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Abstract: This work was concerned with the weakly coupled system of semi-linear wave equations
with time dependent speeds of propagation, damping terms, and derivative nonlinear terms in
generalized Einstein-de Sitter space-time on Rn. Under certain assumptions about the indexes k1, k2,
coefficients µ1, µ2, and nonlinearity exponents p, q, applying the iteration technique, finite time blow-
up of local solutions to the small initial value problem of the coupled system was investigated. Blow-
up region and upper bound lifespan estimate of solutions to the problem were established. Compared
with blow-up results in the previous literature, the new ingredient relied on that the blow-up region of
solutions obtained in this work varies due to the influence of coefficients k1, k2.
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1. Introduction

Nonlinear is one of the important scientific phenomena which widely exists in different physical
systems. The nonlinear wave equation is a typical hyperbolic equation which possesses important
physical background and theoretical significance. It can be used to explain and simulate many physical
phenomena, such as the propagation of sound waves, small vibrations of elastic rods, and so on. The
stability and fracture behavior of nonlinear problems are extremely important research topics. In the
nonlinear systems, different initial exponential components can lead to different characteristics of their
mathematical solutions. Due to the influence of nonlinear factors, waves will become steep during
propagation until they break. Due to the existence of friction phenomena in reality, factors such as
damping are inevitable, which could have a certain impact on the energy of physical systems. The
coefficient in the damping term depending on time variable could affect the energy decay rate of the
solution to the wave equation. Nonlinear external forces could affect the fracture behavior and lifespan
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estimation of the solution. Recently, many mathematicians pay attention to the blow-up and lifespan
estimate of the solution to the nonlinear wave equation together with its generalized forms, which are
related to the famous Strauss conjecture (see detailed illustrations in [1–3]).

In the present work, we study the Cauchy problem for a coupled system of semi-linear wave
equations with damping terms and derivative type nonlinearities in Einstein-de Sitter space-time, which
is shown as follows: 

utt − t−2k1∆u +
µ1

t
ut = |vt|

p , (x, t) ∈ Rn × [1,∞),

vtt − t−2k2∆v +
µ2

t
vt = |ut|

q , (x, t) ∈ Rn × [1,∞),

u(x, 1) = ε f1(x), ut(x, 1) = εg1(x), x ∈ Rn,

v(x, 1) = ε f2(x), vt(x, 1) = εg2(x), x ∈ Rn.

(1.1)

Here, n ≥ 1, p, q > 1, ki ∈ [0, 1), µi ≥ 0, i = 1, 2. fi(x), gi(x) (i = 1, 2) are nonnegative functions
which satisfy supp ( fi, gi) ⊂ BR(0) for i = 1, 2, where BR(0) = {x

∣∣∣ |x| ≤ R}, R ≥ 2. ε is a small positive
parameter describing the size of initial data.

To begin, we recall some known results for the classical wave equationutt − ∆u = f (u, ut), x ∈ Rn, t > 0,
u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ Rn.

(1.2)

It is well-known that problem (1.2) with power nonlinearity f (u, ut) = |u|p possesses the Strauss
exponent pS (n) (see [2]). In addition, pS (1) = ∞. When n ≥ 2, pS (n) is the positive solution to
quadratic equation

−(n − 1)p2 + (n + 1)p + 2 = 0.

More precisely, a solution to the Cauchy problem of the wave equation with small initial values blows
up in finite time when 1 < p ≤ pS (n). If p > pS (n), there exists a unique global (in time) solution.
Lifespan estimate of solution to the initial boundary value problem of the variable coefficient wave
equation with f (u, ut) = |u|p on exterior domain in two dimensions is obtained by employing the
Kato lemma (see [4]). Both the blow-up result and existence of the global solution to problem (1.2)
with f (u, ut) = |ut|

p are discussed in [5, 6]. Problem (1.2) with f (u, ut) = |ut|
p possesses the Glassey

index pG(n) = 1 + 2
n−1 . When 1 < p ≤ pG(n), a solution of the equation blows up in finite time.

When p > pG(n), the problem admits global solution. Zhou et al. [7] established blow-up of the
solution to the initial boundary value problem of the variable coefficient wave equation with derivative
nonlinearity by solving inequalities of ordinary differential equations. Nonexistence of the global
solution to problem (1.2) with f (u, ut) = |ut|

p + |u|q is derived (see [8, 9]). The proof is based on
the Kato lemma and test function method. Existence of global solution to the wave equations is
considered in [10–12]. Kitamura et al. [13] obtained the lifespan estimate of classical solution of
nonlinear wave equation with spatial weight in one space dimension. Lai et al. [14] derived lifespan
estimate of solution for 2-dimensional semi-linear wave equation in asymptotically Euclidean exterior
domain. Formation of singularities of solution to the semi-linear wave equation in general dimensions
are investigated (see [15–19]). Ming et al. [20] considered blow-up of solution to the semilinear Moore-
Gibson-Thompson equation, which is structurally similar to the wave equation. Concerning the related
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study of hyperbolic type equations and other models, we refer readers to the related references [21–24]
for more details.

Taking k1 = k2 = µ1 = µ2 = 0 in problem (1.1), we obtain the following small initial value problem
for the coupled system with classical wave equations:

utt − ∆u = |vt|
p , (x, t) ∈ Rn × [0,∞),

vtt − ∆v = |ut|
q , (x, t) ∈ Rn × [0,∞),

(u, ut, v, vt)(x, 0) = (εu0, εu1, εv0, εv1)(x), x ∈ Rn.

(1.3)

We bear in mind that problem (1.2) is a special case of problem (1.3) when p = q and u = v. Now,
we make brief review of the existing literature on the dynamic properties of solutions to the coupled
system of wave equations. There are several research results on the blow-up of the solution to the
problem (1.3). Nonexistence of the global solution to the coupled system is shown in [25, 26]. Ikeda
et al. [27] studied the behavior of solutions to the problem in different coupling cases with a variety of
nonlinear terms. Series blow-up results and upper bound lifespan estimates of solutions to the problem
are obtained. Based on the above results, it can be seen that there is a (p, q) critical curve, which
describes the blow-up and existence of global solutions, namely,

Ω(n, p, q) := max (Λ(n, p, q), Λ(n, q, p)) = 0,

where
Λ(n, p, q) =

p + 1
pq − 1

−
n − 1

2
, (1.4)

and p, q > 1. When Ω(n, p, q) < 0, there are global solutions to the Cauchy problem (1.3). When
Ω(n, p, q) ≥ 0, no matter how small the initial values are, the solutions always blow up in finite time.
Upper bound estimate of the lifespan of solutions satisfies:

T (ε) ≤


Cε−Ω(n,p,q)−1

, Ω(n, p, q) > 0,

exp
(
Cε−(pq−1)

)
, Ω(n, p, q) = 0, p , q,

exp
(
Cε−(p−1)

)
, Ω(n, p, q) = 0, p = q.

