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Abstract: In this paper, we introduce a new generalization of the Frank matrix, which is a lower
Hessenberg matrix called the generalized max r-Frank matrix. We obtain a recurrence relation provided
by the characteristic polynomial, inverse, determinant, and norm properties of this matrix. We also
present an example to illustrate the results obtained.
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1. Introduction

Special matrices are a hotly studied subject in the research area of matrix theory. Especially,
special matrices whose entries are well-known number sequences and polynomials have become a
very interesting research subject in recent years, and some scholars have obtained some good results
in this area. A lot of research examined the norms of the special matrices involving famous number
sequences and polynomials. They found various properties of these matrices, such as lower bounds,
upper bounds, and exact values for the spectral norms, eigenvalues, Euclidean norms, determinants,
and permanents.

Min and max matrices are one of the most researched and known types of structured matrices, and
they are widely used. Min and max matrices with minimum and maximum entries were first introduced
by Pólya and Szegö [19] as

Mmin =



1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...
...
...
. . .

...

1 2 3 · · · n


and Mmax =



1 2 3 · · · n
2 2 3 · · · n
3 3 3 · · · n
...
...
...
. . .

...

n n n · · · n


,

respectively. Min and max matrices arise in many different theoretical and practical fields, such as the
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one in which Bhat [2] defined meet matrices for the first time, and min matrices are used as an example
in the same paper. Fonseca [4] uses the matrix inverses of some min and max matrices to investigate
their eigenvalues. In [7], underestimating a min matrix’s smallest eigenvalue yields boundaries for
the values of trigonometric functions. Mattila and Haukkanen [12] studied some properties of the
following types of min and max matrices.

Mmin =



a1 a1 a1 · · · a1

a1 a2 a2 · · · a2

a1 a2 a3 · · · a3
...
...
...
. . .

...

a1 a2 a3 · · · an


and Mmax =



a1 a2 a3 · · · an

a2 a2 a3 · · · an

a3 a3 a3 · · · an
...
...
...
. . .

...

an an an · · · an


.

Kizilateş and Terzioglu [11] define r-min and r-max matrices and give the determinants, inverses,
norms, and factorizations of these matrices. Frank defined [5] the matrix of order n

Fn =



n n − 1 0 · · · 0
n − 1 n − 1 n − 2 · · · 0
n − 2 n − 2 n − 2 · · · 0
...

...
...

. . . 0
1 1 1 · · · 1


,

which is called the Frank matrix. A Frank matrix is also a special max matrix. As test matrices for
eigenprograms, the Frank matrix is frequently utilized. This is as a result of the well- and poorly-
conditioned eigenvalues in the Frank matrix [3]. Hake [6] obtained the determinant, inverse, LU-
decomposition, and characteristic polynomials of the Frank matrix. Varah [22] showed a generalization
of the Frank matrix and computed its eigensystem. The generalized Frank matrix is defined [14] as

Fan =



an an−1 0 · · · 0
an−1 an−1 an−2 · · · 0
an−2 an−2 an−2 · · · 0
...

...
...
. . . 0

a1 a1 a1 · · · a1


n×n

.

Mersin and Bahşi [16] investigated the bounds for the maximum eigenvalues of the special cases
of the generalized Frank matrices, which are called Fibonacci Frank and Lucas Frank matrices. The
r-Frank matrix is defined [21] as

Fr
an
=



an an−1 0 · · · 0
ran−1 an−1 an−2 · · · 0
ran−2 ran−2 an−2 · · · 0
...

...
...
. . . 0

ra1 ra1 ra1 · · · a1


n×n

.

Mersin [13] obtained some results about the eigenvalues of minimum matrices by using Sturm’s
theorem. Mersin and Bahşi [15] applied the Sturm theorem to the generalized Frank matrix, which is a

AIMS Mathematics Volume 9, Issue 10, 26826–26835.



26828

special form of the Hessenberg matrix, and examined its eigenvalues by using the Sturm property. We
see that a great deal of research has been done on the aforementioned matrices in the literature [1, 9,
10, 17, 18].

