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1. Introduction

Since the groundbreaking paper [1] by W. Diffie and M. Hellman, the branch of public key
cryptography has greatly developed. A simple idea of using a pair of keys , a private key PrK and
a public key PuK, to produce a common key is nowadays widely applied to encrypt a message.

The general idea of the Diffie-Hellman (DH) key exchange protocol (KEP) uses the notion of a
cyclic group G of order |G| together with two operations: a group operation ∗ and the multiplication by
a scalar, which we denote as gα = g ∗ g ∗ . . . ∗ g, where g ∈ G and α is a scalar chosen from the ring
of integers Z|G|. In the context of DH KEP, the group operation is the multiplication of group elements
and the multiplication by a scalar is the exponentiation. Having agreed on the cyclic group G and its
generator g, two entities of the protocol, generally called Alice and Bob, perform the following actions
to obtain a shared key [1]:

• Alice chooses at random a scalar α ∈ Z|G| and calculates a = gα. Her private key is PrKA = α and
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her public key is PuKA = a.
• Bob chooses at random a scalar β ∈ Z|G| and calculates b = gβ. His private key is PrKB = β and

his public key is PuKB = b.
• Alice and Bob swap their public keys PuKA and PuKB.
• Alice calculates the shared key as bα whereas Bob computes aβ. The result is a shared key

k0 = gαβ.

Note here and elsewhere in this paper that the random choice is uniform in the appropriate set, e.g.,
α and β are independent random variables uniformly distributed in Z|G|.

The security of DH KEP relies on the difficulty of calculating the discrete logarithm of the
public key, say a, base g. The importance of this problem can be seen from the security game—
an interaction between the attacker A and the challenger C, where the goal of A is to gain any
kind of valuable information to predict the outcome of actions performed by the challenger with a
probability significantly different from the coin toss experiment. The following security game is aimed
at distinguishing between the shared key k0 and a random element k1 ∈ G [2]:

Security Game 1. Let the cyclic group G and its generator g be fixed. For the randomly chosen value
of δ ∈ {0, 1}, we define following experiment:

(1) The challenger C generates the private keys of both Alice and Bob, PrKA = α and PrKB = β,
respectively.

(2) C generates public keys a = gα and b = gβ.
(3) If δ = 0, then C calculates the shared key k0 = gαβ.
(4) If δ = 1, then C generates a random value γ and computes k1 = gγ.
(5) The challenger sends the triplet (a, b, kδ) toA.

Relying on the obtained data,A outputs a guess δA. He wins the game if δ = δA.

The presented security game is a basis of the decisional Diffie-Hellman (DDH) assumption, i.e.,
given the public key of Alice and Bob, the attacker A cannot distinguish between their shared key
k0 = gαβ and a random element k1 ∈ G with a probability significantly different from 1

2 .
Security Game 1 can also be generalized to restrict the domain of the secret elements, e.g., by

using polynomials [3]. Furthermore, instead of the standard exponentiation, any conjectured one-way
function (OWF) y = ϕ(x) can be used. Denoting the set of all possible arguments of ϕ by X and the set
of all possible values by Y we obtain the following general form of the DH KEP:

• Alice randomly chooses her private key α ∈ X. Her public key is a = ϕ(α);
• Bob randomly chooses his private key β ∈ X. His public key is b = ϕ(β);
• Using the mathematical properties of the OWF ϕ and a binary operation ∗ defined in X, Alice and

Bob agree on the shared key k0 = ϕ(α ∗ β).

The generalized decisional Diffie-Hellman assumption states that, given the public keys of Alice
and Bob, A cannot distinguish between the shared key k0 = ϕ(α ∗ β) and the imitation key k1 = ϕ(γ),
where γ ∈ X is randomly chosen.

Note that if A can solve the discrete logarithm problem (DLP), i.e., if he can find such a scalar α̂
that gα̂ = a (or, more generally, ϕ(α) = a), then he wins with probability P[δ = δA] = 1, since he can
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simply check if bα̂ = kδ (a similar action can be performed in the general case). For this reason, the
sets X and Y have to be large enough to ensure that the DLP is hard to solve in reasonable time. This
problem is also related to the computational Diffie-Hellman (CDH) assumption, which states that it is
hard forA to calculate the shared key k0 = ϕ(α ∗ β) given public keys a, b ∈ Y of Alice and Bob.

Shortly after DH KEP, another widely used idea was introduced by R. Rivest, A. Shamir, and L.
Adleman in [4]. The security of their proposal is based on the integer factorization problem (IFP), i.e.,
finding the prime factors p, q of a composite integer n = pq.

However, in his paper [5], P. Shor has shown that both DLP and IFP can be solved in polynomial
time using quantum computers. Therefore, due to constant developments in this area, we are on the
verge of extinction of cryptosystems based on these problems, meaning that the days of DH KEP
and RSA are numbered. The thread is so serious that in 2016 the National Institute of Standards and
Technology (NIST) announced a call for proposals of quantum-safe cryptographic schemes for their
future standardization [6]. As of 2022, three digital signature algorithms and one public-key encryption
algorithm have been selected as finalists [7]. Three out of four of these algorithms are based on hard
mathematical problems in lattices whereas the SPHINCS+ is based on the security of hash functions.
Furthermore, the development of quantum-safe algorithms continues [8].

One of the cryptographic primitives developed in the early days of quantum-secure algorithm
research was presented by a group of Korean researchers in [9]. The authors used a conjugation relation
in the so-called braid group as a basis of their KEP. This is one of the first examples of a KEP based
on a conjugation search problem (CSP) defined in a non-commuting group. Interestingly enough, the
conjugation relation resembles exponentiation in the following way: if x and y are two commuting
elements of a non-commuting group G and g ∈ G is random, then

xywy−1x−1 = yxwx−1y−1 = (xy)w(xy)−1.

In fact, we have just presented the expression for the shared key k0 of the Ko-Lee KEP. Moreover,
we have the private keys PrKA = x, PrKB = y and the public keys can be written as PuKA = gx and
PuKB = gy, where we use the notation gx = xgx−1. Therefore, k0 = gxy and we can adapt the Security
Game 1 to fit the Ko-Lee protocol with minor changes:

Security Game 2. Let the non-commuting group G, its commuting subgroup H, and an element g ∈
G \ H be fixed. For the randomly chosen value of δ ∈ {0, 1}, we define following experiment:

(1) The challenger C generates the private keys of both Alice and Bob, x ∈ H and y ∈ H, respectively.
(2) C generates public keys a = gx and b = gy.
(3) If δ = 0, then C calculates the shared key k0 = gxy.
(4) If δ = 1, then C generates a random value z ∈ H and computes the imitation key k1 = gz.
(5) The challenger sends the triplet (a, b, kδ) toA.