(1.5)

Kubo et al. [28] proved the existence of the global solution to the problem in the three-dimensional and
radial symmetry case.

In problem (1.1), let k1 = k2 = −m, m > 0, µ1 = µ2 = 0. We arrive at the following small initial
value problem for coupled Tricomi equations:

utt − t2m∆u = |vt|
p , (x, t) ∈ Rn × [0,∞),

vtt − t2m∆v = |ut|
q , (x, t) ∈ Rn × [0,∞),

(u, ut, v, vt)(x, 0) = (εu0, εu1, εv0, εv1)(x), x ∈ Rn.

(1.6)

When p = q, and u = v in problem (1.6), we obtain the Cauchy problem for the single Tricomi
equation, namely, utt − t2m∆u = f (u, ut), x ∈ Rn, t > 0,

u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ Rn.
(1.7)
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The Tricomi equation arises in gas dynamic problems, which is associated with the gas flows with
nearly sonic speed describing the transition from subsonic flow to supersonic flow. Let us recall some
related investigation of the Cauchy problem for the Tricomi equation. Problem (1.7) with f (u, ut) = |u|p

possesses the Strauss critical exponent pS (m, n), which is the biggest root of quadratic equation

−[n − 1 + (1 −
2

m + 2
)]p2 + [n + 1 − 3(1 −

2
m + 2

)]p + 2 = 0.

Applying the iteration argument, Lin et al. [29] derived blow-up dynamics and lifespan estimates of
solutions to problem (1.7) with f (u, ut) = |u|p in the subcritical and critical cases. Lifespan estimate
of solution to problem (1.7) with f (u, ut) = |ut|

p is deduced by applying the test function technique
(Φ(x, t) = −t−2m∂t(η

2p′

M (t)l(t))ϕ(x)) (see [30]). Chen et al. [31] investigated the blow-up result and upper
bound lifespan estimate of solution to problem (1.7) with f (u, ut) = |ut|

p + |u|q, where the iteration
method is used. It is worth it to mention that pS (0, n) coincides with the Strauss critical exponent pS (n)
of the classical wave equation. We refer the readers to [31–34] for the relevant illustrations.

Recently, the study of the Cauchy problem of the semi-linear Tricomi equation with damping term
and mass term utt − t2m∆u + g(ut) + h(u) = f (u, ut), x ∈ Rn, t > 0,

u(x, 0) = εu0(x), ut(x, 0) = εu1(x), x ∈ Rn (1.8)

attracts more attention, where g(ut) is the damping term and h(u) is the mass term. For the case
of m = 0 in problem (1.8), using the test function technique, Ikeda et al. [35] studied formation of
singularity for the solution to the semi-linear wave equation with damping term and mass term in
the subcritical and critical cases. Lai et al. [36] showed the blow-up result and lifespan estimate of
solutions to problem (1.8) with space dependent damping term, potential term, and power nonlinearity
by employing the test function technique. Ming et al. [37] discussed the Cauchy problem of the semi-
linear wave equation with scattering time dependent damping term and divergence form nonlinearities.
Upper bound lifespan estimate of solution in the subcritical and critical cases is deduced by making use
of the rescaled test function approach and iteration method. Hamouda et al. [38, 39] verified the blow-
up result of the solution to problem (1.8) with −1 < m < 0, g(ut) = µt−1ut, h(u) = 0, and derivative
nonlinearity in the case of t > 1. That is,utt − t−2k∆u +

µ

t
ut = |ut|

p, x ∈ Rn, t > 1,

u(x, 0) = εu0(x), ut(x, 0) = εu1(x), x ∈ Rn,
(1.9)

where k ∈ (0, 1). Under certain assumptions, Hamouda et al. [39] applied the test function method
to derive the functional differential inequality of solution in the generalized Einstein-de Sitter space-
time. Blow-up index p = pE(n, k, µ) = 1 + 2

(1−k)(n−1)+k+µ is presented. When 1 < p ≤ pE(n, k, µ), a
solution of the equation blows up in finite time. In the special case µ = 2, Hamouda et al. [38] derived
the blow-up result for the semi-linear wave equation in generalized Einstein-de Sitter space-time with
derivative type nonlinearity by taking advantage of the integral representation formula for the solution
and Yagdjian integral transform technique. Palmieri [40] deduces formation of singularity for solution
to problem (1.8) with m > −1, g(ut) = µt−1ut, and h(u) = ν2t−2u for t > 1 by applying the iteration
method, where the nonlinear term is power type. Similar to the approach utilized in [39], Hamouda et
al. [41] considered formation of singularity of the solution to the corresponding small initial boundary
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value problem (1.8) with m > 0, g(ut) = µt−1ut, and h(u) = 0 on exterior domain. Blow-up dynamics
of the small initial value problem of the Tricomi equation with the general damping term, and mass
term are presented (see [42]). The related results of generalized variable coefficients wave equations
are obtained in [43–46]. We also refer the interested readers to the references [47–51] for more details.

Now, we turn to problem (1.6). Under certain hypothetical conditions, there is a (p, q) curve
(which has not been proved to be critical or not) regarding the formation of singularity of solutions
to system (1.6), that is,

Ω(n,m, p, q) := max (Λ(n,m, p, q), Λ(n,m, q, p)) = 0,

where Λ(n,m, p, q) = p+1
pq−1 −

n(m+1)−2m−1
2 . When Ω(n,m, p, q) ≥ 0, the solutions (u, v) of the problem

blow up in finite time T (ε), which satisfies:

T (ε) ≤


Cε−Ω(n,m,p,q), Ω(n,m, p, q) > 0,

exp
(
Cε−(pq−1)

)
, Ω(n,m, p, q) = 0, p , q,

exp
(
Cε−(p−1)

)
, Ω(n,m, p, q) = 0, p = q.

For the mixed form of nonlinear terms in problem (1.6), relevant research of upper bound lifespan
estimates of solutions can be referred to [52, 53]. The related study of the blow-up of solutions to
problem (1.6) containing scale invariant damping terms and mass terms is shown in [54].

