4

)
w4 + · · · , (|w| < r; r ≥ 1/4).

Then,

|a2| ≤ min

 2
|Υ2|

,

√
2
Υ2

,

√
5

2
∣∣∣3Υ2

2 − Υ3

∣∣∣
 , (2.1)

and

|a3| ≤ min

 2
|Υ2

2|
+

2
|Υ3|

,
5

2
∣∣∣3Υ2

2 − Υ3

∣∣∣ + 2
|Υ3|

 , (2.2)

where

Υ2 =
(mµ) mν

Eν,µ(m)Γ(ν + 2)
and Υ3 =

(mµ)2 mν

Eν,µ(m)Γ(ν + 3)
. (2.3)

Proof. Define the functions p(ξ) and q(w) by

p(ξ) :=
1 + u(ξ)
1 − u(ξ)

= 1 + ϑ1ξ + ϑ2ξ
2 + · · · ,

and
q(w) :=

1 + v(w)
1 − v(w)

= 1 + υ1w + υ2w2 + · · · ,

where u(ξ) and v(w) are analytic in ∆, with u(0) = 0, v(0) = 0, and |u(ξ)| < 1, |v(w)| < 1 for all ξ,w ∈ ∆.
Then, p(ξ) and q(w) are analytic in ∆ with p(0) = 1 = q(0). Equivalently,

u(ξ) :=
p(ξ) − 1
p(ξ) + 1

=
1
2

[
ϑ1ξ +

(
ϑ2 −

ϑ2
1

2

)
ξ2 + · · ·

]
,

and

v(w) :=
q(w) − 1
q(w) + 1

=
1
2

[
υ1w +

(
υ2 −

υ2
1

2

)
w2 + · · ·

]
.

Since u, v : ∆→ ∆, the functions p, q have a positive real part and

|ϑi| ≤ 2 and |υi| ≤ 2 for each i ≥ 2. (2.4)

Now,

Ξ(u(ξ)) = 1 + u(ξ) +
1
5

(u(ξ))4

= 1 +
1
2
ϑ1ξ +

1
2

(
ϑ2 −

1
2
ϑ2

1

)
ξ2 + · · · , (2.5)

and

Ξ(v(w)) = 1 +
1
2
υ1w +

1
2

(
υ2 −

1
2
υ2

1

)
w2 + · · · . (2.6)

AIMS Mathematics Volume 9, Issue 10, 26983–26999.
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Since φ ∈ Ym
ν,µ(Ξ), we have

ξ e
ξ2[Ym

ν,µφ(ξ)]′

Ym
ν,µφ(ξ)[

Ym
ν,µφ(ξ)

] = Ξ[u(ξ)], (2.7)

and

w e
w2[Ym

ν,µχ(w)]′

Ym
ν,µχ(w)[

Ym
ν,µχ(w)

] = Ξ[v(w)], (2.8)

where ξ and w belongs to ∆. The left-hand side of (2.7) is given by

ξe
ξ2[Ym

ν,µφ(ξ)]′

Ym
ν,µφ(ξ)[

Ym
ν,µφ(ξ)

] = 1 + [1 − a2Υ2] ξ +
[
1
2
+ Υ2

2a2
2 − Υ3a3

]
ξ2

+

[
1
6
+

a2Υ2

2
− a2

2Υ
2
2 − a3

2Υ
3
2 + a3Υ3 + 2a2a3Υ2Υ3 − a4Υ4

]
ξ3 + · · · . (2.9)

Equating the coefficients of ξ, ξ2, w, and w2 in (2.7) and (2.8), we have

[1 − a2Υ2] =
1
2
ϑ1, (2.10)

[
1
2
+ Υ2

2a2
2 − Υ3a3

]
=

1
2

(
ϑ2 −

ϑ2
1

2

)
, (2.11)

[1 + a2Υ2] =
1
2
υ1, (2.12)

and [
1
2
+ Υ2

2a2
2 − Υ3(2a2

2 − a3)
]
=

1
2

(
υ2 −

υ2
1

2

)
. (2.13)

From (2.10) and (2.12), we have
ϑ1 + υ1 = 4. (2.14)

From (2.10),

|Υ2a2| ≤
1
2
|ϑ1| + 1 = 2.