Relying on the obtained data,A outputs a guess δA. He wins the game if δ = δA.

Unfortunately, this proposal suffered a failure due to the result by V. Shpilrain, who showed in [10]
that CSP is unnecessary and insufficient to ensure the security of Ko-Lee protocol. In fact, CSP can be
replaced by a double coset problem, i.e. the attacker A can swap the private key PrKA = x for a pair
(x1, x2) such that x1, x2 ∈ H and a = x1gx2, and win Security Game 2 by finding this pair rather than
the original key.
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Since 2007, E. Sakalauskas together with coauthors has been developing cryptographic primitives
using non-commuting algebraic structures. Recent work in this field is devoted to the study of one
particular highly non-linear mapping called the matrix power function (MPF). This mapping was first
introduced by E. Sakalauskas in [11]. During these years, we demonstrated various applications of
MPF in symmetric and asymmetric cryptography. However, early protocols presented in [11] and [12]
were broken using methods of linear algebra in [13]. Though in papers [14] and [15], we were able to
fix the flaws found by the authors of [13], and recently we turned our attention to sampling the base
matrix entries from non-commuting groups.

In our recent papers, we have presented a KEP [16] and the sigma identification protocol [17] based
on MPF defined over the non-commuting modular group generally denoted by M2t . Our previous
results have shown some promise that the proposed cryptographic primitives might be quantum-
safe [16]. In this paper, we aim to formalize the previously presented results by adapting Security
Game 1 to fit our proposal. Furthermore, we present the theoretical results on the distribution of the
public key entries. We also back up these results by statistical research which demonstrates that the
attackerA cannot distinguish the shared key from an imitation key.

2. Mathematical background

Let us recall definitions of the MPF mapping and the family of non-commuting groups we use in
this paper.

Formally, MPF is a mapping acting on matrices in a way similar to classic matrix multiplication.
However, instead of addition and multiplication operations defined for group elements, similarly to
DH KEP, we use a group operation along with multiplication by a scalar. This way, we can randomly
sample the entries of the base matrix from a multiplicative group G without a need to define another
group operation other than the one defined already. We call G a platform group. We also denote the
set of m × m matrices with entries from G by Gm×m.

The multiplication by a scalar operation is defined exactly as DH KEP suggests, i.e., for any element
g ∈ G and a scalar α, we define gα = g ∗ g ∗ . . . ∗ g, i.e., g is multiplied by itself α times. As in the case
of DH KEP, the scalars are randomly chosen from the ring of integers Z|G|. We refer to it as a power
ring.

Using these operations, we can define one-sided MPFs as well as the two-sided MPF as follows [11]:

Definition 1. Let W ∈ Gm×m and X ∈ Zm×m
|G| . The left-sided MPF is an action LMPF(X,W) : Zm×m

|G| ×

Gm×m → Gm×m denoted as
XW = EL, (2.1)

where the entries of LMPF value matrix EL are calculated as follows:

(eL)i j =

m∏
k=1

wxik
k j .

Definition 2. Let W ∈ Gm×m and Y ∈ Zm×m
|G| . The right-sided MPF is an action RMPF(W,Y) :

Gm×m × Zm×m
|G| → G

m×m denoted as
WY = ER, (2.2)
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where the entries of MPF value matrix ER are calculated as follows:

(eR)i j =

m∏
k=1

wyk j

ik .

Definition 3. Let W ∈ Gm×m and X,Y ∈ Zm×m
|G| . The two-sided MPF is an action MPF(X,W,Y) :

Zm×m
|G| × G

m×m × Zm×m
|G| → G

m×m denoted as

XWY = E, (2.3)

where the entries of MPF value matrix E are calculated as follows:

ei j =

m∏
k=1

m∏
l=1

wxikyl j

kl .

It has been previously shown in [11] that for a commuting platform group G, the two-sided MPF
can be defined in terms of one-sided MPFs due to the associativity property, i.e.,(

XW
)Y

= X
(
WY

)
= XWY. (2.4)

However, if G is non-commuting, then in general Eq (2.4), does not hold. This is one of the
key features of the MPF mapping which we use in our research to inflict restrictions on the public
parameters of our KEP.

We also emphasize the importance of the two operations used in the definition of MPF as opposed to
the classic matrix multiplication, i.e., one group operation and a multiplication by a scalar as opposed to
two group operations. This fact was previously misinterpreted by M. Durcheva in her paper [18]. She
used a tropical group as a platform. However, she also used the same ring R to define both the tropical
semiring 〈R,min,+〉 and the semiring of scalars, i.e., entries of power matrices are in R. Therefore,
she essentially used two group operations of 〈R,+, ·〉 to define her version of MPFs, since ‘+’ comes
from the tropical semiring as a “multiplication” action and the ‘·’ comes from ‘exponentiation’ by a
scalar from R (see the toy example in [18]). This choice of operations turns her mappings into simple
matrix multiplications rather than MPFs in a sense presented here. Due to the simplicity of operations
used in [18], it took less than a year to break her proposal [19]. However, one could use, for example
elliptic curves with multiplication by a scalar to define an MPF mapping. Interestingly enough, the
above definitions would exactly match the classic matrix multiplication in notation, but would still
be considered MPFs due to a group operation of elliptic curves (addition), and the multiplication by
a scalar. While extra research might be needed, we think that the security of a KEP based on MPF
defined over elliptic curves leaves much to be desired since it is similar to the schemes presented
in [11] and [12]. Therefore, linear algebra can be used to compromise the scheme due to the existence
of the discrete logarithm mapping in elliptic curves.