In problem (1.1), letting k1 = k2 = 0 and modifying the time coefficient of damping terms, we obtain
the small initial value problem of coupled system with scale invariant damping terms as follows:

utt − ∆u +
µ1

1 + t
ut = |vt|

p , (x, t) ∈ Rn × [0,∞),

vtt − ∆v +
µ2

1 + t
vt = |ut|

q , (x, t) ∈ Rn × [0,∞),

(u, ut, v, vt)(x, 0) = (εu0, εu1, εv0, εv1)(x), x ∈ Rn.

(1.10)

Chen and Palmieri [55] first show the critical curve of system (1.10) in the effective case by
applying the contraction mapping technique and test function method. By constructing appropriate
functions, Hamouda et al. [56, 57] obtained the coupled integral inequalities. Blow-up of solutions
to problem (1.10) is established by taking advantage of the iterative method. In addition, lifespan
estimation T (ε) of solutions satisfies:

T (ε) ≤


Cε−(Ω(n,µ1,µ2,p,q))−1

, Ω(n, µ1, µ2, p, q) > 0,

exp
(
Cε−(pq−1)

)
, Ω(n, µ1, µ2, p, q) = 0, p , q,

exp
(
Cε−min

( pq−1
p+1 ,

pq−1
q+1

))
, Ω(n, µ1, µ2, p, q) = 0, p = q,

where Ω(n, µ1, µ2, p, q) = max (Λ(n + µ1, p, q), Λ(n + µ2, q, p)) (here, Λ(n, p, q) is defined by (1.4)).
Blow-up region of solutions to the problem is presented. In problem (1.10), by replacing the coefficient
of damping terms µi

1+t (i = 1, 2) with general nonnegative continuous and integrable functions bi(t) (i =
1, 2), we obtain a general weakly coupled system of semi-linear damped wave equations. By applying
the multiplier technique, Palmieri and Takamura [58] proved that there is a (p, q) critical curve for

AIMS Mathematics Volume 9, Issue 10, 26854–26876.



26859

solutions to the problem. Compared with that of problem (1.3), the (p, q) critical curve does not
change. Upper bound estimate for the lifespan of solution is the same as (1.5). The studies of the
blow-up and existence of global solutions to coupled systems with other types of damping terms and
nonlinear terms are presented in [27, 59–61].

Since the wave speeds change with time in problem (1.1), we transform the damping terms to obtain
scale invariant dampings, namely, u1(x, τ1) = u(x, t), v1(x, τ2) = v(x, t), where

τi = ϕki(t) :=
t1−ki

1 − ki
, i = 1, 2. (1.11)

Then, u1(x, τ1) and v1(x, τ2) satisfy the following equations, respectively:

(u1)τ1τ1 − ∆u1 +
µ1 − k1

(1 − k1)τ1
(u1)τ1

= (1 − k1)
2k1

1−k1 (1 − k2)
k2 p

k2−1τ
2k1

1−k1
1 τ

k2 p
k2−1

2

∣∣∣(v1)τ2
∣∣∣p ,

(v1)τ2τ2 − ∆v1 +
µ2 − k2

(1 − k2)τ2
(v1)τ2

= (1 − k2)
2k2

1−k2 (1 − k1)
k1q

k1−1τ
2k2

1−k2
2 τ

k1q
k1−1

1

∣∣∣(u1)τ1
∣∣∣q .

In fact, we make the transformation of time variable t in (1.11), so that the ranges of compact support
of u(x, t) and v(x, t) are

supp (u, v) ⊂
{
(x, t) ∈ Rn × [1,∞)

∣∣∣ |x| ≤ ϕki(t) + R
}
, i = 1, 2.

Inspired by the works in [38, 39, 41, 42, 54, 56, 62], our target in this paper is to investigate blow-up
and lifespan estimates of solutions to the weakly coupled system of the semi-linear wave equation with
scale invariant dampings and derivative nonlinearities in generalized Einstein-de Sitter space-time.
We observe that nonexistence of the global solution to the Cauchy problem of the semi-linear wave
equation with derivative nonlinearity in the generalized Einstein-de Sitter space-time is derived in [38].
The proof is based on the integral representation formula for the solution to the corresponding linear
problem in the one-dimensional case, which is determined through the Yagdjian integral transform
approach. It is worth noticing that Hassen et al. [42] verified the nonexistence of global solution to the
generalized Tricomi equation with scale invariant damping, mass term, and derivative nonlinearity
in the subcritical and critical cases. Upper bound lifespan estimates of solution to the problem
are obtained by making use of the method of solving inequalities of ordinary differential equations.
Employing the similar method in [42], Hamouda et al. [41] established the blow-up dynamic and
lifespan estimate of solutions to the initial boundary problem for the generalized Tricomi equation with
scale invariant damping and derivative nonlinearity on exterior domain. For problem (1.9), Hamouda et
al. [39] exploited the test function method to establish functional differential inequality of the solution
in the generalized Einstein-de Sitter space-time. Blow-up region and upper bound lifespan estimates of
solutions to problem (1.9) are established. Hamouda et al. [56] obtained the blow-up of solutions to the
Cauchy problem of the semi-linear wave equation with scale invariant damping terms (namely, problem
(1.10)) by deriving the coupled integral inequalities and using the iterative approach. Improvement on
the blow-up results of solutions to the weakly coupled system of wave equations with scale invariant
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damping terms, mass terms, and derivative nonlinearities are considered (see [62]). Taking advantage
of the test function technique, Hassen et al. [54] investigated the blow-up phenomenons of solutions to
the weakly coupled system of the generalized Tricomi equation with scale invariant dampings, mass
terms, and derivative type nonlinear terms. From our observation, there is no related results for blow-up
and lifespan estimate of solutions to problem (1.1) with scale invariant damping terms and derivative
nonlinearities in the generalized Einstein-de Sitter space-time. The main difficulties in this work are
to establish appropriate iterative frameworks in the coupled system case and lower bounds for the
constructed functionals, which are used to derive the finite time blow-up and upper bound lifespan
estimate of solutions. We extend the problem studied in [39] to problem (1.1) by utilizing the test
function method, which is different from the constructed functions in [54, 62] (see Theorem 1.1). The
results in Theorem 1.1 coincide with the results in [39] when p = q and k1 = k2. As a consequence, the
results in [39] are a special case of the results in Theorem 1.1. Compared with blow-up results in the
work [56], when ki = 0, i = 1, 2 in problem (1.1) (that is, σi = µi), blow-up region Ω(n, σ1, σ2, p, q)
of problem (1.1) is same as that in [56]. The blow-up region of solutions obtained in this paper varies
due to the influence of the coefficients k1, k2. To the best of our knowledge, the results in Theorem 1.1
are new.