Thus,

|a2| ≤
2
|Υ2|

. (2.15)

Squaring and adding Eqs (2.10) and (2.12), we get

1 + Υ2
2a2

2 =
1
8

(
ϑ2

1 + υ
2
1

)
(2.16)

|a2
2| ≤

1
Υ2

2

(
1
8

(
|ϑ2

1| + |υ
2
1|
)
+ 1

)
.
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Using the known inequalities |ϑn| ≤ 2 and |υn| ≤ 2 for all n ≥ 2, we get

|a2|
2 ≤

2
Υ2

2

, (2.17)

|a2| ≤

√
2
Υ2

.

Adding Eqs (2.11) and (2.13), and then by using (2.16) in the resulting equation, we have

1 + 2
[
Υ2

2 − Υ3

]
a2

2 =
1
2

(ϑ2 + υ2) −
1
4

(
ϑ2

1 + υ
2
1

)
,

2
[
Υ2

2 − Υ3

]
a2

2 + 2Υ2
2a2

2 =
1
2

(ϑ2 + υ2) − 3,

a2
2 =

1

2
[
3Υ2

2 − Υ3

] (
1
2

(ϑ2 + υ2) − 3
)
. (2.18)

Applying the triangle inequality to (2.18) and using (2.4),

|a2|
2 ≤

5
2
∣∣∣3Υ2

2 − Υ3

∣∣∣ , (2.19)

|a2| ≤

√
5

2
∣∣∣3Υ2

2 − Υ3

∣∣∣ .
To obtain (2.2), subtracting (2.13) with (2.11), we get

a3 = a2
2 −

(ϑ2 − υ2)
4Υ3

+
1

8Υ3

(
ϑ2

1 − υ
2
1

)
(2.20)

|a3| ≤ |a2|
2 +

(|ϑ2| + |υ2|)
4Υ3

+
1

8Υ3

(
|ϑ2

1| + |υ
2
1|
)

≤ |a2|
2 +

2
Υ3
.

Now, using (2.17) and (2.20) in the above equality, we can obtain the result (2.2). □

3. Sakacugchi-type bi-univalent functions Vm
s (ν, µ;Ξ)

By proposing the family S∗s =
{
φ ∈ S : Re 2ξφ′(ξ)

φ(ξ)−φ(−ξ) > 0, ξ ∈ ∆
}

of starlike functions concerning
symmetric points in 1959, Sakaguchi [35] generalized the family S∗ of starlike functions. In this
section, we will define a class of analytic functions with respect to symmetric points analogous to the
class Ym

ν,µ(Ξ). But such an analogous class requires some deviations in the analytic characterizations
that were used in the Definition 2.1.

Definition 3.1. For ν > −1, µ > 0, m > 0 and Ym
ν,µφ (ξ) defined as in (1.9), we denote the class of

analytic functions φ ∈ A to be in Vm
s (ν, µ;Ξ) if following conditions are satisfied

2ξe
ξ[Ym

ν,µφ(ξ)]′

Ym
ν,µφ(ξ)

e
[
Ym
ν,µφ(ξ) − Ym

ν,µφ(−ξ)
] ≺ Ξ(ξ) = 1 + ξ +

1
5
ξ4, ξ ∈ ∆,
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and

2we
w[Ym

ν,µχ(w)]′

Ym
ν,µχ(w)

e
[
Ym
ν,µχ(w) − Ym

ν,µχ(−w)
] ≺ Ξ(w) = 1 + w +

1
5

w4,w ∈ ∆,

where χ = φ−1 and e = exp(1).