Let us also consider another example, namely a group of invertible integers modulo n =

pk1
1 pk2

2 . . . pkr
r denoted as Z∗n. Notably, the group Z∗n is not cyclic and hence it may seem that defining a

discrete logarithm mapping is not possible. However, all of the groups Z∗
p

k j
j

, where j = 1, 2, . . . r are

cyclic and hence the Chinese remainder theorem can be used to define an analog of a discrete logarithm
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mapping by considering a Cartesian product Z∗
pk1

1

×Z∗
pk2

2

× . . .×Z∗
pkr

r
which is isomorphic to the original

group. Therefore, for any element w ∈ Z∗n, we can define a mapping dlogg1,g2,...,gr
(w) as follows:

dlogg1,g2,...,gr
(w) =

(
dlogg1

(w mod pk1
1 ), dlogg2

(w mod pk2
2 ), . . . , dloggr

(w mod pkr
r )

)
, (2.5)

where g j generates the group Z∗
p

k j
j

. This mapping along with several facts from number theory and

linear algebra can be used to break the MPF-based schemes if Z∗n is used as a platform group.
To prevent applications of these attacks to our new schemes, we use non-commuting platform

groups to define MPFs. Currently our attention has turned to the family of modular cyclic groups
denoted byM2t and defined in the following way (e is the identity of this group) [20]:

M2t = 〈a, b|a2t−1
= e, b2 = e, ab = ba2t−2+1〉. (2.6)

We can see from the presented definition that the generators a and b do not commute. Furthermore,
the groupM2t contains exactly 2t elements and the maximal multiplicative order is 2t−1. Therefore, the
multiplication by a scalar operation uses integers from Z2t−1 .

Despite the word ‘cyclic’ in its name, there is no single element that would generate the whole
group as opposed to, for example the ring of integers Zp, where p is a prime number. Moreover, due to
results presented in [21–23], these groups cannot be split into a product of two or more cyclic groups.
Hence no mapping analog of the discrete logarithm can be defined in the considered family of groups
as opposed to the examples presented above.

However, in order to define a working scheme, we make use of the following two cyclic subgroups
of maximal multiplicative order:

〈a〉 = {e, a, a2, . . . , a2t−1−1}, (2.7)

〈ba〉 = {e, ba, (ba)2, . . . , (ba)2t−1−1}. (2.8)

Note that the elements from distinct subgroups in general do not commute. However, they both
share even powers of a, which make up a half of the elements in each subgroup.

In the next section, we present the key exchange protocol previously presented in [16]. We slightly
modify the previous version of our protocol to make the proof of validity more clear. Furthermore, the
natural restrictions on the public power matrices are modified to be more convenient to work with.

3. Key exchange protocol

We assume that Alice and Bob have agreed on a platform groupM2t . The base matrix W is chosen
at random to fit the following form:

Template 1. Choose the base matrix W so that

W =



ba2ω11+1 aω12 · · · bα1ca2ω1c+α1c · · · ba2ω1m+1

a2ω21 aω22 · · · bα2ca2ω2c+α2c · · · a2ω2m

· · · · · · · · · · · · · · · · · ·

a2ωi1 aωi2 · · · bαica2ωic+αic · · · a2ωim

· · · · · · · · · · · · · · · · · ·

a2ω(m−1)1 · · · · · · · · · · · · a2ω(m−1)m

ba2ωm1+1 aωm2 · · · bαmca2ωmc+αmc · · · ba2ωmm+1


. (3.1)
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We can see that each column of matrix W consists of commuting entries chosen from one of two
cyclic subgroups 〈a〉 or 〈ba〉 defined above. However, in general, the entries of matrix W do not
commute. Also note that we fixed the parity of powers of generators a and b in the first and last
columns. We use this fact to choose an appropriate template for the left power matrices.

Template 2. Choose matrix X in Eq (2.1) so that

∀i = 1, 2, . . . ,m : xi1 + xim ≡ 0 mod 2. (3.2)

We also use the c-th column to define a template for right power matrices.

Template 3. Choose matrix Y in Eq (2.2) so that

∀ j = 1, 2, . . .m : yc j ≡ 0 mod 2. (3.3)

Note that due to Template 2, by left exponentiating by X we obtain an intermediate matrix XW
with its entries aside from those in the c-th column distributed in the cyclic subgroup 〈a〉, whereas the
entries of the c-th column are distributed in 〈ba〉. In other words, left exponentiation is performed with
commuting entries. Also note that due to Template 3, during right exponentiation by Y, we deal with
commuting entries as well, since for any value of αic, we have (bαica2ωic+αic)yc j ∈ 〈a〉.

An important fact to note is that we perform actions with commuting entries as long as we choose
power matrices X and Y according to the defined templates and perform exponentiations by X and Y
in that particular order.

Obviously, power matrices, satisfying either of the defined templates, are singular modulo 2 and
hence non-invertible modulo 2t. Proof of this fact is trivial and follows directly from the basic
properties of the determinant and modular arithmetic.

Let us now assume that Alice and Bob desire to agree on a common key. Publicly known parameters
are the following:

• square base m × m matrix W defined overM2t and satisfying Template 1;
• square power m×m matrices L and R defined over Z2t−1 satisfying Templates 2 and 3 respectively.

Alice performs the following actions to generate private and public data:

(1) She chooses at random a vector of 2m coefficients α = (α11, α12, . . ., α1m, α21, α22, . . ., α2m) and
uses it to calculate two matrices as polynomials of L and R, respectively:

X = α11L + α12L2 + . . . + α1mLm,

Y = α21R + α22R2 + . . . + α2mRm.

(2) She then uses the obtained values of X and Y to calculate matrix A =
(

XW
)Y

.

Upon completing these steps, Alice acquires her protocol data: private key PrKA = α and her
public session parameter PuKA = A. Alternatively, the pair (X,Y) can be kept as a private key for
faster execution. As usual, Alice sends her public session parameter to Bob.

Bob performs actions similar to Alice’s to obtain his data:
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(1) He chooses at random a vector β = (β11, β12, . . ., β2m) and uses it to calculate two matrices as
polynomials of L and R, respectively:

U = β11L + β12L2 + . . . + β1mLm,

V = β21R + β22R2 + . . . + β2mRm.

(2) He uses the obtained values of U and V to calculate matrix B =
(

UW
)V

.

Bob now has his private key PrKB = β and his public session parameter PuKB = B, which is sent
to Alice.