For the problem (1.1), first of all, we present the definition of its energy solutions.
Definition 1.1. Let ( fi, gi) ∈ H1(Rn) × L2(Rn), i = 1, 2. The solutions (u, v) are called energy solutions
of problem (1.1) on [1,T ), if(u, v) ∈ C([1,T ),H1(Rn)) ∩C1([1,T ), L2(Rn)),

ut ∈ Lq
loc((1,T ) × Rn), vt ∈ Lp

loc((1,T ) × Rn),

and the following two equalities are satisfied:∫
Rn

ut(x, t)Φ(x, t)dx − ε
∫
Rn

g1(x)Φ(x, 1)dx

−

∫ t

1

∫
Rn

ut(x, s)Φt(x, s)dxds +
∫ t

1
s−2k1

∫
Rn
∇u(x, s)∇Φ(x, s)dxds

+

∫ t

1

∫
Rn

µ1

s
ut(x, s)Φ(x, s)dxds

=

∫ t

1

∫
Rn
|vt(x, s)|pΦ(x, s)dxds,∫

Rn
vt(x, t)Φ̃(x, t)dx − ε

∫
Rn

g2(x)Φ̃(x, 1)dx

−

∫ t

1

∫
Rn

vt(x, s)Φ̃t(x, s)dxds +
∫ t

1
s−2k2

∫
Rn
∇v(x, s)∇Φ̃(x, s)dxds

+

∫ t

1

∫
Rn

µ2

s
vt(x, s)Φ̃(x, s)dxds

=

∫ t

1

∫
Rn
|ut(x, s)|q Φ̃(x, s)dxds,

where Φ, Φ̃ ∈ C∞0 (Rn × [1,T )).
The main result of this paper is stated below.
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Theorem 1.1. Let Ω(n, σ1, σ2, p, q) = max (Λ(n + σ1, p, q),Λ(n + σ2, q, p)) ≥ 0, where Λ(n, p, q)
is defined by (1.4), σi = ki + µi, i = 1, 2. Suppose that fi ∈ H1(Rn), gi ∈ L2(Rn) are non-
negative functions which are not identically zero. If (u, v) are the energy solutions of problem (1.1)
which satisfy supp (u, v) ⊂

{
(x, t) ∈ Rn × [1,∞)

∣∣∣ |x| ≤ ϕki(t) + R
}
, then there exists a positive constant

ε0(n, k1, k2, µ1, µ2, f1, f2, g1, g2,T3) (T3 is a positive constant), such that for all ε ∈ (0, ε0], the upper
bound estimate of lifespan T (ε) of (u, v) satisfies:

T (ε) ≤


Cε

pq−1
A1−B1 , Ω(n, σ1, σ2, p, q) = Λ(n + σ1, p, q) ≥ 0, σ1 ≥ σ2,

Cε
pq−1

A2−B2 , Ω(n, σ1, σ2, p, q) = Λ(n + σ2, q, p) ≥ 0, σ1 ≤ σ2,

exp
(
Cε−min

( pq−1
p+1 ,

pq−1
q+1

))
, Λ(n + σ1, p, q) = Λ(n + σ2, q, p) = 0,

(1.12)

where the constant C is independent of ε, A1 =
n−1

2 (pq − 1) + σ2
2 pq + σ1

2 p, B1 =
σ2
2 p + σ1

2 + p + 1,
A2 =

n−1
2 (pq − 1) + σ1

2 pq + σ2
2 q, B2 =

σ1
2 q + σ2

2 + q + 1.

Remark 1.1. It is worth it to mention that the upper bound lifespan estimate (1.12) of solutions to
problem (1.1) in Theorem 1.1 coincides with the results in [39] when p = q and k1 = k2. In addition,
when ki = 0, i = 1, 2 in problem (1.1) (that is, σi = µi), blow-up region Ω(n, σ1, σ2, p, q) of problem
(1.1) is the same as that in [56]. Therefore, the results in [39, 56] could be viewed as special cases of
the results in Theorem 1.1. Moreover, the results in Theorem 1.1 complement the case that propagation
speeds of generalized coupled wave equations with dampings and derivative type nonlinearities contain
power functions with negative exponents.

2. Related lemmas

Suppose that ρi(t) (i = 1, 2) satisfies the following differential equation:

d2

dt2ρi(t) − t−2kiρi(t) −
d
dt

(
µi

t
ρi(t)

)
= 0, t ≥ 1, i = 1, 2.

According to [34, 39], ρi(t) can be expressed as

ρi(t) = t
1+µi

2 K µi−1
2(1−ki)

(
ϕki(t)

)
, t ≥ 1, i = 1, 2, (2.1)

where ϕki(t) are defined by (1.11),

Kν(t) =
∫ ∞

0
exp(−tcoshξ)cosh(νξ)dξ, ν ∈ R.

It holds that

lim
t→∞

tkiρ′i(t)
ρi(t)

= −1, i = 1, 2, (2.2)

ρ1(t)eϕk1 (t) ≥ C−1
0 t

k1+µ1
2 , ρ

−p
2 (t)e−pϕk1 (t) ≥ C−p

0 t
−p(k1+µ1)

2 , (2.3)

where C0 is a positive constant. Similarly, we acquire

ρ2(t)eϕk2 (t) ≥ C̃−1
0 t

k2+µ2
2 , ρ

−q
1 (t)e−qϕk2 (t) ≥ C̃−q

0 t
−q(k2+µ2)

2 ,

AIMS Mathematics Volume 9, Issue 10, 26854–26876.



26862

where C̃0 is a positive constant.
We define the function φi(x) (i = 1, 2) as follows:

φi(x) =


ex + e−x, n = 1,∫
Sn−1

ex·ωdω, n ≥ 2.

Therefore, we obtain ∆φi(x) = φi(x). Let Ψi(x, t) = φi(x)ρi(t) (i = 1, 2). It holds that ∆Ψi(t) = Ψi(x, t)
and

d2

dt2Ψi(x, t) − t−2ki∆Ψi(x, t) −
d
dt

(
µi

t
Ψi(x, t)

)
= 0.

Lemma 2.1. [17] Let r > 1. It holds that∫
{|x|≤ϕki (t)+R}

Ψr
i (x, t)dx

≤ C1ρ
r
i (t)e

rϕki (t)
(
1 + ϕki(t)

) (2−r)(n−1)
2 , t ≥ 1, i = 1, 2,

(2.4)

where C1 is a positive number C1 = C(n, µ1, µ2, k1, k2, p, q,R, r).
Now, we define the following functions related to the solutions u(x, t) and v(x, t) of problem (1.1):

G1(t) =
∫
Rn

u(x, t)Ψ1(x, t)dx, G̃1(t) =
∫
Rn

ut(x, t)Ψ1(x, t)dx,

G2(t) =
∫
Rn

v(x, t)Ψ2(x, t)dx, G̃2(t) =
∫
Rn

vt(x, t)Ψ2(x, t)dx.