The Hadamard product of A =
(
ai j

)
n×n

and B =
(
bi j

)
n×n

is defined by A ◦ B =
(
ai jbi j

)
n×n

. The

Hadamard inverse of the A is denoted by A◦−1 =
(
a−1

i j

)
, where ai j , 0 [20]. The Euclidean norm of the

matrix A is defined as [8]

∥A∥E =

 n∑
i, j=1

∣∣∣ai j

∣∣∣2
1/2

,

the singular values of the matrix A is
σi =

√
λi(A∗A),

where λi is an eigenvalue of A∗A and A∗ is conjugate transpose of matrix A. The square roots of the
maximum eigenvalues of A∗A are called the spectral norm of A and are induced by ∥A∥2. The following
inequality holds:

1
√

n
∥A∥E ≤ ∥A∥2 ≤ ∥A∥E .

In the light of the above-mentioned studies, we define the generalized max r-Frank matrix, which is
the general form of the Frank matrix, based on the relationship between the matrices mentioned above.
We examine a max matrix and obtain some of its linear algebraic properties, such as determinants,
inverses, and some norms for the generalized max r-Frank matrix and its reciprocal ones. Finally, we
give an example to illustrate the results obtained.

2. Main results

In this section, since the Frank matrix is derived from the minimum matrix, we will define a variant
of the Frank matrix derived from the maximum matrix. When constructing the Frank matrix, we
consider that the elements of the minimum matrix are symmetric with respect to the anti-diagonal
and transformed into a lower-Hessenberg matrix. As a result of these explanations, we can give the
following definition.

The generalized max r-Frank matrix is defined

mr Fan =



an an 0 · · · 0 0
ran an−1 an−1 · · · 0 0
ran ran−1 an−2 · · · 0 0
...

...
...

. . . 0 0
ran ran−1 ran−2 · · · a2 a2

ran ran−1 ran−2 · · · ra2 a1


n×n

. (2.1)

where ai = {a1, a2, a3, ..., an} is a finite sequence with any ai real numbers. If r = 1 and ai =

{1, 2, 3, ..., n}, then the generalized max r-Frank matrices are called max Frank matrices.

Theorem 2.1. Let Pr,n(λ) be the characteristic polynomial of the matrix (mr Fan) and n ≥ 3. Then,
Pr,n(λ) satisfies:
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[Pr,n(λ)]n = (a1 − a2 − λ) [Pr,n(λ)]n−1 − (ra2 − a2 + λ) a2[Pr,n(λ)]n−2 (2.2)

with initial Pr,1(λ) = a1 − λ and Pr,2(λ) = λ2 − λ (a1 + a2) − ra2
2 + a1a2.

Proof. The characteristic polynomial of (rFn) is

Pr,n(λ) = det((mr Fan) − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an − λ an 0 · · · 0 0
ran an−1 − λ an−1 · · · 0 0
ran ran−1 an−2 − λ · · · 0 0
...

...
...

. . . 0 0
ran ran−1 ran−2 · · · a2 − λ a2

ran ran−1 ran−2 · · · ra2 a1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We apply some elementary column operators to Pr,n(λ), and we have that

Pr,n(λ) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an − λ an 0 · · · 0 0
ran an−1 − λ an−1 · · · 0 0
0 ran−1 − an−1 + λ an−2 − an−1 − λ · · · 0 0
...

...
...

. . . 0 0
0 0 0 · · · a2 − a3 − λ a2

0 0 0 · · · ra2 − a2 + λ a1 − a2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By expanding this determinant by the last row and after by the last column, we obtain

[Pr,n(λ)]n = (a1 − a2 − λ) [Pr,n(λ)]n−1 − (ra2 − a2 + λ) a2[Pr,n(λ)]n−2

with initial Pr,1(λ) = a1 − λ and Pr,2(λ) = λ2 − λ (a1 + a2) − ra2
2 + a1a2. □

Theorem 2.2. Assume that (mr Fan) is a matrix in (2.1), and

=

[
an M
rN mr Fan−1

]
with N = [an an an ... an]T

(n−1)×1, and M = [an 0 0 ... 0]1×(n−1). If (mr Fan) is non-singular
matrix, then the inverse of (mr Fan) is

(mr F−1
an

) =
[

u −urM(mr F−1
an−1

)
−u(mr F−1

an−1
)N (mr F−1

an−1
) + ur(mr F−1

an−1
)NM(mr F−1

an−1
)

]
, (2.3)

where u = an−1
anan−1−ra2

n
.

