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Okamoto polynomials. The explicit form of ladder, the associated wavefunctions involving exceptional
orthogonal polynomials, and recurrence relations were also completed described. Much less is known
for the irreducible case, in particular the excited states. Here, we developed a description of the
induced representations based on various commutator identities for the highest and lowest weight type
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form of the related excited states from the point of view of the Schrödinger equation as two-variables
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1. Introduction

In the context of quantum Hamiltonians, various approaches to find the solution of their
corresponding Schrödinger equation have been introduced. Some of those approaches rely on
analytical and algebraic definitions of exact and quasi-exact solvability [1–3]. They build on different
ideas such as the existence of an underlying hidden algebra, Bethe Ansatz equations, and invariant
spaces of polynomials. Other approaches can be used to solve quantum mechanical systems which
include Darboux-Crum and Krein-Adler types of transformations and their related intertwining
relations and superalgebras [4], factorization relations [5], and ladder operators [6–8]. An important
class of algebraic approaches concerns Liouville integrability and superintegrability where Abelian
and non-Abelian algebraic structures within the Lie theory or one of its generalizations play the role
of symmetry algebras [9]. In this paper, we will consider the case of ladder operators, and particular,
of third-order ladder operators and their related Hamiltonians. In such setting, the Hamiltonian is not
described by an algebraic form but written in terms of the fourth Painlevé transcendent
PIV(x, α, β) [10–13]. Some insight into zero modes was provided. This one-dimensional Hamiltonian
which also appears in context of superintegrable systems as a building block, which makes it an
important model [14]. Further details on the zero modes of its related superpartner were also
provided.

The case where α and β take values for which the fourth Painlevé transcendent admits a rational
solution was completely studied in recent papers. Those cases which relate to Okamoto
polynomials [15, 16] and generalized Hermite polynomials [17] occur for the following choices of
parameters α and β:

α = 2m + n, β = −2(n −
1
3

)2, α − m − 2n, β = −2(m −
1
3

)2

and
α = n − m, β = −2(m + n +

1
3

)2.

The connection of those cases with exceptional orthogonal polynomials was also studied. This paper
will deal with irreducible cases i.e., when the fourth Painlevé transcendent does not admit reduction.

For a broader discussion of the problem of classifying systematically systems with ladder operators
we refer the reader to [18,19]. Deformed Heisenberg-Weyl algebras (span{c, c†,H, 1}) take the generic
form

[H, c] = −ac, (1.1a)
[H, c†] = ac†, (1.1b)
[c, c†] = F(H), (1.1c)

where a is a real constant, H is a Hamiltonian, c is a lowering operator and c† is a raising operators.
F(H) is a function of H and can be, in applications, a rational or even exponential function. One
important example is the case of q-deformed algebras. Usually, in applications in quantum physics,
F(H) is a polynomial and then the algebra is called a polynomial Heisenberg-Weyl algebra. Some
aspects of infinite and finite dimensional representations were discussed in the literature [20, 21] and
constraints for the existence of finite dimensional unitary representations were provided. Those
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constraints take the form of systems of algebraic equations. Examples of representations that
decompose into combinations of finite and infinite representations were obtained [11, 12]. In
applications, the corresponding generators c and c† take the form of higher order differential
operators. Despite the apparent simplicity of such algebraic structures, with only three generators
only and three defining commutator relations, they relate to large classes of isospectral and almost
isospectral deformations of one-dimensional Hamiltonians generalizing the harmonic and singular
oscillators (including polynomial and nonpolynomial deformations of the potential) [12]. They
include Painlevé transcendents (fourth [11, 14, 18] and fifth [12, 22]) and generalizations [19]. It was
demonstrated how in such construction, already at the 6th degree, the associated Chazy equation that
defines the higher transcendental functions in which the Hamiltonian can be written is outside known
Painlevé transcendents reductions [19]. First-degree operators and second-degree operators lead to
Lie algebra, i.e., when

F(H) = f0

and
F(H) = f0 + f1H.

The class of polynomial Heisenberg-Weyl algebras contains all generating spectrum algebras for
quantum models related to exceptional Hermite and Laguerre polynomials [15], which then make the
study of the related polynomial Heisenberg-Weyl algebra interesting from the perspective of the
connection with orthogonal polynomials. Various other polynomial deformations of Lie algebras and
their representations have attracted interest over the years, including deformation of super Lie
algebras [23], Hopf structures [24], quadratic [25] and cubic [26] algebras.

Such structures share similarities with the Heisenberg-Weyl algebra of the harmonic oscillator that it
generalizes, which admits infinite dimensional representations. Polynomial Heisenberg-Weyl algebras
allow for combinations of infinite and finite dimensional unitary representations. The representations
are in general difficult to characterize and it may depend upon solving systems of algebraic equations
in order to find zero modes of lowering and raising generators, as both lowering and raising operators
may admit several zero modes. Those lowering and raising operators are realized via higher order
differential operators.