In the lemma below, we present lower bound estimates for Gi(t) and G̃i(t).

Lemma 2.2. [39] Suppose that (u, v) are solutions to problem (1.1). The initial value functions
fi, gi (i = 1, 2) satisfy the assumptions of Theorem 1.1. Then, there exists a constant T0 =

T0(k1, k2, µ1, µ2) > 2 such that

Gi(t) ≥ CGiεt
ki , t ≥ T0, i = 1, 2,

where CGi = CGi( f1, g1, f2, g2, n, k1, k2, µ1, µ2,R).

Lemma 2.3. [39] Suppose that (u, v) are solutions to problem (1.1). The initial value functions
fi, gi (i = 1, 2) satisfy the assumptions of Theorem 1.1. Then, there exists T1 = T1(k1, k2, µ1, µ2) > T0

such that

G̃i(t) ≥ CG̃i
ε, t ≥ T1, i = 1, 2,

where CG̃i
= CG̃i

( f1, g1, f2, g2, n, k1, k2, µ1, µ2,R). It holds that

G̃1(t) +
[
µ1

t
−
ρ′1(t)
ρ1(t)

]
G1(t) =

∫ t

1

∫
Rn
|vt(x, s)|pΨ1(x, s)dxds + εC( f1, g1), (2.5)
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G̃′1(t) +
[
µ1

t
−
ρ′1(t)
ρ1(t)

]
G̃1(t) = t−2k1G1(t) +

∫
Rn
|vt(x, t)|pΨ1(x, t)dx, (2.6)

where ρ1(t) is defined by (2.1).

Remark 2.1. For G̃2(t) and G̃′2(t), we acquire similar forms of (2.5) and (2.6) with suitable
modification, which are omitted here for simplification.

3. Proof of Theorem 1.1

Let α be a positive constant. Multiplying both sides of (2.5) by αρ
′
1(t)
ρ1(t) and using (2.6), we arrive at

G̃′1(t) +
(
µ1

t
− (1 − α)

ρ′1(t)
ρ1(t)

)
G̃1(t)

= −εα
ρ′1(t)
ρ1(t)

C( f1, g1) +
(
t−2k1 + α

ρ′1(t)
ρ1(t)

(
µ1

t
−
ρ′1(t)
ρ1(t)

))
G1(t)

+

∫
Rn
|vt(x, t)|pΨ1(x, t)dx

− α
ρ′1(t)
ρ1(t)

∫ t

1

∫
Rn
|vt(x, s)|pΨ1(x, s)dxds, t ≥ 1.

Noticing the condition (2.2), we choose T2 ≥ T1 such that

G̃′1(t) +
(
µ1

t
− (1 − α)

ρ′1(t)
ρ1(t)

)
G̃1(t)

≥
εαt−k1

2
C( f1, g1) + (1 − 4α)t−2k1G1(t) +

∫
Rn
|vt(x, t)|pΨ1(x, t)dx

+
αt−k1

2

∫ t

1

∫
Rn
|vt(x, s)|pΨ1(x, s)dxds, t ≥ T2.

(3.1)

We set α ∈
(

1
7 ,

1
4

)
. Using Lemma 2.2, formula (3.1) can be rewritten as

G̃′1(t) +
(
µ1

t
− (1 − α)

ρ′1(t)
ρ1(t)

)
G̃1(t)

≥
εαt−k1

2
C( f1, g1) +

∫
Rn
|vt(x, t)|pΨ1(x, t)dx

+
αt−k1

2

∫ t

1

∫
Rn
|vt(x, s)|pΨ1(x, s)dxds, t ≥ T2.

(3.2)

In the following, we set

L1(t) =
1
16

∫ t

T3

∫
Rn
|vt(x, s)|pΨ1(x, s)dxds + εC2, (3.3)

L2(t) =
1

16

∫ t

T3

∫
Rn
|ut(x, s)|qΨ2(x, s)dxds + εC2,
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where C2 = min
(
αC( f1,g1)

4(1+α) ,
αC( f2,g2)

4(1+α) ,CG̃1
,CG̃2

)
.

Let Fi(t) = G̃1(t) − L1(t) (i = 1, 2). Making use of (3.2), we know

F′1(t) +
(
µ1

t
− (1 − α)

ρ′1(t)
ρ1(t)

)
F1(t)

≥
15
16

∫
Rn
|vt(x, t)|pΨ1(x, t)dx

+

(
α

2
−

1
16

(
µ1

t1−k1
− (1 + α)

tk1ρ′1(t)
ρ1(t)

))
+

(
α

2
C( f1, g1) −C2

(
µ1

t1−k1
− (1 + α)

tk1ρ′1(t)
ρ1(t)

))
εt−k1 , t ≥ T3,

where T3 ≥ T2. When t ≥ T3, we arrive at the following inequalities:

α

2
−

1
16

tk1

(
µ1

t
− (1 + α)

ρ′1(t)
ρ1(t)

)
≥ 0,

α

2
C( f1, g1) −C2tk1

(
µ1

t
− (1 + α)

ρ′1(t)
ρ1(t)

)
≥ 0.

Thus, we obtain

F′1(t) +
(
µ1

t
− (1 − α)

ρ′1(t)
ρ1(t)

)
F1(t) ≥ 0, t ≥ T3. (3.4)

Multiplying both sides of (3.4) by tµ1
ρ1+α

1 (t)
and integrating over (T3, t), we acquire

F1(t) ≥ F1(T3)
T µ1

3

ρ1+α
1 (T3)

ρ1+α
1 (t)
tµ1
, t ≥ T3.

Combining the definition of C2 and applying

F1(T3) = G̃1(T3) − L1(T3) ≥ G̃1(T3) −CG̃1
ε ≥ 0,

we conclude F1(t) ≥ 0. It follows that

G̃1(t) ≥ L1(t), t ≥ T3.