Alice can use Bob’s public session parameter to obtain the following result:

KA =
(

XB
)Y
. (3.4)

Similarly, Bob can use Alice’s public session parameter to obtain a matrix

KB =
(

UA
)V
. (3.5)

Since Alice and Bob have two pairs of commuting matrices, i.e.,

XU = UX,
YV = VY,

they have agreed on a common key K = KA = KB.
The proof of validity of the presented protocol relies on the fact that exponentiations are performed

with commuting entries. First, due to Template 2 and since UX = XU, we have

U
((

XW
)Y

)
= X

((
UW

)Y
)
, (3.6)

for any matrix Y satisfying Template 3. Second, since VY = YV and V satisfies Template 3 as well,
we have

U
((

XW
)Y

)V
= X

((
UW

)V
)Y
. (3.7)

In fact, since the public keys of both parties A and B consist of commuting entries, the parentheses
in both Eqs (3.4) and (3.5) can be dropped, i.e., when calculating the shared key KA = KB, the order
of actions does not matter. This fact, together the with commutation constraint on the right power
matrices allows us to perform a switch of Y and V in Eq (3.7).

Note, however, that the proof of validity of our protocol heavily relies on the specified templates. In
other words, if these template are neglected, Alice and Bob cannot agree on a shared key due to non-
commutativity of the platform group M2t . Moreover, we cannot generalize our protocol as presented
in [12] since none of the invertible matrices satisfy Templates 2 or 3. Hence any malicious adversary
is limited in his search for private keys by singular matrices only. Note that the use of the invertible
matrices in [12] was one of the key issues which allowed the authors of [13] to break the protocol.

The protocol is also easy to practically implement, since it uses rather simple multiplication and
exponentiation operations inM2t and addition and multiplication operations in Z2t−1 . Note that actions
in M2t are similar to classical ones and hence the squaring technique to compute the power of an
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element can be applied. Furthermore, polynomials are calculated using operations in Z2t−1 and hence
all the classic techniques can be applied to speed up the computation process. Therefore, the main
time-consuming operation is the MPF calculation. However, its structure is similar to regular matrix
multiplication and, hence, it can be performed in O(m3). Also, the powers of matrices L and R can
be calculated once and stored in the memory of the device. Otherwise, the computational costs are
bounded by O(m4).

In this paper, we present the basic version of the key exchange protocol inspired by the classic Diffie-
Hellman and RSA algorithms. Just as those ideas are, our proposal is anonymous and hence it cannot
offer protection against man-in-the-middle attack. This can be fixed by including the identification step
in our algorithm. However, we do not consider this feature here.

4. Security analysis of our KEP

4.1. Uniform distribution of the public key matrix entries

Let us now consider the security of our KEP. First, we show that the following proposition holds:

Proposition 1. Assume that matrices W, L, and R satisfy Templates 1–3, respectively, and are fixed.
Let α be the vector of 2m coefficients uniformly sampled from Z2m

2t−1 . Then any entry of the public key
matrix A is uniformly distributed in 〈a〉.

To prove this claim, we need the following lemma:

Lemma 1. Define the bilinear form s(n) =
∑n

i=1
∑n

j=1 λi jxiy j = xTΛy, where λi j ∈ Z2 are uniformly
chosen at random, and xi, y j ∈ Z2 are uniformly distributed random variables. Assume that rankΛ = r.
The limit lim

n→+∞
r→n

P[s(n) = s0] = 1
2 , where s0 ∈ Z2 is a fixed value.

Proof. Let us first consider the simplest possible case when the coefficient matrix Λ is the identity
matrix. In this case, the bilinear form s(n) has the following representation:

s(n) =

n∑
i=1

xiyi. (4.1)

The following is true if n = 1:

P[s(1) = 0] = P[x1y1 = 0] = 3
4 = 1

2 + 1
22 ,

P[s(1) = 1] = P[x1y1 = 1] = 1
4 = 1

2 −
1
22 .

Let us define the deviation term:

σ(n) =
P[s(n) = 0] − P[s(n) = 1]

2
.

We can see that the deviation term σ(1) = 1
22 = 1

21+1 .
We now calculate the next iteration, i.e., for n = 2, we have

P[s(2) = 0] = 5
8 = 1

2 + 1
23 ,

P[s(2) = 1] = 3
8 = 1

2 −
1
23 .
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Hence the deviation term is σ(2) = 1
23 = 1

22+1 .
Now we apply mathematical induction on n. Hence, for n = k, we have

P[s(k) = 0] = 1
2 + 1

2k+1 ,

P[s(k) = 1] = 1
2 −

1
2k+1 .

Then due to the following obvious identity

P[s(k + 1) = s0] = P[s(1) = 0] · P[s(k) = s0] + P[s(1) = 1] · P[s(k) = s0 − 1],

we have
P[s(k + 1) = 0] = (1

2 + 1
2k+1 ) · 3

4 + ( 1
2 −

1
2k+1 ) · 1

4 = 1
2 + 1

2k+2 ,

P[s(k + 1) = 1] = (1
2 + 1

2k+1 ) · 1
4 + ( 1

2 −
1

2k+1 ) · 3
4 = 1

2 −
1

2k+2 ,

and hence we obtain the deviation term σ(k + 1) = 1
2(k+1)+1 , thus proving the general expressions for

probabilities P[s(n) = 0] and P[s(n) = 1].
Since the identity matrix has full rank, by calculating the limit when n tends to positive infinity we

get

lim
n→+∞

P[s(n) = s0] = lim
n→+∞

(
1
2
±

1
2n+1

)
=

1
2
.

More generally, let us now assume that the matrix Λ has full rank. Then the linear operator Λ maps
the basis of Zn

2 to another basis. However, by denoting z = Λy, we essentially obtain Eq (4.1) in
another set of bases since the linear operator Λ is a one-to-one mapping. Hence the proven expressions
for probabilities P[s(n) = 0] and P[s(n) = 1] also hold for this case as well.

Now assume that the coefficient matrix Λ has a rank r = rankΛ < n. Then by calculating Λe j = f j,
where e1, e2, . . . , en is the standard basis of Zn

2, we obtain a system of r linearly independent vectors and
using the same technique as before for the r× r minor of matrix Λ, we obtain the following expressions
for the considered probabilities:

P[s(n) = 0] = 1
2 + 1

2r+1 ,

P[s(n) = 1] = 1
2 −

1
2r+1 .