Hamiltonians possessing ladder operators with polynomial Heisenberg-Weyl algebras are also
relevant in regard to constructing multidimensional Hamiltonians possessing integrals of motion, both
integrable and superintegrable [19]. Then progress on developing representations of the polynomial
Heisenberg algebra can then have application in different contexts such as quantum integrable and
superintegrable systems. We have recently demonstrated such algebraic structures give rise to
complicated patterns of indecomposable representations taking the form of 2-chains when one
considers certain Hamiltonians related to second order differential equations associated with
exceptional Hermite polynomials and having a ladder with polynomial Heisenberg algebra. This case
corresponds to a particular case of a rational solution for the model with the fourth Painlevé
transcendent for specific values of the parameters α and β. This illustrates how the representation
theory for those is rich.

This paper will deal with the case of induced representation from lowest states, i.e., zero modes of
the lowering operator and how the raising operator allows us to generate additional states from the zero
modes for a given Hamiltonian. Moreover, it will also deal with the case of highest weight for which
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the induced representations are achieved via a zero mode of the raising operator and then the action of
the lowering operator provides the sequence of states from the point of view of the Hamiltonian. Here,
the ladder operators, zero modes, and Hamiltonian will involve the fourth Painlevé transcendent and
then the induced representation will facilitate the construction of the states. We will establish several
commutator identities involving monomials which have not been explored in the literature. Using these
representations, we will present explicit construction using differential operators.

In Section 2, we present the general form of a polynomial Heisenberg algebra. In Section 3, we
present induced constructions and commutator identities. In Section 4, we apply the constructiosn
of the Hamiltonian with third-order shape invariance in terms of the fourth Painlevé transcedent. In
Sections 5 and 6, we present an explicit form of the induced construction with regard to the polynomials
written in terms of the fourth Painlevé transcendent and its derivative for the lowest and highest weight
types.

2. Polynomial Heisenberg algebra

In many systems, the Schrödinger equation includes an algebraic potential, i.e., in terms of
polynomials or rational functions, and then explicit solutions for the Schrödinger equation

Hψn = Enψn (2.1)

can be associated with the theory of hypergeometric functions, and possibly with generalizations in
terms of confluent Heun or Heun equations via appropriate transformations. In some cases, when the
potential depends on trigonometric or even elliptic functions, an algebraic form for the potential may
still be used via some algebraization transformations. However, even with an algebraic form, this is
still a difficult problem to obtain exact solutions for the Schrödinger equation. This can be facilitated
by using various algebraic methods and in particular the connection with ladder operators and algebraic
structures, such as the Heisenberg-Weyl type algebras, may allow us to get the complete spectrum from
an initial state (zero modes) or even many zero modes, as higher order operators can annihilate multiple
states. The associated representations of the deformed Heisenberg-Weyl algebra can be constructed via
the associated special functions and related recurrence relations. In a later section, we will discuss how,
for Hamiltonians without an algebraic form and connecting with higher transcendental functions, one
cannot rely on classical approaches to ordinary differential equations but still on an algebraic approach.

Another aspect of Heisenberg-Weyl algebra is the existence of the Casimir invariant that can be
exploited in regard to the descriptions of the representations [12,14,20,21]. A Casimir invariant of the
polynomial Heisenberg-Weyl algebra is a polynomial with the generators {c, c†,H} where

K = K(c, c†,H) =
∑

i+ j+k≤n

αi jkHic j(c†)k (2.2)

with αi jk being constant such that

[K,H] = 0, [K, c] = 0, [K, c†] = 0. (2.3)

For the quadratic case
F(H) = b2H2 + b1H + b0,
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the Casimir takes the form

K = cc† −
b2

3a
H3 −

(b1 + ab2)
2a

H2 −
(6b0 + 3ab1 + a2b2)

6a
H. (2.4)

It can be demonstrated that in fact, the Casimir takes the following form in general

K = cc† − M(H), (2.5)

where the polynomial M(H + a) is constrained by

F(H) = M(H) − M(H − a). (2.6)

This polynomial M(H) can be constructed from the coefficients of the polynomial F(H) of the
commutator relations [c, c†]. As the Hamiltonian, the lowering and raising operators are differential
operators this also implies that further relations in the realization can be obtained such as product
relations (alternatively to only commutator relations):

c†c = M(H), cc† = M(H + a). (2.7)

This also implies, in the differential operator realization, that the Casimir invariant reduces to a
polynomial of the Hamiltonian. Those additional relations in the realizations can be used to deduce
the weight (or energy from the point of view of the corresponding Schrödinger equation) of the zero
modes. A zero mode is an eigenstate of the Hamiltonian such that the action of raising or lowering (or
both) is vanishing.