Similarly, we have
G̃2(t) ≥ L2(t), t ≥ T3. (3.5)

Making use of the Hölder inequality and (2.4) yields∫
Rn
|vt(x, t)|pΨ1(x, t)dx

≥

∫
{|x|≤ϕk1 (t)+R}

Ψ
p

p−1

2 (x, t)Ψ
− 1

p−1

1 (x, t)dx
−(p−1) (∫

Rn
vt(x, t)Ψ2(x, t)dx

)p

≥ C1−p
1 ρ1(t)ρ−p

2 (t)e−(p−1)ϕk1 (t) (1 + ϕk1(t)
)− (p−1)(n−1)

2 G̃p
2(t).

(3.6)
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Substituting (2.4) into (3.6) leads to∫
Rn
|vt(x, t)|pΨ1(x, t)dx

≥ C−p−1
0 C1−p

1 t−
(k1+µ1)(p−1)

2
(
1 + ϕk1(t)

)− (p−1)(n−1)
2 G̃p

2(t).

Combining (3.3) and (3.5), we have

L′1(t) ≥ C3t−
(p−1)(k1+µ1+n−1)

2 Lp
2(t), t ≥ T3, (3.7)

where C3 = C3(p, q). Similarly, we obtain

L′2(t) ≥ C3t−
(q−1)(k2+µ2+n−1)

2 Lq
1(t), t ≥ T3. (3.8)

Integrating (3.7) and (3.8) over (T3, t) gives rise to

L1(t) ≥ C4

∫ t

T3

(s + T3)−
(p−1)(k1+µ1+n−1)

2 Lp
2(s)ds + εC3, t ≥ T3, (3.9)

L2(t) ≥ C4

∫ t

T3

(s + T3)−
(q−1)(k2+µ2+n−1)

2 Lq
1(s)ds + εC3, t ≥ T3. (3.10)

In the following, we define
σi = ki + µi, (i = 1, 2). (3.11)

3.1. Case Ω(n, σ1, σ2, p, q) > 0

We note the constant T3 > 2. Using the definition of σi (i = 1, 2), (3.9) and (3.10) can be rewritten
as follows:

L1(t) ≥ C4

∫ t

T3

(s + T3)−
n−1

2 (p−1)+σ1
2 −

σ1
2 p Lp

2(s)ds +C3ε, t ≥ T3, (3.12)

L2(t) ≥ C4

∫ t

T3

(s + T3)−
n−1

2 (q−1)+σ2
2 −

σ2
2 q Lq

1(s)ds +C3ε, t ≥ T3. (3.13)

Suppose the condition Ω(n, σ1, σ2, p, q) = Λ(n + σ1, p, q) > 0. In the following, we assume

L1(t) ≥ α j(t + T3)−β j(t − T3)γ j , t ≥ T3, (3.14)

where
{
α j

}
j∈N

,
{
β j

}
j∈N

,
{
γ j

}
j∈N

are nonnegative sequences of real numbers.
When j = 0, we set α0 = C2ε, β0 = 0, γ0 = 0. We intend to prove that (3.14) is true for all j ≥ 0.

Substituting (3.14) into (3.13), we get

L2(t) ≥ C4

∫ t

T3

(s + T3)−
n−1

2 (q−1)+σ2
2 −

σ2
2 q Lq

1(s)ds

≥ C4α
q
j

∫ t

T3

(s + T3)−
n−1

2 (q−1)+σ2
2 −

σ2
2 q−qβ j (s − T3)qγ jds

≥ C4α
q
j(t + T3)−

n−1
2 (q−1)−σ2

2 q−qβ j

∫ t

T3

(s − T3)qγ j+
σ2
2 ds

= C4α
q
j(qγ j +

σ2

2
+ 1)−1(t + T3)−

n−1
2 (q−1)−σ2

2 q−qβ j(t − T3)qγ j+
σ2
2 +1,

AIMS Mathematics Volume 9, Issue 10, 26854–26876.



26866

where t ≥ T3. Substituting the above lower bound estimate for L2(t) into (3.12) yields

L1(t) ≥ C4

∫ t

T3

(s + T3)−
n−1

2 (p−1)+σ1
2 −

σ1
2 p Lp

2(s)ds

≥
Cp+1

4 α
pq
j

(qγ j +
σ2
2 + 1)p

∫ t

T3

(s + T3)−
n−1

2 (pq−1)−σ2
2 pq−σ1

2 p−pqβ j

× (s − T3)pqγ j+
σ2
2 p+σ1

2 +p ds

≥
Cp+1

4 α
pq
j

(qγ j +
σ2
2 + 1)p

(t + T3)−
n−1

2 (pq−1)−σ2
2 pq−σ1

2 p−pqβ j

×

∫ t

T3

(s − T3)pqγ j+
σ2
2 p+σ1

2 +p ds

=
Cp+1

4 α
pq
j

(qγ j +
σ2
2 + 1)p(pqγ j +

σ2
2 p + σ1

2 + p + 1)

× (t + T3)−
n−1

2 (pq−1)−σ2
2 pq−σ1

2 p−pqβ j

× (t − T3)pqγ j+
σ2
2 p+σ1

2 +p+1 , t ≥ T3.

Making use of (3.14), we have

α j+1 = Cp+1
4 (
σ2

2
+ 1 + qγ j)−p(

σ2

2
p +
σ1

2
+ p + 1 + pqγ j)α

pq
j , (3.15)

β j+1 =
n − 1

2
(pq − 1) +

σ2

2
pq +

σ1

2
p + pqβ j,

γ j+1 =
σ2

2
p +
σ1

2
+ p + 1 + pqγ j. (3.16)

Let A1 =
n−1

2 (pq − 1) + σ2
2 pq + σ1

2 p, β0 = 0. Employing (3.16) leads to

β j = A1 + pqβ j−1

= A1

j−1∑
k=0

(pq)k + (pq) jβ0.
(3.17)

In a similar way, we have

γ j = B1
(pq) j − 1

pq
, (3.18)

where B1 =
σ2
2 p + σ1

2 + p + 1.
According to α j, γ j ≤

B1
pq−1 (pq) j, and (3.15), we acquire

α j = Cp+1
4 (
σ2

2
+ 1 + qγ j−1)−p(

σ2

2
p +
σ1

2
+ p + 1 + pqγ j−1)−1α

pq
j−1

≥ Cp+1
4 (
σ2

2
p +
σ1

2
+ p + 1 + pqγ j−1)−(p+1)α

pq
j−1

≥ Cp+1
4

(
B1

pq − 1

)−(p+1)

︸                  ︷︷                  ︸
C5

(pq)−(p+1) jα
pq
j−1

= C5(pq)−(p+1) jα
pq
j−1.