Clearly, taking the limits of both probabilities proves the lemma, since lim
n→+∞

r→n

P[s(n) = 0] = 1
2 and

lim
n→+∞

r→n

P[s(n) = 1] = 1
2 . �

Note, that in the presented proof both, parameters n and r play their important roles in order to
achieve the uniform distribution. For example, if we set λi j = 1 for all i, j = 1, 2, . . . , n, we obtain a
matrix Λ with rank r = 1. Then we have P[s(n) = 0] = 3

4 and P[s(n) = 1] = 1
4 regardless of the choice

of n. In other words, if r does not tend to n, even if n tends to positive infinity, the null space may be
large enough to gobble up most of the pairs (x, y).

Interestingly enough, in our setup the null space of the coefficient matrix Λ is non-trivial and hence
r < n. However, since the public matrices L and R are generated at random to fit the presented
templates, we can keep the dimension of the null space relatively small as needed.

This lemma can also be generalized to any power of 2. To shorten the paper, we do not present the
full proof of the lemma but rather settle for the sketch of the proof of the following fact:
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Lemma 2. Define the bilinear form s(n) =
∑n

i=1
∑n

j=1 λi jxiy j = xTΛy, where λi j ∈ Z2t are uniformly
chosen at random, and xi, y j ∈ Z2t are uniformly distributed random variables. Let Λ2 = Λ mod 2 and
assume that in Zn×n

2 , we have rankΛ2 = r. The limit lim
n→+∞

r→n

P[s(n) = s0] = 1
2t , where s0 ∈ Z2t is a fixed

value.

Sketch of proof. We start by dividing the elements of Z2t into t + 1 disjoint sets of the form Sh ={
k · 2h|k = 1, 3, . . . , 2t−h − 1

}
, where h = 0, 1, . . . , t − 1. Also set St = {0}. Each element of Sh is equally

likely and for any two indices h1 < h2, the elements of Sh1 are less probable than the elements of Sh2 .
We also define the deviation term as follows:

σ(t, n) =
P[s(n) = 0] − P[s(n) = 2t−1]

2
.

Now we perform an iterative process by reducing matrix Λ modulo 2 and calculating probabilities
P[s(n) = s0] for Λ2 = Λ mod 2 in Z2. Then we consider matrices Λ4 = Λ mod 4, Λ8 = Λ mod 8,
and so on until we reach Λ. We calculate probabilities P[s(n) = s0] for all iterations in the appropriate
rings. Then due to the identity:

P[s(k + 1) = s0] =

2t−1∑
j=0

P[s(1) = j]P[s(k) = s0 − j],

which holds for all k = 2, . . . n we obtain the following expressions for probabilities:

P[s(n) = 0] = 1
2t +

∑t−1
j=0

(
1

2t− j · σ( j + 1, n)
)
,

P[s(n) = sh] = 1
2t +

[∑h−1
j=0

(
1

2t− j · σ( j + 1, n)
)]
− 1

2t−h · σ(h + 1, n).

Note that while σ(t, n) do vary depending on the generated coefficient matrix Λ, all of these deviations
are functions of n and the limit lim

n→+∞

σ(t1,n)
σ(t2,n) = 0, if t1 < t2. Therefore, we have lim

n→+∞
r→n

P[s(n) = s0] = 1
2t

for every s0 ∈ Z2t as desired. �

Through experiments, we found that the deviation term can vary even when the rank r = rankΛ2 is
fixed at some value smaller than n. Moreover, even when we consider the case of 2t = 4 and express
Λ = 2Γ + Λ2, where Γ is a binary matrix, the deviation term varies regardless of the rank of Γ in Z2.
However, the deviation term only has a few possibilities and they all differ by some constant factor.
For these reasons, the expressions of the probabilities are presented in terms of deviations. Also, no
other ranks, e.g., rankΓ, were used to define the goal limit. Notably, these remarks do not change the
correctness of the lemma since the main summand in all the expressions is 1

2t , which is independent of
both n and r.

Using these lemmas, we prove Proposition 1.

Proof of Proposition 1. Due to the polynomial structure of the private key matrices X and Y, the
expression of the public key matrix A can be rewritten as follows:

A =
(

XW
)Y

=

((∑m
k=1 α1kLk

)
W

)(∑m
j=l α2lRl

)
. (4.2)
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Then by expanding Eq (4.2) and focusing on the powers of generator a, we obtain the following result:

a′i j = αT
1Λα2 + 2t−2γi j, (4.3)

where a′i j = dloga ai j is a discrete logarithm of matrix A entry ai j, α1 and α2 are two private vectors
of coefficients to generate key matrices X and Y, respectively, Λ is a matrix obtained from Eq (4.2)

by calculating dloga

( (
LkW

)Rl )
for all possible pairs (k, l), and γi j ∈ Z2 takes into account the non-

commutativity of the platform groupM2t .
However, we can now apply Lemma 2 to the bilinear form αT

1Λα2 in Eq (4.3) to show that its value
is uniformly distributed in Z2t−1 . The term 2t−2γi j in no way affects this result, since Z2t−1 is a group
under addition. �

This, of course, means that due to Lemma 2, the uniform distribution is asymptotic. For this reason,
in Section 6, we perform the statistical analysis of the presented KEP to find the minimal value of m
for which the distribution of the entries of the public key matrix is indistinguishable from the uniform
distribution. We aim to show the validity of the decisional assumption for our proposal analogues to
the one defined for DH KEP.

4.2. The security game for the presented KEP

Due to the proven theoretical result, we can see that the distribution of every individual entry of the
public key matrix is asymptotically uniform in the set 〈a〉 and the deviation from the desired distribution
is negligible for a sufficiently large m, which, for now, is yet to be determined. Relying on this result,
we define the following security game between the attackerA and the challenger C:

Security Game 3. Let the platform group-defining parameter t and the matrix order m be fixed. Also,
let W,L, and R be the public parameters, satisfying Templates 1–3 respectively. For the randomly
chosen value of δ ∈ {0, 1}, we define the following experiment:

(1) The challenger C generates the private keys of both Alice and Bob as vectors α and β of size 2m
and calculates matrices X,Y,U and V as polynomials of L and R.

(2) C calculates the public keys A =
(

XW
)Y

and B =
(

UW
)V

of Alice and Bob, respectively.

(3) If δ = 0, C calculates the matrix K0 =
(

XB
)Y

, which is the shared key.
(4) If δ = 1, C generates a vector γ = (γ11, . . . , γ1m, γ21, . . . γ2m) and calculates matrices Z1,Z2, and

K1 as follows:
Z1 = γ11L + γ12L2 + . . . + γ1mLm;
Z2 = γ21R + γ22R2 + . . . + γ2mRm;

K1 =
(

Z1W
)Z2

.