In this paper we will consider another approach, i.e., rather than building on Casimir, explicit
realizations or factorization relations will be found using induced representation constructions. This is
an approach that is also based on establishing identities and commutator identities of the monomials
of the generators of the underlying quadratic algebra. Those formula will allow us in later sections, to
provide further understanding of the explicit wavefunctions for the corresponding Hamiltonian and
Schrödinger equation.

3. Induced representations and the algebraic definition of states

The notion of induced representations has been widely studied in different context and in particular
in regard to Lie algebras. However, regarding polynomial algebra, much less is known. Constraints on
the existence of zero modes of c† and c can be achieved via cc† and c†c, and their equivalence, in the
differential operators realization, as polynomials of the Hamiltonian only. Here our approach differs
and will concern lowest and highest weight constructions.

3.1. Highest and lowest weight constructions

We will define states via action on ψ(i)
0 of the lowering operator c and action of the Hamiltonian,

which plays a role analogous of a Cartan generator with

Hψ(i)
0 = E(i)

0 ψ
(i)
0 , cψ(i)

0 = 0. (3.1)
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Here ψ(i)
0 (with i = 1, ..., l) takes into account the possibility of a set of l zero modes, i.e., the set of

states annihilated by c, which are the lowest weight states. Only one of them will be the ground state.
Then we use the action of raising operators in the following way:

ψ(i)
n = (c†)nψ(i)

0 . (3.2)

The construction of the induced representation consists in establishing the action of the generators
on ψ(i)

n :
cψ(i)

n = αnψ
(i)
n−1, c†ψ(i)

n = ψ
(i)
n+1, Hψ(i)

n = βnψ
(i)
n . (3.3)

The following identities can be demonstrated:

[H, (c†)k] = m(k)(c†)k, [c, (c†)k] = (c†)k−1Rk(H). (3.4)

We will provide further details in the next subsection and determine explicitly the polynomial of H
denoted Rk(H). This polynomial depends on the index k. This allows us to demonstrate the following
results:

cψ(i)
n = [c, (c†)n]ψ(i)

0 = Rn(Ei
0)ψ(i)

n−1, (3.5)

Hψ(i)
n = (c†)nHψ(i)

0 + [H, (c†)n]ψ(i)
0 = (E(i)

0 + m(n))ψ(i)
n . (3.6)

Using induced representations from the highest weight of the form

Hϕ(i)
0 = E(i)

0 ϕ
(i)
0 , c†ϕ(i)

0 = 0, (3.7)

and taking
ϕ(i)

n = (c)nϕ(i)
0 , (3.8)

the related actions of the generators are given by

cϕ(i)
n = ϕ

(i)
n+1, c†ϕ(i)

n = α̃nϕ
(i)
n−1, Hϕ(i)

n = β̃nϕ
(i)
n . (3.9)

The results rely on establishing the following identities:

[H, ck] = p(k)ck, [c†, ck] = ck−1S k(H). (3.10)

We will also establish, in the next subsection, details on the polynomial of H denoted as S k(H).
This polynomial also depends explicitly on k. As a direct consequence, one can obtain

c†ϕ(i)
n = cn−1S n(H)ϕ(i)

0 , (3.11)

Hϕ(i)
n = (E(i)

0 + p(n))ϕ(i)
n . (3.12)

One advantage to relying on induced representations in the context of polynomial Heisenberg
algebra is that for ladder operators which take the form of differential operators of degree 3 and
higher, they are associated with higher transcendental functions. This means, in such cases, the
Hamiltonian and ladder operators involve special functions only defined via nonlinear differential
equations. Among them the well-known Painlevé transcendents and higher order analog. However,
this means that action of the ladder can no longer be straightforwardly calculated as for a harmonic
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oscillator and its rational deformation, and the zero mode is written in terms of those higher
transcendental functions leading to a solution only determined via iterative action of the ladder
operators and thus via the induced representations. However, as commutator identities are determined
the representation can also be determined, explicitly. In Section 6, we will provide details on how
those representations correspond in terms of explicit polynomials of those higher transcendental
functions and their derivatives.