(3.19)
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Taking the logarithm of both sides of (3.19), we derive

logα j ≥ pq logα j−1 − j log(pq)p+1 + log C5

≥ (pq)2 logα j−2 − ( j + ( j − 1)pq) log(pq)p+1 + (1 + pq) log C5

≥ (pq) j logα0 −

 j−1∑
k=0

( j − k)(pq)k

 log(pq)p+1 +

 j−1∑
k=0

(pq)k

 log C5

= (pq) j

(
logα0 −

pq
(pq − 1)2 log(pq)p+1 +

log C5

pq − 1

)
+ ( j + 1)

log(pq)p+1

pq − 1
+

log(pq)p+1

(pq − 1)2 −
log C5

pq − 1︸                                                 ︷︷                                                 ︸
≥0

.

Let j ≥ j̃ = max
{
0, log C4

log(pq)p+1 −
pq

pq−1

}
. It follows that

logα j ≥ (pq) j log(C6ε), (3.20)

where C6 = C3 (pq)−
pq(p+1)
(pq−1)2 C

1
pq−1

5 . Finally, combining the formulas (3.14), (3.17), (3.18), and (3.20), we
arrive at

L1(t) ≥ α j(t + T3)−A1
(pq) j−1

pq−1 (t − T3)B1
(pq) j−1

pq−1

≥ exp
(
(pq) j log(C6ε)

)
(t + T3)−A1

(pq) j−1
pq−1 (t − T3)B1

(pq) j−1
pq−1

= exp
(
(pq) j

(
log(C6ε) −

A1

pq − 1
log(t + T3) +

B1

pq − 1
log(t − T3)

))
× (t + T3)

A1
pq−1 (t − T3)−

B1
pq−1 , j ≥ j̃, t ≥ T3.

(3.21)

Let t ≥ 3T3. Hence, 2(t − T3) ≥ t + T3. According to (3.21), we have

L1(t) ≥ exp
(
(pq) j log

(
2−

B1
pq−1 C6ε(t + T3)

B1−A1
pq−1

))
× (t + T3)

A1
pq−1 (t − T3)−

B1
pq−1 , j ≥ j̃, t ≥ T3.

(3.22)

Combining the definition of Λ(n + σ1, p, q) and its nonnegativity, we know

B1 − A1

pq − 1
≥ −
σ2 p(q − 1) + σ1(p − 1)

2(pq − 1)
+

p + 1
pq − 1

−
n − 1

2

≥
σ2 p(1 − q) + σ1(1 − p)

2(pq − 1)
+
σ1

2

=
p(q − 1)(σ1 − σ2)

2(pq − 1)
.

(3.23)

Suppose σ1 ≥ σ2. Then, we have B1−A1
pq−1 ≥ 0. Because of t + T3 ≥ 4T3, we choose ε0 =

ε0(n, k1, k2, µ1, µ2, f1, f2, g1, g2,T3) > 0 which is small enough such that t + T3 ≥ 4T3. Thus, we have(
2−

B1
pq−1 C6ε0

)−( B1−A1
pq−1

)−1

≥ 4T3.
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Hence, for all ε ∈ (0, ε0] and t >
(
2−

B1
pq−1 C6ε

)−( B1−A1
pq−1

)−1

≥ 4T3, we obtain 2−
B1

pq−1 C6εt
B1−A1
pq−1 > 1.

Therefore, sending j→ ∞ in (3.22), we arrive at the blow-up result of L1(t) in finite time. Blow-up of
L2(t) and L1(t) occurs simultaneously. Let 2−

B1
pq−1 C6εt

B1−A1
pq−1 ≤ 1. Upper bound estimate for the lifespan

of L1(t) and L2(t) is
T (ε) ≤ Cε

pq−1
A1−B1 , (3.24)

where A1 =
n−1

2 (pq − 1) + σ2
2 pq + σ1

2 p, B1 =
σ2
2 p + σ1

2 + p + 1, σ1, and σ2 are defined by (3.11), and
A1 − B1 < 0 if σ1 ≥ σ2.

On the other hand, let Ω(n, σ1, σ2, p, q) = Λ(n + σ2, q, p) > 0, and using the same method, we see
that L1(t) and L2(t) blow up in finite time. The upper bound estimate of their lifespan satisfies:

T (ε) ≤ Cε
pq−1

A2−B2 , (3.25)

where A2 =
n−1

2 (pq − 1) + σ1
2 pq + σ2

2 q, B2 =
σ1
2 q + σ2

2 + q + 1, σ1, and σ2 are defined by (3.11), and
A2 − B2 < 0 if σ2 ≥ σ1.

3.2. Case Ω(n, σ1, σ2, p, q) = 0, Λ(n + σ1, p, q) , Λ(n + σ2, q, p)

Without loss of generality, we may assumeΩ(n, σ1, σ2, p, q) = Λ(n+σ1, p, q) = 0 > Λ(n+σ2, q, p).
Then, we deduce from (3.23) that

B1 − A1

pq − 1
=
σ2 p(1 − q) + σ1(1 − p)

2(pq − 1)
+
σ1

2
=

p(q − 1)(σ1 − σ2)
2(pq − 1)

.

Because of pq − p > 0, we get B1−A1
pq−1 ≥ 0 if σ1 ≥ σ2. Similar to the derivations in Subsection 3.1, we

obtain the same estimate as in (3.24), namely,

T (ε) ≤ Cε
pq−1

A1−B1 .

On the other hand, letting Ω(n, σ1, σ2, p, q) = Λ(n + σ2, q, p) = 0 > Λ(n + σ1, p, q) and using the
similar method, we see that the upper bound estimate for the lifespan of L1(t) and L2(t) is same as
(3.25) if σ2 ≥ σ1, that is,

T (ε) ≤ Cε
pq−1

A2−B2 .

3.3. Case Λ(n + σ1, p, q) = Λ(n + σ2, q, p) = 0

Using the condition Λ(n + σ1, p, q) = Λ(n + σ2, q, p) = 0, we rewrite (3.12) and (3.13) as

L1(t) ≥ C4

∫ t

T3

(s + T3)−
p2−1
pq−1 Lp

2(s)ds +C3ε

≥ C4

∫ t

T3

(s + T3)−(p+1) Lp
2(s)ds +C3ε, t ≥ T3,

(3.26)

L2(t) ≥ C4

∫ t

T3

(s + T3)−
q2−1
pq−1 Lq

1(s)ds +C3ε

≥ C4

∫ t

T3

(s + T3)−(q+1) Lq
1(s)ds +C3ε, t ≥ T3.