(5) C sends the triplet (A,B,Kδ) to the attackerA.

Relying on the received dataA outputs a value δA. He wins the game if δA = δ.

The defined security game is inspired by the so-called Diffie-Hellman decisional problem presented
in [2] in the form of the Attack Game 10.6. Essentially the presented security game means that
A cannot distinguish between the shared key K0 and a randomly generated matrix K1. This is
the decisional assumption of our proposal and due to the closure of Templates 2 and 3 under
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exponentiation, it also resembles the generalized decisional Diffie-Hellman assumption presented
in [3], where sets of polynomials are used to restrain the domain of the arguments. However, the
basic concept of the game is the same: to distinguish between the shared key and the imitation one.

From the statistical point of view, this means that the entries of both matrices K0 and K1 have
the same distribution. However, due to Proposition 1 and Lemma 2, this is exactly the case for our
protocol.

Due to the classic result (see [2]), the decisional assumption also implies the following result:

Proposition 2. Let the platform group-defining parameter t and the matrix order m be fixed. Also, let
W,L and R be the public parameters, satisfying Templates 1–3 respectively. Given Alice’s and Bob’s
public keys A =

(
XW

)Y
and B =

(
UW

)V
, respectively, it is hard to compute the shared key K =

(
XB

)Y
.

The latter proposition is the computational assumption for our proposal.
Algebraically A may try to obtain the private key matrices (or, alternatively, coefficients of

polynomials) of one of the parties, say Alice. To put it simpler, his goal is to solve the following
system of matrix equations: 

A =
(

XW
)Y
,

XL = LX,
YR = RY.

(4.4)

Moreover, the solution pair (X,Y) has to satisfy Templates 2 and 3, respectively, since otherwise
the protocol falls apart due to the properties of the platform groupM2t . Problem (4.4) is the analog of
DLP for our proposal.

Evidently, the polynomial construction of private matrices X and Y ensures that the last two
equations in system (4.4) are satisfied. However, sinceM2t cannot be decomposed into smaller groups
and since we use elements from both cyclic subgroups 〈a〉 and 〈ba〉 to define the base matrix W, the
discrete logarithm mapping is not applicable to the MPF equation of system (4.4). Furthermore, the
non-commutativity ofM2t presents an additional obstacle for solving the above system directly. Hence,
we present two approaches the attacker can use to solve system (4.4) indirectly.

First, let us consider the linearization technique. Since the MPF equation in system (4.4) uses a
power of 2 as a modulo, the simplest task is trying to solve a sub-problem of system (4.4) defined in
Z2. To do so,A defines a mapping ϕ as follows:

ϕ : M2t 7→ Z2 : ϕ(bαaω) = ω mod 2,

i.e., ϕ is essentially the parity mapping, which completely ignores the generator b. A also defines Φ

as the matrix analog of ϕ by entry-wise application of ϕ to W. Then by denoting X2 = X mod 2 and
Y2 = Y mod 2,A transforms the first equation in the system (4.4) to the following form:

X2Φ(W)Y2 = Φ(A).

Expanding X2 and Y2 as polynomials of L2 = L mod 2 and R2 = R mod 2, the attacker obtains(
α11L2 + α12L2

2 + . . . + α1mLm
2

)
· Φ(W) ·

(
α21R2 + α22R2

2 + . . . + α2mRm
2

)
= Φ(A). (4.5)

A now introduces m2 variables of the form γk = α1iα2 j and hence obtains a system of linear
equations (SLE) with respect to the defined γ’s. However, all the matrices in Eq (4.5) are singular,
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and hence the obtained m2 ×m2 system is underdefined and produces a set of solutions much too large
to perform a total scan. Experimental results for the platform groupM16 have shown that the maximum
rank of the obtained SLE is (m − 1)2, i.e., at least (2m + 1) variables are free [24]. Furthermore, for
randomly chosen matrices L2,R2, and Φ(W), the maximum rank of SLE is a rare event obtained
roughly 6% of the time. Hence the probability of determining α’s from γ’s is at most 1

22m+1 . This makes
the linearization technique inefficient for the sub-problem defined by Eq (4.5) and hence for the initial
problem defined by system (4.4) as well if the public parameters are appropriately chosen. However,
this choice can be studied separately since it may be performed once and can be fixed afterward.

Another approach may involve a faithful representation of the elements of M2t as matrices. This
technique was previously used to break protocols constructed using braid groups. In our case, the
faithful representation of M2t exists and we denote it by R(bαaω). For t = 4, it can be found
in [25]. However, as mentioned previously, MPF itself is defined in terms of a group operation and
a multiplication by a scalar. Therefore, the latter action (exponentiation in our case) is applied to the
element regardless of its representation. Assume that A uses R() to the elements of M2t to view them
as matrices. He then obtains a tensor W′ = R(W), where w′i j = R(wi j) are matrices of the appropriate
order. However, the faithful representation does not affect the scalars contained in the power matrices
and hence the public key is computed as follows:

R(A) =
(

XW′
)Y
,

i.e., despite commuting entries of R(wi j), the non-commutativity of M2t is preserved since otherwise
the representation would not be faithful. However, the exponentiation is still applied to matrices R(wi j)
rather than its individual entries, i.e., we have

R(ai j) =

m∏
k=1

m∏
l=1

(
w′i j

)xikyl j
.

We now see thatA gains nothing by using this approach.
For now we limit ourselves to the discussed approaches leaving other possible ways (which may or

may not be found) to recover the private key of the user for future work.
Let us, however, mention the following fact: the discrete logarithm mapping can be applied to the

expression
(

XB
)Y

and to matrices K0 or K1, whichever one is given. This is due to the loss of the non-
commutativity factor by that point. However, the methods of search for the private key matrices are
similar to the ones given above since Templates 2 and 3 cannot be ignored. Future work may involve
an exploration of the question of whether it is possible to maintain the non-commutativity ofM2t while
also establishing a shared key.