3.2. Commutator identities for quadratic Heisenberg-Weyl algebra

The purpose of this section is to consider the case of quadratic Heisenberg-Weyl algebra which
connects with case of the fourth Painlevé transcendent and its related Hamiltonian and its ladder
operators of third order. We consider the following general quadratic Heisenberg-Weyl algebra
formed by {H, c, c†, 1} and the relations (1.1a), (1.1b), and

[c, c†] = b2H2 + b1H + b0. (3.13)

As consequence of the defining commutator relations, we obtain

[H, (c†)k] = 2k(c†)k, (3.14)
[H, ck] = −2k(c)k. (3.15)

Those formulas indicate similarities with weights in the context of Lie algebras and that the
Hamiltonian H then plays an analogous role as a Cartan generator for the well-known Lie algebra
sl(2). Other commutator identities can also be demonstrated in different ways and in particular
without relying on explicit differential operators realization or factorization relations. It can be shown
that the commutator of c with a monomial of c† can be rewritten in the following way

[c, (c†)n] = (c†)n−1((a0 + a1n)H2 + (a2 + a3n + a4n2)H + (a5 + a6n + a7n2 + a8n3)
= (c†)n−1Rn(H),

(3.16)

where the coefficients a0 to a8 are given by

a0 = 0, a1 = b2, a2 = 0, a3 = −ab2 + b1, a4 = ab2, a5 = 0,

a6 =
1
6

(a2b2 + 6b0 − 3ab1), a7 =
1
2

(−a2b2 + ab1), a8 =
a2

3
b2.

(3.17)

We can also establish a similar formula for the commutator of c† with a monomial of c:

[c†, cn] = (c)n−1((a0 + a1n)H2 + (a2 + a3n + a4n2)H + (a5 + a6n + a7n2 + a8n3)
= (c)n−1S n(H),

(3.18)

where the coefficients a0 to a8 take the form

a0 = 0, a1 = −b2, a2 = 0, a3 = −ab2 − b1, a4 = ab2, a5 = 0,

a6 =
1
6

(−a2b2 − 6b0 − 3ab1), a7 =
1
2

(a2b2 + ab1), a8 = −
a2

3
b2.

(3.19)

In the case of the Lie algebra sl(2), the commutator identities of the triplet formed by the Cartan,
the raising generator and the lowering generator play a role in construction of induced representations.
It is then expected that the polynomial identities will play a similar role for quadratic algebras.
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4. Representations Painlevé IV: irreducible case β > 0

In this section, we recall some results related to third-order shape invariance and construction
based on second-order supersymmetric quantum mechanics [11, 12, 14, 22]. The one-dimensional
Hamiltonian with a third-order ladder operator has the form (with λ = 1, see [11, 14])

H = −
d2

dx2 − 2 f ′ + 4 f 2 + 4x f + x2 − 1. (4.1)

The function
f = PIV(x, α, β)

satisfies a second order nonlinear differential equation which can be written in terms of the fourth
Painlevé equation. Here we will rely only on the function f and its defining equation given by

f ′′ =
f ′2

2 f
+ 6 f 3 + 8x f 2 + 2(x2 − (1 + α)) f +

β

2 f
. (4.2)

The ladder operators c and c† of third order take the form

c = M+Q−, c† = Q+M−, (4.3)

where the operators M± and Q± are given by

M+ = ∂2
x + h(x)∂x + g(x) = (∂x +W1)(∂x +W2), (4.4)

M− = ∂2
x − ∂xh(x) + g(x) = (−∂x +W2)(−∂x +W1), (4.5)

Q+ = (∂ +W3), Q− = (−∂ +W3), (4.6)

and the functions Wi (for i = 1, 2, 3) take the form

W1 = − f +
f ′ −
√
−β

2 f
, W2 = − f −

f ′ −
√
−β

2 f
, W3 = −2 f − x. (4.7)

The fact that the parameter takes positive or negative values is an important feature. In the case
β < 0, the operators M+ and M− well factorize into first-order operators which allows, in the context
of supersymmetric quantum mechanics, them to be interpreted as physical intermediate Hamiltonians.
In the case of β > 0 the second-order operators M+ and M− would be referred as irreducible. Also,
the choice of sign for the parameter d has other consequences. Only in the case of β < 0, the fourth
Painlevé transcendent admits families of rational solutions known as Okamoto and generalized Hermite
polynomials. Those special cases were studied in a complete way in recent papers [16, 17]. The case
of β > 0 is of importance as it corresponds to a physical model that does not reduce to algebraic form
which is an interesting feature among the realm of exactly solvable quantum systems.

In order to establish the explicit form for the states of the induced representation, we will need to
rely on further derivatives of this nonlinear equation:

f (n) = (
f ′2

2 f
+ 6 f 3 + 8x f 2 + 2(x2 − (1 + α)) f +

β

2 f
)(n−2). (4.8)
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Here ()(n) is the nth derivative. We can then establish the following quadratic Heisenberg-Weyl
algebra [12, 14, 22]:

[H, c] = −2c, (4.9a)
[H, c†] = 2c†, (4.9b)
[c†, c] = −2(3H2 − (4α + 2)H + α2 + β), (4.9c)

which correspond to the following choice of structure:

b2 = −6, b1 = 2(4α + 2), b2 = −2(α2 + β), (4.10)

where α and d are parameters related to the fourth Painlevé transcendent.
Another framework in regard to a higher order ladder was studied in [19]. This has led to connection

to Painlevé via the Chazy equations and their reductions to Painlevé transcendents.