(3.27)
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In the following, we estimate the lower bound of integrals in (3.26) and (3.27).
Suppose

L1(t) ≥ E j(t + T3)−pα j

(
log

t
T3

)β j

, t ≥ T3, (3.28)

where
{
E j

}
j∈N

,
{
α j

}
j∈N

,
{
β j

}
j∈N

are nonnegative real numbers sequences. When j = 0, we derive E0 =

C3ε, α0 = β0 = 0. Noticing t + T3 ≤ 2t, for all t ≥ T3, and substituting (3.28) into (3.27), we conclude

L2(t) ≥ C4(t + T3)−q
∫ t

T3

(s + T3)−1 Lq
1(s)ds

≥ C4Eq
j (t + T3)−q

∫ t

T3

(s + T3)−1−pqα j

(
log

s
T3

)qβ j

ds

≥ 2−1C4Eq
j (t + T3)−q−pqα j

∫ t

T3

1
s

(
log

s
T3

)qβ j

ds

≥ 2−1C4T−1
3 Eq

j (qβ j + 1)−1(t + T3)−q−pqα j

(
log

t
T3

)qβ j+1

,

(3.29)

where t ≥ T3. From (3.29) and (3.26), we deduce

L1(t) ≥ C4(t + T3)−p
∫ t

T3

(s + T3)−1 Lp
2(s)ds

≥ 2−pC1+p
4 T−p

3 (qβ j + 1)−pEpq
j (t + T3)−p

×

∫ T3

t
(s + T3)−1−pq−p2qα j

(
log

s
T3

)pqβ j+p

ds

≥ 2−1−pC1+p
4 T−p

3 (qβ j + 1)−pEpq
j (t + T3)−p−pq−p2qα j

×

∫ T3

t

1
s

(
log

s
T3

)pqβ j+p

ds

≥ 2−1−pC1+p
4 T−p

3 (qβ j + 1)−p(pqβ j + p + 1)−1Epq
j

× (t + T3)−p−pq−p2qα j

(
log

t
T3

)pqβ j+p+1

, t ≥ T3.

Therefore, the following derivation holds for j + 1, namely,

α j+1 = −p − pq − p2qα j,

β j+1 = p + 1 + pqβ j,

E j+1 = 2−1−pC1+p
4 (qβ j + 1)−p(pqβ j + p + 1)−1Epq

j .
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As a consequence, we have

α j = −p − pq − p2qα j−1

= −p − pq + p3q + p3q2 + p4q2α j−2

= −(p + pq)
j−1∑
k=0

(−p2q)k

=
p + pq
p2q + 1

(
(−p2q) j−1 − 1

)
,

(3.30)

β j = p + 1 + pqβ j−1

= (p + 1)(1 + pq) + (pq)2β j−2

= (p + 1)
j−1∑
k=0

(pq)k + (pq) jβ0

=
p + 1

pq − 1

(
(pq) j − 1

)
,

(3.31)

E j = 2−1−pC1+p
4 (qβ j−1 + 1)−p(pqβ j−1 + p + 1)−1Epq

j

≥ 2−1−pC1+p
4 (pqβ j−1 + p + 1)−1−pEpq

j−1

= 2−1−pC1+p
4 β

−1−p
j Epq

j−1

≥ Ẽ(pq)−(p+1) jEpq
j−1,

(3.32)

where Ẽ = 2−1−pC1+p
4

(
p+1

pq−1

)−1−p
. Taking j ≥ j̃ = max

{
0, log Ẽ

log(pq)p+1 −
pq

pq−1

}
, we obtain

E j ≥ exp
(
(pq) j log( ˜̃Eε)

)
,

where ˜̃E = C3 (pq)−
pq(p+1)
(pq−1)2 Ẽ

1
pq−1 .

Combining (3.28) with (3.30)–(3.32), we have

L1(t) ≥ E j(t + T3)−pα j

(
log

t
T3

)β j

≥ exp

(pq) j log( ˜̃Eε)
(
log

t
T3

) p+1
pq−1 ((pq) j−1)

(t + T3)−
p(p+pq)
p2q+1 ((−p2q) j−1−1)

 .
Let j = 2k − 1, k ∈ N∗. For all t ≥ T3, j ≥ j̃, we acquire

L1(t) ≥ exp
(
(pq) j log( ˜̃Eε)

) (
log

t
T3

) p+1
pq−1 ((pq) j−1)

= exp

(pq) j log

 ˜̃Eε
(
log

t
T3

) p+1
pq−1


 (log

t
T3

)− p−1
pq−1

.

(3.33)
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Choose ε0 = ε0(n, k1, k2, µ1, µ2, f1, f2, g1, g2,T3) small enough such that

exp
(( ˜̃Eε0

)− pq−1
p+1

)
≥ 1.

Thus, we have

˜̃Eε
(
log

t
T3

) p+1
pq−1

> 1

for all ε ∈ (0, ε0] and t > T3 exp
(( ˜̃Eε0

)− pq−1
p+1

)
.

Therefore, from (3.33), we know that L1(t) and L2(t) blow up in finite time when j → ∞. On

the other hand, when t ≤ T3 exp
(( ˜̃Eε0

)− pq−1
p+1

)
, we derive that the upper bound estimate of the lifespan

satisfies:
T (ε) ≤ exp

(
Cε−

pq−1
p+1

)
,

where C is a positive constant.
Similar to (3.28), we make the following assumption for L2(t), that is,

L2(t) ≥ E j(t + T3)−qα j

(
log

t
T3

)β j

, t ≥ T3.

Similarly, we acquire that L1(t) and L2(t) blow up in finite time. The upper bound estimate of their
lifespan satisfies

T (ε) ≤ exp
(
Cε−

pq−1
q+1

)
,

where C is a positive constant. The proof of Theorem 1.1 is finished. ■

4. Conclusions

This work is dedicated to investigating the weakly coupled system of semi-linear wave equations
with time dependent speed of propagation, damping terms, and derivative nonlinear terms in
generalized Einstein-de Sitter space-time on Rn. Taking advantage of the iteration method, we deduce
formation of singularity of solutions to the coupled system (1.1). Blow-up region and upper bound
lifespan estimate of solutions to the problem are established. The blow-up region of solutions in this
work varies due to the influence of coefficients k1, k2. It is worth it to mention that upper bound lifespan
estimate (1.12) of solutions to problem (1.1) in Theorem 1.1 coincides with the results in [39] when
p = q and k1 = k2. When ki = 0, i = 1, 2 in problem (1.1) (namely, σi = µi), blow-up region
Ω(n, σ1, σ2, p, q) of problem (1.1) is the same as that in [56]. In addition, the results in Theorem 1.1
complement the case that propagation speeds of generalized coupled wave equations with dampings
and derivative type nonlinearities contain power functions with negative exponents.
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