Remark 3.1. Note that apart from replacing the denominator, e
ξ2[Ym

ν,µφ(ξ)]′

Ym
ν,µφ(ξ) in the class Ym

ν,µ(Ξ) has been

replaced with e
ξ[Ym

ν,µφ(ξ)]′

Ym
ν,µφ(ξ) . This adaptation was required to avoid the redundancy.

Theorem 3.1. Let φ ∈ Vm
s (ν, µ;Ξ) and let χ be the inverse of φ given by (1.3), which is

χ(w) = φ−1(w) = w − a2w2 + (2a2
2 − a3)w3 −

(
5a2

2 − 5a2a3 + a4

)
w4 + · · · .

Then,

|a2| ≤ min

 1
|Υ2|

,

√
2∣∣∣Υ3 + Υ

2
2

∣∣∣
 , (3.1)

and

|a3| ≤ min

 1
|Υ3|
+

1
|Υ2|

2 ,
2∣∣∣2Υ3 + Υ

2
2

∣∣∣ + 1
|Υ3|

 , (3.2)

where Υn =
(mµ)n−1 mν

Eν,µ(m)Γ(ν+n) .

Proof. φ ∈ Vm
s (ν, µ;Ξ), and then we have

2ξe
ξ[Ym

ν,µφ(ξ)]′

Ym
ν,µφ(ξ)

e
[
Ym
ν,µφ(ξ) − Ym

ν,µφ(−ξ)
] = ψ [

p(ξ) − 1
p(ξ) + 1

]
, (3.3)

and

2we
w[Ym

ν,µχ(w)]′

Ym
ν,µχ(w)

e
[
Ym
ν,µχ(w) − Ym

ν,µχ(−w)
] = ψ [

q(w) − 1
q(w) + 1

]
, (3.4)

where z and w belong to ∆. Through expansion and simplification, the left-hand side of (3.3) will yield

2ξe
ξ[Ym

ν,µφ(ξ)]′

Ym
ν,µφ(ξ)

e
[
Ym
ν,µφ(ξ) − Ym

ν,µφ(−ξ)
] = 1 + a2Υ2ξ +

1
2

[
2Υ3a3 − Υ

2
2a2

2

]
ξ2

+
1
6

[
a3

2Υ
3
2 − 12a2a3Υ2Υ3 + 18a4Υ4

]
ξ3 + · · · . (3.5)

Equating the coefficients of ξ, ξ2, w, and w2 in (3.5) and (2.5), we have

a2Υ2 =
1
2
ϑ1, (3.6)
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1
2

[
2Υ3a3 − Υ

2
2a2

2

]
=

1
2

(
ϑ2 −

ϑ2
1

2

)
, (3.7)

−a2Υ2 =
1
2
ν1, (3.8)

and
1
2

[
2Υ3(2a2

2 − a3) − Υ2
2a2

2

]
=

1
2

(
ν2 −

ν2
1

2

)
. (3.9)

From (3.6) and (3.8), we have
ϑ1 = −ν1. (3.10)

Squaring and adding (3.6) and (3.8),

2a2
2Υ

2
2 =

1
4

(
ϑ2

1 + ν
2
1

)
. (3.11)

Thus,

a2
2 =

1
8Υ2

2

(
ϑ2

1 + ν
2
1

)
. (3.12)

Adding Eqs (3.7) and (3.9), we have

a2
2

[
2Υ3 − Υ

2
2

]
=

1
2

(ϑ2 + ν2) −
1
4

(
ϑ2

1 + ν
2
1

)
, (3.13)

and then by using (3.11), we have

a2
2 =

(ϑ2 + ν2)

2
[
2Υ3 + Υ

2
2

] . (3.14)

In the light of the known inequalities given in (2.4), (3.14) reduces to the result (3.1). To obtain (3.2),
subtracting (3.9) with (3.7), we get

a3 = a2
2 +

(ϑ2 − ν2)
4Υ3

. (3.15)

Using (3.12) in (3.15), we obtain

a3 =

(
ϑ2

1 + ν
2
1

)
8Υ2

2

+
(ν2 − ϑ2)