4.1. Lowest weight induced representations

Considering the case where it is irreducible, i.e., when the fourth Painlevé transcendent PIV(x, α, β)
does not admit any special solution in terms of rational or hypergeometric functions in the case of
β > 0. In one important case β > 0, the operators M− and M+ do not have Hermitian intermediate
Hamiltonians and the second-order Darboux transformation can no longer be interpreted as two
first-order Darboux transformations. The factorized form can nevertheless be used to solve the
equation related to the zero mode of the lowering operator. We will generate an infinite dimensional
representations of lowest and highest weight type. The irreducible case considered occurs when β is
positive. Then one zero mode satisfies

cψ(1)
0 = 0

and
ψn = (c†)nψ(1)

0 , (4.11)

and the action of the lowering and raising operator is given by

c†ψ(1)
n = ψ

(1)
n+1, (4.12)

cψ(1)
n =

[
f (E(1)

0

]
ψ(1)

n−1. (4.13)

Following from general construction, the commutator identities take the form

[c, (c†)n] = (c†)n−1( fn(H)), (4.14)

fn(H) = (−2βn − 2n(2 − 2n + α)2) − 2n(−8 + 6n − 4α)H − 6H2. (4.15)

This leads to the explicit formula when acting on the zero mode

[c, (c†)n]ψ(1)
0 = (c†)n−1( fn(E(1)

0 ))ψ(0)
0 , (4.16)

and in this case as
E(1)

0 = 0,

AIMS Mathematics Volume 9, Issue 10, 26836–26853.



26845

the function fn(E(1)
0 ) can be written as

fn(E(1)
0 ) = −2n(β + (2 − 2n + α)2). (4.17)

The state formed by the lowest weight representation with interpretation has eigenstates of the
corresponding Schrodinger equation as

Hψn = (E(1)
0 + 2n)ψn. (4.18)

4.2. Highest weight induced representations

Then one zero mode satisfies

c†ϕ(1)
0 = 0

and

ϕn = (c)nϕ(1)
0 , (4.19)

and the explicit action is

cϕ(1)
n = ϕ

(1)
n+1, (4.20)

c†ϕ(1)
n =

[
f (E(1)

0

]
ψ(1)

n−1. (4.21)

We then obtain the commutator identities:

[c†, (c)n] = (c)n−1( fn(H)), (4.22)

fn(H) = 2n(β + 4(n − 1)n + 4(n − 1)α + α2) + 2n(4 − 6n − 4α)H + 6nH2. (4.23)

When acting on the zero mode of the raising operator, we obtain

[c†, (c)n]ϕ(1)
0 = (c)n−1( fn(E(0)

0 ))ϕ(1)
0 . (4.24)

As the energy of this zero mode is

E(1)
0 = α −

√
−β,

we need to consider irreducible cases among β < 0. For this case,

fn(E(1)
0 ) = 4n(−β + 2n2 + n(−2 + 3

√
−β − α) −

√
−β(2 + α)). (4.25)

This provides the construction of the induced representations in the highest weight case. The states
formed by the highest weight representation have also an interpretation as eigenstates of the
corresponding Schrödinger equation due to

Hϕn = (E(1)
0 − 2n)ϕn. (4.26)
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5. States for the lowest weight representation as polynomials of fourth Painlevé transcendents

In previous sections, an algebraic description of the chain of states via induced representations was
presented. One can also obtain explicitly the action of the different generators via various commutator
identities. However, viewed as explicit expressions in terms of the function f (i.e., the fourth Painlevé
transcendent), it is a highly nontrivial problem. This open problem has not been looked at in the
literature (only for different families of rational solutions) and also hypergeometric type was studied
(but not the irreducible case). We consider the case where the second order operators do not factorize
into two first-order Darboux supercharges, i.e., the irreducible case β > 0 where the only one physical
zero mode is obtained:

ψ(1)
0 = e

∫
W3(x′)dx′ . (5.1)

We then obtain, from the formula related to induced representations,

ψ(1)
1 = c†ψ(1)

0 , (5.2)

and the following explicit expression

ψ(1)
1 =

1
2 f 3 e

∫
W3(x′)dx′

(
20x f 5 + 8 f 6 + 4 f 4(−3 + 4x2 − 3 f ′) + f ′(β + f ′2) + f 3(−8x + 4x3 − 8x f ′ − 2 f ′′)