5. Comparison of our proposal to other schemes

As mentioned previously, our proposal is inspired by the DH KEP and RSA algorithms. However,
as opposed to those classic protocols, the security of our proposal relies on a problem related to
multivariate quadratic (MQ) equations. It has been previously shown in [26] that the MQ problem
is hard to solve using Grobner bases if there are more than 80 equations and variables. Furthermore,
schemes like [27, 28] also use multivariate quadratic equations defined in some field. Despite the

AIMS Mathematics Volume 9, Issue 10, 26961–26982.



26975

fact that, in our case, there are no linear terms in the MQ problem we think that the security of our
proposal could be close to those schemes since the non-commutativity of the platform groupM2t brings
an additional randomness factor into the obtained multivariate system of equations. However, more
investigations may be needed to approve or disapprove our claim.

6. Statistical analysis of the proposed KEP

In this section, we perform the statistical experiments to support the theoretic results presented
above. Due to the asymptotic nature of the uniform distribution, here we aim to explore the dependence
of the considered distribution on the public parameters m and t. To put it simply, since all of the results
regarding the uniform distribution of entries were proven using limits, we explore how fast we can
actually obtain a distribution statistically indistinguishable from the uniform. Furthermore, we perform
a two-sample chi-squared test for the obtained samples to show that K0 and K1 are computationally
indistinguishable to establish the validity of the decisional assumption defined by Security Game 3.

We consider the public parameters of the system: the group-defining parameter t and the matrix
size m. For every fixed value of t, our goal is to find the minimum value of m such that for all the
performed statistical tests, the appropriate null hypothesis would not be rejected at the 0.95 confidence
level. We execute a simulation of Security Game 3 by repeating the described experiment n times with
an exception of performing both steps 3 and 4 regardless of the value of δ. Hence we perform a total of
n iterations and obtain two samples for the true shared key K0 and the imitation key K1. For a specific
value of m, the base matrix W is kept constant throughout all the iterations. In this paper, we set the
standard value for the parameter n as 200 although a larger value could be used as well. During each
iteration, we append the frequencies of each element in two different arrays: the first array is appended
based on generator a values and the second array is based on the matrix coordinates and the generator a
value. In other words, in the first array, we consider the distribution of the matrix entries in 〈a〉 ignoring
their position. In the second array, we consider the distribution of a specific matrix entry. Both of these
approaches are important since the attacker may consider individual positions of the key matrix as well
as the matrix as a whole. Therefore, it is also important to ensure that each individual entry of the key
matrix follows the uniform distribution.

We use Pearson chi-squared (Chi-Sq.) goodness of fit to test the obtained sample for uniform
distribution. To compare the shared key and the imitation key samples, we use the two-sample chi-
squared test. Also, we inspect the data visually. For better visual comparison (especially when
the parameter t grows), we present the graphical data using polygonal chains. That way it is more
convenient to view the results for both samples in a single graph.

Let us denote by KEP(m, t, n) the considered algorithm with parameters m, t and n. As an example,
let us present the distribution of the shared key and imitation key matrix entries after performing
KEP(8, 4, 200).

The presented information in Figure 1 and all of the subsequent figures should be interpreted as
follows: for each element of the form ak, we obtain the relative frequency of that element in the shared
key K0 and the imitation key K1 ignoring its position. let us denote these frequencies by freqK0

(k) and
freqK1

(k), respectively. We plot the points (k, freqK0
(k)) in blue and (k, freqK1

(k)) in red and for better
visual interpretation (especially for larger values of t), we connect these points using line segments.
Ideally we should obtain a perfect straight line parallel to the x-axis if the distribution of elements of
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M2t is uniform and the relative frequency should equal 21−t.
We can see from Figure 1 that even powers of the generator a dominate the odd ones. This coincides

with the theoretical proof presented in the previous section, i.e., the asymptotic nature of the uniform
distribution is clearly visible. Hence the matrix size m = 8 is too small if the case of platform group
M16 (note that t = 4). For similar-looking graphs, we do not consider individual position distributions,
since the overall distribution is far from uniform. Note also that even for the imitation key K1, the
distribution is not too close to being uniform.

Figure 1. Statistical analysis for KEP(8, 4, 200).

Let us now explore the asymptotic nature of the uniform distribution. We fix the parameter t = 4
and increase the matrix size. Several obtained graphs are displayed in Figure 2.

(a) KEP(10, 4, 200). (b) KEP(12, 4, 200).

(c) KEP(14, 4, 200). (d) KEP(16, 4, 200).

Figure 2. Statistical analysis for uniformity of shared (blue) and imitation (red) keys.

AIMS Mathematics Volume 9, Issue 10, 26961–26982.



26977

We can clearly see from Figure 2 that the pattern exists by looking at the presented frequencies: the
previously observed parity effect diminishes when the parameter m increases, which coincides with the
results of Section 4.2. However, we also see from Figures 2a and 2b that the matrix size is still too
small to achieve the uniform distribution of the shared key entries. However, we see from Figures 2c
and 2d that the obtained distributions are similar and can be considered uniform.

To sum up the obtained results in Table 1, we present the p-values for the goodness of fit tests as
well as the p-value of the two-sampled chi-squared test.

Table 1. The statistical analysis results for the platform groupM16.

m p(χ2
K0

) p(χ2
K1

) p(χ2
K0,K1

)
8 < 10−3 < 10−3 < 10−3

10 < 10−3 0.333 < 10−3

12 < 10−3 0.334 0.008
14 0.010 0.817 0.108
16 0.422 0.883 0.598

We can see from the presented table that we cannot reject the null hypothesis at a 95% significance
level for values of m ≥ 14. However, since the p-value for m = 14 is close to the bottom edge, we
prefer to choose the value of m = 16 for further experiments.

We now continue experimenting with the system parameter values t = 4 and m = 16. For
KEP(16, 4, 200), we perform Pearson’s chi-squared test for each individual position of K0 and define
the boolean matrix P = {pi j}, with its entries

pi j =

0, if p-value p
(
χ2

k0i j

)
< 0.05,

1, otherwise,
(6.1)

where k0i j is a 200-element sample of the possible values of the (i, j)-th position of matrix K0.
We also define the accuracy for matrix entries following the uniform distribution as:

ACC(P) =
1

m2

m∑
i=1

m∑
j=1

pi j. (6.2)

We execute KEP(16, 4, 200) 25 more times and perform the goodness-of-fit tests. The obtained
results show that only 1 experiment out of 25 does not follow the uniform distribution for K0 values.
However, the analysis of the imitation key K1 has also 1 experiment that rejects the null hypothesis.
We define the accuracy for K1 by Eq (6.2) with p

(
χ2

k0i j

)
replaced by p

(
χ2

k1i j

)
in Eq (6.1).

