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Abstract: In this paper, a novel observer-based robust preview tracking controller design method is
proposed for a class of continuous-time Lipschitz nonlinear systems with external disturbances and
unknown states. First, a state observer is designed to reconstruct unknown system states. Second,
using differentiation, the state lifting technique, the differential mean value theorem, and several
ingenious mathematical manipulations, an augmented error system (AES) containing the previewable
information of a reference signal is constructed, thereby transforming the tracking control problem
into a robust H∞ control problem. Based on linear parameter-varying (LPV) system theory, a sufficient
condition for asymptotic stability of a closed-loop system with a robust H∞ performance level is
established in terms of the linear matrix inequality (LMI). Furthermore, a tracking controller, which
includes observer-based feedback control, integral control, and preview feedforward compensation,
is established for the original system. In particular, the tracking controller design is simplified by
computing the observer and tracking controller gains simultaneously via only a one-step LMI
algorithm. Finally, numerical simulation results demonstrate that the proposed controller leads to
superior improvement in the output tracking performance compared with the existing methods.
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1. Introduction

Output tracking control, which entails designing a suitable controller to force the output vector of
a control system as close as possible to follow a desired reference signal, is a crucial research frontier
in control theory. Specifically, preview control can significantly improve the tracking performance of
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a closed-loop system using the known future information of a reference signal or disturbances. This
technique has attracted considerable attention because of its superior tracking performance. In recent
decades, preview control has been combined with various advanced control theories, resulting in a
series of control methods, such as robust preview control [1–3], fault-tolerant preview control [4–6],
adaptive preview control [7–9], information fusion preview control [10–12], and decentralized preview
control [13, 14]. For example, in [2], the robust preview control problem was solved for convex
polyhedral uncertain discrete-time systems with a time-varying delay, and an AES that included the
preview information of the reference signal was constructed using a difference operator method;
thus, the preview tracking control was converted to a robust control problem. A LMI condition
to ensure the asymptotic stability of the closed-loop system and the design method of the preview
controller are subsequently provided based on the scaled small gain theorem. In [6], using the model
transformation method, unknown input observer theory, robustness parameter optimisation theory and
preview control technology, a fault-tolerant preview tracking control method based on simultaneous
state and fault estimation was proposed for convex polyhedral LPV systems. In [7], by combining
multimodel adaptive control with preview control, a multimodel adaptive preview controller with
preview compensation was designed for a discrete-time system with unknown piecewise constant
coefficients. In [12], an event-triggered information fusion preview control scheme was employed for
the flight control problem of a two-degree-of-freedom helicopter system. Owing to its fast response,
small overshoot, and high tracking precision, preview control has several practical applications, such
as UAV flight control systems [15], vehicle active suspension control systems [16] and robots [17].

Lipschitz nonlinear systems are a class of nonlinear systems comprising a linear system and a
nonlinear part satisfying global or local Lipschitz conditions. These systems have a strong engineering
background and appear in many practical applications. For example, the neuron activation function
in memristive neural networks [18] and the sinusoidal and cosinusoidal terms in dynamics of single-
link flexible and rigid robot systems [19, 20], which are globally Lipschitz. In addition, owing to
limitations in measurement means or costs, the state variables of an actual system are not always
directly accessible. Thus, it is necessary to estimate the unknown state of the system with the aid
of state observers to achieve feedback control. Several studies have been conducted on the design
of observers and observer-based controllers for Lipschitz nonlinear systems [21–24]. For example,
in [21], a controller design scheme based on a sliding window observer was proposed for a class of
discrete-time Lipschitz nonlinear systems with bounded disturbances. The basic principle was to use
the input and output data of the system in the recent period of time to perform state estimation within
each sliding time window and dynamically update the state estimation through recursive methods to
ensure prediction accuracy. In [22], the separation principle was proven to be applicable to Lipschitz
nonlinear systems, and an observer-based tracking control scheme was proposed. Subsequently, the
results in [22] were extended to quasi-one-sided Lipschitz nonlinear systems in [23]. The problem
of observer-based preview tracking control in discrete-time Lipschitz nonlinear systems was also
considered in [24]. However, to our knowledge, studies on preview control via a state observer for
continuous-time Lipschitz systems have not been reported in the literature.

In this paper, the problem of robust preview tracking control via a state observer is studied for a
class of continuous-time Lipschitz nonlinear systems with external disturbances and unknown states.
First, a state observer is designed to estimate the unknown state variables when the system states are
not fully measurable. Second, using differentiation, the state lifting technique, and several ingenious
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mathematical manipulations, an AES, including the observer information, tracking error, and preview
information of the reference signal, is constructed. The tracking problem is then converted to a
robust H∞ control problem. Based on Lyapunov stability theory, a sufficient condition for asymptotic
stability and robust H∞ performance of the closed-loop system is established in the form of an LMI.
Furthermore, a robust preview tracking controller via a state observer is proposed for the original
system. Finally, numerical simulations are performed. The main contributions of this paper are
summarized as follows:

1) With respect to the tracking control of Lipschitz nonlinear systems, existing studies, such as
[22, 24], consider only a linear output (in the form of y = Cx). In contrast, both nonlinear outputs
and external disturbances are considered in this paper, thereby making the system model more general
and applicable.

2) Compared with the study in [25], the proposed control strategy is applicable in situations where the
states are not fully measurable and ensures the simultaneous convergence of both the system tracking
and estimation errors to zero. Thus, the proposed controller has the advantages of greater practicability
and robustness in actual complex environments.