+ f (βx + x f ′2 − 2 f ′ f ′′) + f 2(2β + 2 f ′2 − 2x f ′′ + f ′′′)
)
. (5.3)

Then, using consequences of the defining second-order nonlinear equation for the fourth Painlevé
transcendent

f (3) =

(
f ′2

2 f
+ 6 f 3 + 8x f 2 + 2(x2 − (1 + α)) f +

β

2 f

)′
, (5.4)

where ()′ denotes ()x and the equation of the fourth Painevé transcendent is

f (2) =
f ′2

2 f
+ 6 f 3 + 8x f 2 + 2(x2 − (1 + α)) f +

β

2 f
, (5.5)

we get an expression only in terms of f and f ′. This allows us to rewrite ψ(1)
1 as

ψ(1)
1 =

e
∫

W3(x′)dx′

2 f

(
β − 4 f (x + f )(−α + f (x + f ) + f ′2

)
. (5.6)

Here the monomials present are { f 4, f 3, f 2, f , f ′2, 1}. For the next member of this sequence of states,
we consider ψ2. Starting recursively with the formula

f (6) =

(
f ′2

2 f
+ 6 f 3 + 8x f 2 + 2(x2 − (1 + α)) f +

β

2 f

)′′′′
, (5.7)

and corresponding equations for f (5), f (4), f (3), and f (2), we get for ψ(1)
2 an expression only in terms of
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f and f ′:

ψ(1)
2 =

e
∫

W3(x′)dx′

f 2

(
16 f 8 + 64x f 7 + (96x2 − 32α) f 6 + (32x + 64x3 − 96xα) f 5

− 8 f 4 f ′2(−32 − 8β + 64x2 + 16x4 − 96x2α + 16α2) f 4 − 16x f 3 f ′2

+ (−32x − 16βx + 32x3 − 32xα − 32x3α + 32xα2) f 3 + (−8x2 + 8α) f 2 f ′ − 16 f 2 f ′

+ (−8β − 8βx2 + 16α + 8βα − 32x2α − 8α2 + 16x2α2) f 2 + (−8x + 8xα) f f ′2

+ (−8βx + 8βxα) f + f ′4 + 2β f ′2 + β2
)
.

(5.8)

Considering the induced representation

ψ(1)
n = cnψ(1)

0 (5.9)

via explicit calculations from ψ(1)
2 , ψ(1)

3 , ..., ψ(1)
8 , we can obtain the expansion in terms of f and f ′ only.

However, if the expression can be determined explicitly, the formula become quite large. It was shown
via software and symbolic calculations that, for ψ(1)

n (up to n = 8), we get polynomials in terms of f
and f ′ with a coefficient depending on x of the form

ψ(1)
n =

e
∫

W3(x′)dx′

f n

 n∑
j=0

4n−4 j∑
i=0

α1,i j(x)Q1,i j( f , f ′) +
n−1∑
j=0

4n−6−4 j∑
i=2

α2,i j(x)Q2,i j( f , f ′)

 ,
where

Q1,i j( f , f ′) = f i f ′2 j, j = 0, ..., n; i = 0, ..., 4n − 4 j,

Q2,i j( f , f ′) = f i f ′2 j+1, i = 0, ..., n − 1; j = 2, ..., 4n − 6 − 4 j,

where αl,i j(x) are polynomials in x for l = 1, 2 of degree and at most 2n. The problem of establishing
the formula in general is quite complicated due to the growth of the number of terms and complexity.
Some details on the structure of Q1,i j( f , f ′) and Q2,i j( f , f ′) are given in the Figure 1. The points in
Figure 1 represent the distribution of the monomials in terms of f and f ′.
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Figure 1. Plot (in the x and y-axis) of the exponents i and 2 j (or 2 j + 1) present for the
expansion in terms of f and f ′ for Q1,i j( f , f ′) and Q2,i j( f , f ′). The graph corresponds to ψ2–
ψ4.

6. States for the highest weight representation as polynomials of fourth Painlevé transcendents

In previous sections, an algebraic description of the chain of state via induced representation was
presented with the lowest weight. One can also obtain explicitly the action of the different generators
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via various commutator identities for the case of the highest weight. However, again viewed as explicit
expression in terms of the function f related to the fourth Painlevé transcendent, it is highly nontrivial.
Due to the structure of the energy of the ground state, we need to consider β < 0:

ϕ(1)
0 = e

∫
W1(x′)dx′ (6.1)

and then we obtain from
ϕ(1)

1 = cϕ(1)
0 , (6.2)

explicitly

ϕ(1)
1 = −

e
∫

W1(x′)dx′

2 f 3

(
8x f 5 + 8 f 6 − 4 f 4(2 + 3 f ′) + f ′(β + f ′2) + f 3(4

√
−βx

− 8 f ′ − 2 f ′′) − 2 f f ′ f ′′ + f 2(−2
√
−β + 2β + 2 f ′ + 2 f ′2 + f ′′′)

)
.