For more clarity, let us present the results of four executions of KEP(16, 4, 200). We also present
the accuracy of uniformity and the two-sample chi-squared test p-value.

We can see from Table 2 that the null hypothesis for the uniform distribution was not rejected for
both shared and imitation keys in all of the presented experiments. Moreover, due to the high accuracy
value, we can see that for each individual positions the null hypothesis was not rejected for the most
part. The takeaway is that looking at matrices K0 and K1 as a whole and at the individual positions,
we get different results. However, both of these ways are important for statistical analysis, since the
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presented results show that individual positions can be treated as independent random variables if the
overall uniform distribution is achieved.

Table 2. Results of four experiments for the platform groupM16.

Index Shared key K0 Imitation key K1 Two-sample Chi-Sq.Chi-Sq. ACC Chi-Sq. ACC
1 0.322 0.94 0.506 0.94 0.121
2 0.175 0.94 0.182 0.91 0.470
3 0.055 0.93 0.661 0.95 0.583
4 0.275 0.95 0.547 0.96 0.529

All in all, relying on the p-values for the two-sample chi-squared test presented in Table 2, we can
see that there is no significant difference between the distribution of the entries of the shared key K0

and the imitation key K1.
Let us now consider the twice larger group M32, i.e., t = 5. We execute KEP(16, 5, 200),

KEP(18, 5, 200) and KEP(20, 5, 200), and present the obtained results for K0 and K1.
We can see from Figure 3 that the presented distributions are almost identical. These observations

are also backed up by the statistical tests. In Table 3, we present a short summary of the obtained
results.

(a) KEP(16, 5, 200). (b) KEP(18, 5, 200). (c) KEP(20, 5, 200).

Figure 3. Statistical analysis for uniformity of shared and imitation keys.

Table 3. The statistical analysis results for the platform groupM32.

m p
(
χ2

K0

)
p
(
χ2

K1

)
p
(
χ2

K0,K1

)
16 0.030 0.622 0.097
18 0.240 0.803 0.714
20 0.355 0.360 0.569

Relying on the obtained results based on the p-value of the shared key K0 set, we settle on the
matrix size m = 20 for further analysis as the p-value 0.355 is the largest of the presented three. Note,
however, that a value of m ≥ 18 may also be used based on the results presented in Table 3. Similarly
as before, let us present the results obtained for four executions of KEP(20, 5, 200) in Table 4.
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Table 4. Results of four experiments for the platform groupM16.

Index Shared key K0 Imitation key K1 Two-sample Chi-Sq.Chi-Sq. ACC Chi-Sq. ACC
1 0.185 0.96 0.844 0.96 0.593
2 0.952 0.96 0.157 0.94 0.978
3 0.478 0.94 0.094 0.95 0.461
4 0.589 0.96 0.126 0.94 0.524

We can see from Table 4 that the obtained results are similar to the ones presented in Table 2. Hence
we see that the value of matrix size m does not change drastically as the size of the platform groupM2t

doubles. Therefore, we see that for practical implementation of our proposal, we can settle on a balance
of both security parameters to achieve the uniform distribution of both K0 and K1 while also keeping
them computationally indistinguishable. However, more experiments may be necessary to determine
the reasoning behind the chaotic changes of the p-values.

After performing additional experiments for different values of parameters t and m, we present the
lower bound of m for each individual key, i.e., for every t, we find a minimal value of m such that the
uniformity test is passed for the entries of K0 and K1.

The results presented in Table 5 should be interpreted as follows: for a fixed value of t, the order
of the square matrices should be no less than the presented value of m for the entries of the considered
key to pass the uniformity test. For example, if t = 7, then the shared key passes the uniformity test
if the matrices are at least 26 × 26. However, the imitation key passes the uniformity test significantly
earlier, i.e., for 16×16 matrices. This shows that, for practical implementation, the pair (t,m) = (7, 26)
may be considered a reasonable choice. Of course, the value of m could be rounded up to, say, 30
or 32 depending on the available memory space. Moreover, the linearization technique presented in
Section 4.2 should also be kept in mind when choosing the value of m.

Table 5. Lower bounds of matrix order m.

t 4 5 6 7
K0 16 20 24 26
K1 14 14 14 16

7. Conclusions and future works

In this paper, we have revisited the previously proposed KEP based on the MPFs defined over the
non-commuting platform group. We formalized the definition of the MPF mapping and emphasized
its significant difference from the classical matrix multiplication. Furthermore, we have demonstrated
that the definition of MPF was previously misinterpreted.

Due to the non-commuting platform group, the discrete logarithm mapping cannot be applied either
directly or indirectly to the system (4.4) and hence the algebraic analysis of the decisional problem
becomes more complex. In fact, it was shown in [16] that this problem is NP-complete. Therefore,
there is some indication that our proposal can withstand quantum attacks.

We have also shown that neither linearization nor faithful matrix representation can be used to obtain
any kind of advantage in winning the Security Game 3 if the parameters of our KEP are appropriately
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chosen. However, we think that the linearization technique should be kept in mind when generating the
publicly known matrices W,L, and R. As of now, we do not know if there are any other approaches
the attacker can use to achieve a significant advantage. This is grounds for future work in the security
of our protocol.

The proposed protocol is anonymous and hence is vulnerable to man-in-the-middle attack. This can
be fixed by adding an identification step. We can consider this in the future. Also, we intend to study
if the proposed protocol provides a forward secrecy property.

Statistical analysis of Security Game 3 has shown that there is a dependence between the group-
defining parameter t and the matrix size m. However, we see that the value of m does not change
drastically as the platform group M2t doubles in size. On the other hand, the results presented in
Table 5 show that the value of m to pass the uniformity test for the imitation key K1 is smaller than in
the case of the true key K0. Furthermore, based on the results presented in [29], we can see that both
matrices K0 and K1 look random to an attacker. Therefore, the statistical analysis in no way can help
the attacker to distinguish between the shared and imitation keys.

Based on the obtained results, we claim that it is safe to use the proposed KEP in internet
communications providing a secure shared key for two protocol parties. This key is used to ensure
confidentiality using secure symmetric encryption methods, e.g., AES.
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