4Υ3
. (3.16)

Similarly, applying (3.14) in (3.15), we obtain

a3 =
(ϑ2 + ν2)

2
[
2Υ3 + Υ

2
2

] + (ϑ2 − ν2)
4Υ3

. (3.17)

In view of (3.16) and (3.17), we can obtain the result (3.2) using (2.4).
□
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3.1. Fekete-Szegö problem

Utilizing a2
2 and a3 values, and motivated by Zaprawa’s recent work [33] as given in the below

lemma, we prove the Fekete-Szegö problem for φ ∈ Ym
ν,µ(Ξ) in the following theorem.

Lemma 3.2. [33] Let l1, l2 ∈ R and p1, p2 ∈ C. If |p1|, |p2| < ζ, then,

|(l1 + l2)p1 + (l1 − l2)p2| ≤

{
2|l1|ζ , |l1| ≥ |l2|

2|l2|ζ , |l1| ≤ |l2|

Theorem 3.3. For ℏ ∈ R, and let φ ∈ Ym
ν,µ(Ξ) be of the form (1.1). Then,

∣∣∣a3 − ℏa2
2

∣∣∣ ≤


1
|Υ3 |
, 0 ≤ |ϕ(ℏ, ℘)| ≤ 1

4Υ3
,

4 |ϕ(ℏ, ξ)| , |ϕ(ℏ, ℘)| ≥ 1
4Υ3
.

Proof. It follows from (3.14) and (3.16) that

a3 − ℏa2
2 =

(ϑ2 − ν2)
4Υ3

+ (1 − ℏ) a2
2

=
(ϑ2 − ν2)

4Υ3
+ (1 − ℏ)

(ϑ2 + ν2)

2
[
2Υ3 + Υ

2
2

]
=

 (1 − ℏ)

2
[
2Υ3 + Υ

2
2

] + 1
4Υ3

ϑ2 +

 (1 − ℏ)

2
[
2Υ3 + Υ

2
2

] − 1
4Υ3

 ν2,

where

ϕ(ℏ, ℘) =
(1 − ℏ)

2
[
2Υ3 + Υ

2
2

] .
According to Lemma 3.2, we get

∣∣∣a3 − ℏa2
2

∣∣∣ ≤


1
|Υ3 |
, 0 ≤ |ϕ(ℏ, ℘)| ≤ 1

4Υ3
,

4 |ϕ(ℏ, ξ)| , |ϕ(ℏ, ℘)| ≥ 1
4Υ3
.

□

Fixing ℏ = 1 in Theorem 3.3, we get the following result:

Corollary 3.4. If φ ∈ Ym
ν,µ(Ξ) is of the form (1.1), then,

∣∣∣a3 − a2
2

∣∣∣ ≤ 1
|Υ3|

.
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4. Conclusions

We endeavor to create a fresh category of bi-starlike function classes Ym
ν,µ(Ξ) and Vm

s (ν, µ;Ξ)
subordinating to a three leaf domain, guided by the principles of multiplicative calculus, particularly
multiplicative derivatives. In an effort to enhance the flexibility of our research, we redefine our
innovative function class using the Miller-Ross Poisson distribution. We have obtained the initial
coefficient estimates and Fekete-Szegő inequalities for functions belonging to this novel class. For
different choices of the function parameters involved in the Definitions 2.1 and 3.1, the function
classes Ym

ν,µ(Ξ) and Vm
s (ν, µ;Ξ) reduces to classes having good geometrical implications but do not

reduce to well-known classes like starlike, convex, and spiral-like. So, our main results have a lot of
applications, but here we restricted ourselves to pointing out only a few of them. Moreover, one can
extend the study in the future for new subclasses of bi-univalent functions influenced by multiplicative
calculus, subordinating with different choices of the function Ξ like Gregory coefficients [9], Van der
Pol numbers (VPN) [36], and a Vertical strip domain [37].
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