Proof. We can prove the theorem by using the induction method on n. We obtain n = 2.
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(mr F−1
a2

) =
1

det(mr Fa2)

[
a1 −ra2

−a2 a2

]

=


a1

a2a1−ra2
2
−

ra2
a2a1−ra2

2

−
a2

a2a1−ra2
2

a2
a2a1−ra2

2

 .
On the other hand, for n = 2 in our assertion of equality (2.3), we have that[

u −urM(mr F−1
a1

)
−u(mr F−1

a1
)N (mr F−1

a1
) + ur(mr F−1

a1
)NM(mr F−1

a1
)

]

=


a1

a2a1−ra2
2

−
ra1

a2a1−ra2
2
a2

1
a1

−
a1

a2a1−ra2
2

1
a1

a2
1
a1
+ a1

a2a1−ra2
2

1
a1

ra2a2
1
a1


=


a1

a2a1−ra2
2
−

ra2
a2a1−ra2

2

−
a2

a2a1−ra2
2

a2
a2a1−ra2

2

 .
It is seen that equality (2.3) is achieved in these two cases. Thus, our assertion is true for n = 2.

Assume that our claim is true for (n − 1), then by the identity (mr F−1
an−1

)(mr Fan−1) = In−1, we have

(mr F−1
an−1

)


an−1

0
...

0


(n−1)×1

=


1
0
...

0


(n−1)×1

.

To this end, we show that the result is true for n. By multiplying (mr F−1
an

) and (mr Fan), we obtain[
u −urM(mr F−1

an−1
)

−u(mr F−1
an−1

)N (mr F−1
an−1

) + ur(mr F−1
an−1

)NM(mr F−1
an−1

)

] [
an M
rN mr Fan−1

]

=


uan + (−urM(mr F−1

an−1
)rN)

−u(mr F−1
an−1

)Nan + ((mr F−1
an−1

) + ur(mr F−1
an−1

)NM(mr F−1
an−1

))rN

uM + (−urM(mr F−1
an−1

)(mr Fan−1))

−u(mr F−1
an−1

)NM + ((mr F−1
an−1

) + ur(mr F−1
an−1

)NM(mr F−1
an−1

))mr Fan−1


=

[
1 0
0 In−1

]
.

Thus, the proof is complete. □
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Theorem 2.3. The determinant of the matrix (mr Fan)

det([mr Fan]n) = (a1 − a2)det([mr Fan]n−1) − (ra2 − a2)a2det([mr Fan]n−2) (2.4)

is valid.

Proof. By using row-column operations to get det(mr Fan), we obtain

det([mr Fan]n) = (a1 − a2)det([mr Fan]n−1) − (ra2 − a2)a2det([mr Fan]n−2).

□

Theorem 2.4. The Euclidean norm of the matrix (mr Fan) is

∥A∥E =

2 n∑
i=2

(ai)2 + r
n−1∑
i=1

(n − i)(an+1−i)2 + a1


1
2

. (2.5)

Proof. If we apply the definition of Euclidean norm to the matrix (mr Fan), we obtain

∥A∥2E = 2
n∑

i=2

(ai)2 + r
n−1∑
i=1

(n − i)(an+1−i)2 + a1.

□

Theorem 2.5. The upper bounds for the spectral norm of the matrix (mr Fan) is

∥A∥2 ≤ an

√
n(n − 1)|r|2 + n, |r| ≥ 1,

∥A∥2 ≤ an

√
n(n − 2)|r|2 + n, |r| < 1.

Proof. The matrix A is of the form

A =



an an 0 · · · 0 0
ran an−1 an−1 · · · 0 0
ran ran−1 an−2 · · · 0 0
...

...
...

. . . 0 0
ran ran−1 ran−2 · · · a2 a2

ran ran−1 ran−2 · · · ra2 a1


.

Then, we have,

∥A∥2E = 2
n∑

i=2

(ai)2 + r
n−1∑
i=1

(n − i)(an+1−i)2.

Let the matrices B and C as

B =



an an 0 · · · 0 0
an an−1 an−1 · · · 0 0
an an−1 an−2 · · · 0 0
...

...
...
. . . 0 0

an an−1 an−2 · · · a2 a2

an an−1 an−2 · · · a2 a1


n×n

,C =



1 1 0 . . . 0
r 1 1 . . . 0
r r . . . 0
...
...
...
...
...

r r r . . . 1
r r r . . . 1


n×n

,
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such that A = B ◦C. Hence, when |r| ≥ 1, we obtain

c1(B) = max
j

√∑
i

∣∣∣ai j

∣∣∣2 = √na2
n.

r1(C) = max
i

√∑
j

∣∣∣ai j

∣∣∣2 = √(n − 1)|r|2 + 1.