(6.3)

Then using

f (3) =

(
f ′2

2 f
+ 6 f 3 + 8x f 2 + 2(x2 − (1 + α)) f +

β

2 f

)′
, (6.4)

f (2) =
f ′2

2 f
+ 6 f 3 + 8x f 2 + 2(x2 − (1 + α)) f +

β

2 f
, (6.5)

we get the polynomial only in f and f ′ and then ϕ(1)
1 takes the form

ϕ(1)
1 = −

e
∫

W1(x′)dx′

2 f

(
−2

√
−β + β + 4 f ((1 +

√
−β)x − f (−1 + x2 − α + 2x f + f 2)) + f ′(2 + f ′)

)
. (6.6)

Considering ϕ(1)
2 , we can obtain the following formula, again only in terms of f and f ′,

ϕ(1)
2 =

e
∫

W1(x′)dx′

f 2

(
− 4x f (x)3(−2(α(

√
−β + 2) + 2

√
−β + 3) + 2(

√
−β + 2)x2 + d + f ′(x)( f ′(x) + 2))

+ 2 f (x)2(β(α − 3x2 − 1) + 2(−2α(
√
−β + 1) + (5

√
−β + 4)x2 +

√
−β)

− (−α + x2 − 1) f ′(x)( f ′(x) + 2)) − 2 f (x)4(−2(α(α + 2) +
√
−β + 2)

+ 4x2(α + 2
√
−β + 5) + β + f ′(x)( f ′(x) + 2) − 2x4) + 2x f (x)((

√
−β + 2) f ′(x)( f ′(x) + 2)

− 4
√
−β + d(

√
−β + 4)) +

1
4

(β + f ′(x)2)(β − 4
√
−β + f ′(x)( f ′(x) + 4))

+ 8x f (x)5(−2α −
√
−β + 2x2 − 4) + 8 f (x)6(−α + 3x2 − 1) + 4 f (x)8 + 16x f (x)7

)
.

(6.7)

Considering the induced representation

ϕ(1)
n = cnϕ(1)

0 , (6.8)

it was shown via symbolic calculations that for ψ(1)
n (up to n = 8), we get polynomials in f and f ′ with

a coefficient depending on x of the form

ϕ(1)
n =

e
∫

W1(x′)dx′

f n

 n∑
j

4n−4 j∑
i=0

α1,i j(x)Q1,i j( f , f ′) +
n−1∑

j

4n−4−4 j∑
i=0

α2,i j(x)Q2,i j( f , f ′)

 ,
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where
Q1,i j( f , f ′) = f i f ′2 j, j = 0, ..., n; i = 0, ..., 4n − 4 j,

Q2,i j( f , f ′) = f i f ′2 j+1, j = 0, ..., n − 1; j = 0, ..., 4n − 4 − 4 j,

with αl,i j(x) being polynomials in x for l = 1, 2 and of degree at most 2n. The structure of those
polynomials is also quite complicated. Some details on the structure of Q1,i j( f , f ′) and Q2,i j( f , f ′) is
given in Figure 2. The points in Figure 2 represent the distribution of the monomials in terms of f
and f ′. In that way, the induced representation can be used to obtain quite nontrivial solutions from
the point of view of the Schrödinger equation of the Hamiltonian and define polynomials in f and f ′

recursively via the action of the lowering or raising operators.
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Figure 2. Plot (in the x- and y-axis) of the exponents i and 2 j (or 2 j + 1) present for the
expansion in terms of f f ′ for Q1,i j( f , f ′) and Q2,i j( f , f ′). The graph corresponds to ψ2–ψ4.

In view of these results, the Hamiltonian in terms of the fourth Painlevé transcendent is exactly
solvable, but the solution is not expressed in the usual way. The solvability property can be defined as
the solution being expressed in terms of orthogonal polynomials and more generally as the solution of
the hypergeometric equation (exact solvability) and Heun equations (quasi exact solvability). Here the
solvability is provided via quadratic algebra and the possibility to define infinite dimensional
representations.