We have
∥A∥2 ≤ an

√
n(n − 1)|r|2 + n.

When |r| < 1, we also obtain
∥A∥2 ≤ an

√
n(n − 2)|r|2 + n.

□

3. A numerical example

In this section, we give a numerical example to verify our results. In the example to be given, the
matrix (2.1), whose entries are Leonardo numbers, will be discussed for n = 5. The Leonardo sequence
is defined by the following recurrence relation:

Len+2 = Len+1 + Len + 1, (n > 0),

where Le1 = Le2 = 1.

Example 3.1. Let

(m2 FLe5) =


9 9 0 0 0

2.9 5 5 0 0
2.9 2.5 3 3 0
2.9 2.5 2.3 1 1
2.9 2.5 2.3 2.1 1


be a matrix as in (2.1) for r = 2 and n = 5. For the characteristic polynomials of (m2 FLe5)i≤5, (2.2)
yields for (i ≥ 2)

[Pr,i(λ)]i = (a1 − a2 − λ) [Pr,i(λ)]i−1 − (ra2 − a2 + λ) a2[Pr,i(λ)]i−2.

Thus, P2,1(λ) = 9− λ, P2,2(λ) = λ2 − 14λ− 117, P2,3(λ) = −λ3 + 17λ2 + 125λ+ 9, P2,4(λ) = λ4 − 18λ3 −

126λ2 + 218λ + 1035, P2,5(λ) = −λ5 + 19λ4 + 110λ3 − 360λ2 − 1169λ − 9.

Example 3.2. The inverse of (m2 FLe5) can be calculated as

(m2 F−1
Le5

) =
[

u −2uM(m2 F−1
Le4

)
−u(m2 F−1

Le4
)N (m2 F−1

Le4
) + 2u(m2 F−1

Le4
)NM(m2 F−1

Le4
)

]
,
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where u = Le4
Le4Le5−2Le2

5
, N = [Le5 Le5 Le5 Le5]T

(4)×1 and M = [Le5 0 0 0]1×(4). Thus, after the

necessary calculations, the inverse of (m2 F−1
Le5

) is obtained as follows:

(m2 F−1
Le5

) =



−35
9 −3 5 15 −15

4 3 −5 −15 15

10 8 −13 −39 39

0 0 0 −1 1

−30 −24 38 116 −115


.

Example 3.3. The determinant of (m2 FLe5) can be calculated as

det(m2 FLe5) =


9 9 0 0 0

2.9 5 5 0 0
2.9 2.5 3 3 0
2.9 2.5 2.3 1 1
2.9 2.5 2.3 2.1 1


.

det([m2 FLe5]5) = (Le1 − Le2)det([m2 FLe5]4) − (2Le2 − Le2)Le2det([m2 FLe5]3)

= (1 − 1)


9 9 0 0

2.9 5 5 0
2.9 2.5 3 3
2.9 2.5 2.3 1

 − (2.1 − 1)


9 9 0

2.9 5 5
2.9 2.5 3

 = −9.

Example 3.4. The Euclidean norm of the matrix (m2 FLe5) can be computed as∥∥∥m2 FLe5

∥∥∥2
E
= 2(12 + 32 + 52 + 92) + 2(4.182 + 3.102 + 2.62 + 1.22) + 1.∥∥∥m2 FLe5

∥∥∥
E
=
√

3577 = 59, 8080.

Example 3.5. We can obtain the upper bounds for the spectral norm of (m2 FLe4) as∥∥∥m2 FLe5

∥∥∥
2
≤ 9
√

5(5 − 1)|2|2 + 5,∥∥∥m2 FLe5

∥∥∥
2
= 23, 0052 ≤ 82, 9759.

4. Concluding remarks

In this paper, we looked into the generalized max r-Frank matrix, deduced some of its linear
algebraic properties, and obtained certain conclusions. This generalization is defined in accordance
with the previous relationship between certain special type matrices. In computational and applied
mathematics, these matrices are especially crucial. Therefore, we hope that these new matrices and
properties that we have found will offer a new perspective to the researchers. For our future studies,
we plan to study whether Sturm’s theorem and bounds for eigenvalues can be applied to the matrix
discussed in this study.
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15. E. Ö. Mersin, M. Bahşi, Sturm theorem for the generalized Frank matrix, Hacet. J. Math. Stat., 50
(2021), 1002–1011. http://doi.org/10.15672/hujms.773281
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