7. N-dimensional superintegrable Hamiltonian with Painlevé transcendent and related states

From the point of view of quantum integrable and superintegrable systems, Hamiltonians
involving higher transcendental functions are an important class. Some examples on two-dimensional
spaces were obtained [14, 19]. A systems with N degrees of freedom is integrable if it admits N
mutually commuting and well-defined independent integrals of motion (including the Hamiltonian).
Superintegrable systems admit an additional set of k (k = 1, ...,N − 1) integrals which commute only
with the Hamiltonian but not necessarily with other integrals. Those integrals are also independent
and well-defined quantum mechanical operators. A system is maximally superintegrable if it allows a
total of 2N − 1 integrals (only N of them can be mutually commuting). A large body of literature
exists on superintegrability and we refer the reader to [9] for more details of their classification and
properties.

Based on the one-dimensional Hamiltonians with ladder operators, one can introduce
N-dimensional versions. The approach consists in taking sums of copies of those one-dimensional
Hamiltonians as building blocks in a similar manner as for the isotropic harmonic oscillator or the
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Smorodinsky-Winternitz potential, i.e., considering

H =
N∑
i

Hi =

N∑
i

(
−

d2

dx2
i

− 2 f ′i + 4 f 2
i + 4xi fi + x2

i − 1
)
. (7.1)

Here, all the parameters λi are set as λi = 1. The λi can be exploited to provide anisotropic versions.
Here

fi = PIV(xi, αi, βi),

which means that it is not required for the construction to choose the same parameters αi and βi in
different components; they can be taken independently. Integrals of motion related to the separation of
variables in Cartesian coordinates can be generated directly:

Hi = −
d2

dx2
i

− 2 f ′i + 4 f 2
i + 4xi fi + x2

i − 1, i = 1, ...,N. (7.2)

This means that the Hamiltonian is at least integrable as it allows the separation of variables in
Cartesian coordinates. For each components Hi, which depends on the variable xi only, the
corresponding ladder is given by ci and c†i . The ladder operators can be used to obtain integrals of
motion of the form

Ii j = cic
†

j , I†i j = c†i c j, i, j = 1, ...,N. (7.3)

This provides maximal superintegrability (i.e., 2N − 1 integrals) and the existence of an underlying
symmetry algebra. This Hamiltonian generalizes the isotropic harmonic oscillator and the
Smorodinsky-Winternitz systems in N dimensions. Here the constructions from the previous section
can be used to obtain the states in an algebraic way (in the irreducible case) and to provide explicit
expressions in terms of the fourth Painlevé transcendent and the derivative of the fourth Painlevé
transcendent. The states relative to a given component using lowest weight representations are
denoted by

ψ1
i;ni
= (c†i )niψ(1)

i,0 . (7.4)

The formula in the case of the lowest weight representation for all variables xi is

ϕn1,...,nN =

N∏
i

(c†i )niϕ[N]
0 , (7.5)

where

ψ[N]
0 =

N∏
i=1

ψ(1)
i;0 ,

where
ciψi;0 = 0,

and then by construction,
ciψ

[N]
0 = 0, ∀i = 1, ...,N.

The study of different integrable and superintegrable deformations is beyond the scope of this paper.
However, this illustrates the wide applicability of the results from previous sections. So far only one
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example that would correspond to a particular choice of α and β in the context of three-dimensional
Euclidean space was solved algebraically [27]. It was pointed out that the symmetry algebra is a
generalization of the su(3) algebra and the finite dimensional representations take the form of multiplets
that can be decomposed into su(3)-like multiplets. However, as the parameters of the fourth Painlevé
transcendent were such that rational solutions exist this allowed to make calculations using explicit
realizations for the wavefunctions to build the representations. When the parameters are generic, as
pointed out in earlier sections, induced representations need to be used and the explicit wavefunctions
take a complicated form.

8. Conclusions

Polynomial Heisenberg-Weyl algebras and the corresponding constraints for the existence of finite
dimensional representations have been studied. Those are important in applications to quantum
mechanical systems as they correspond often to the degenerate spectrum and their related states
decomposed into multiplets. Here we provided insight into another setting consisting of induced
constructions of infinite dimensional representations and their related coefficients for the action of the
generators. In order to establish explicit formula, we have used identities based on commutators of
monomials of the generators and applied on the Hamiltonian related to the fourth Painlevé
transcendent. This Hamiltonian possesses third-order ladder operators and also connects with certain
deformations of the harmonic oscillator. The representations of highest and lowest weight types
become in this setting two-variables polynomials in terms of the fourth Painlevé transcendent and its
derivative. To our knowledge, those types of polynomials have not been studied in the literature. They
may have broader applications in a similar way as other types of polynomials, for example, them
Lamé polynomials which appear in different contexts of mathematical physics.

The algebraic methods developed in this paper may also have wider applications given that
polynomial Heisenberg-Weyl algebras and other polynomial algebras appear not only in context of
quantum mechanics, but other contexts of mathematical physics such as recoupling, Racah
polynomials, and more generally, in connection with orthogonal polynomials [9, 28].
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