3) Compared with the observer-based tracking controller presented in [22], the observer-based
preview controller proposed in this paper makes full use of the preview information of the reference
signal, leading to better output tracking performance. Furthermore, unlike the two-step algorithm
in [22], a one-step algorithm that allows the observer and tracking controller gains to be computed
simultaneously via LMI in a straightforward manner is used in this paper. Thus, the control design
complexity is considerably simplified, and the computational load is reduced.
Notation: Rn denotes the n-dimensional Euclidean space; Rm×n denotes the m × n matrix space;
P is a square matrix, and the notation P > 0(P < 0) means that P is a positive (or negative)
definite matrix; AT and A−1 represent the transposed matrix and the inverse matrix of A, respectively.
The notion “*” in a symmetric matrix represents the transpose of the element in the symmetric

position, that is
[

X ∗

Y Z

]
=

[
X YT

Y Z

]
. Sym{A} denotes A + AT; diag(· · · ) denotes a diagonal

matrix composed of elements in the parentheses; L2[0,∞) refers to the space of square integrable

infinite vector sequences, and for Z(t) ∈ L2[0,∞), its norm is given by ‖Z(t)‖2 =

√∫ ∞
0

Z(t)Z(t)dt;

es(i) =

0, · · · , 0,
ith︷︸︸︷
1 , 0, · · · 0︸                       ︷︷                       ︸

s components


T

∈ Rs, s ≥ 1 is a vector of the canonical basis of Rs.

2. System formulation and basic assumptions

In this paper, we consider the following Lipschitz nonlinear system:ẋ(t) = Ax(t) + Bu(t) + Eω(t) + f (x(t))
y(t) = Cx(t) + Du(t) + g(x(t))

, (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, ω(t) ∈ Rq is the external disturbance,
and it satisfies ω̇(t) ∈ L2[0,∞), y(t) ∈ Rp is the system output. A, B,C,D, and E are real constant
matrices of appropriate dimensions. The nonlinear functions f (x) : Rn → Rn and g(x) : Rn → Rp

are differentiable.
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With regard to system (1), the following basic assumptions are made:
A1. The nonlinear terms f (x) and g(x) satisfy

−∞ < f
i j
≤
∂ fi(x)
∂x j

≤ f̄i j < +∞,

−∞ < g
i j
≤
∂gi(x)
∂x j

≤ ḡi j < +∞,

where f
i j

, f̄i j(i, j = 1, · · · , n) and g
i j

,ḡi j(i = 1, · · · , p, j = 1, · · · , n) are real constants.
Remark 1. Lipschitz nonlinear systems satisfying A1 widely exist in practical problems, such
as single-link flexible joint systems [19, 22], vehicle lateral dynamics models [26], nonlinear tire
models [27], and diesel engine models [28]. In particular, if f (x) and g(x) are linear functions,
f

i j
= f̄i j, gi j

= ḡi j are real constants in A1.

When A1 is satisfied, it can be proven that f (x) and g(x) are globally Lipschitz. Hence, they are
called Lipschitz nonlinear terms, and system (1) is referred to as a Lipschitz nonlinear system.

The reference signal r(t) ∈ Rp is piecewise differentiable with finite discontinuity points in [0,∞)
and satisfies the following assumption.
A2. The reference signal r(t) converges to a constant vector r as time tends to infinity, i.e., lim

t→∞
r(t) = r.

In addition, the derivative of r(t) satisfies ṙ(t) ∈ L2[0,∞). Moreover, the reference signal r(t) is assumed
to be previewable in the sense that future values r(τ)(t ≤ τ ≤ t + lr) are available at each time t, where
lr denotes the preview length of the reference signal.
Remark 2. A2 is a basic assumption in the field of preview control [29–31]. In practical problems,
the information of a reference signal is usually fully or partially known, such as a vehicle’s driving
path and an aircraft’s scheduled flight path. Previous studies, such as [32, 33], have shown that the
known information of a reference signal is used to design a feedforward compensator that significantly
improves the tracking behavior of a closed-loop system.

To facilitate the subsequent analysis and proof, the following lemmas are given.

Lemma 1. (Schur complement lemma) [34] A symmetric matrix S =

[
S 11 S 12

S T
12 S 22

]
< 0 is equivalent to

any one of the following conditions:
(i) S 22 < 0, S 11 − S 12S −1

22 S T
12 < 0 ;

(ii) S 11 < 0, S 22 − S T
12S −1

11 S 12 < 0 .

Lemma 2. [35] For matrices T , H, V , W with appropriate dimensions and a scalar ζ, the inequality

T + Sym{WH} < 0

is fulfilled if the following condition holds:

[
T ∗

ζH + VTWT −Sym{ζVT}

]
< 0.
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3. Main results

3.1. AES construction

In practical applications, it is generally impossible to obtain all the states of a system via
measurement. Therefore, to estimate the unknown system states, we consider the following observer
dynamical system:  ˙̂x(t) = Ax̂(t) + Bu(t) + f (x̂(t)) + L(y(t) − ŷ(t))

ŷ(t) = Cx̂(t) + Du(t) + g(x̂(t))
, (2)

where x̂(t) ∈ Rn is the observer state, ŷ(t) ∈ Rp is the output of the observer, and L is the observer gain
matrix to be designed.

The estimation error is defined as follows:

ε(t) = x(t) − x̂(t). (3)

From systems (1) and (2), the dynamic equation of the estimation error is obtained as follows:

ε̇(t) = (A − LC)ε(t) + f (x(t)) − f (x̂(t)) − L[g(x(t)) − g(x̂(t))] + Eω(t). (4)

Taking the derivatives of both sides of the observer system (2) leads to
d
dt

˙̂x(t) = A ˙̂x(t) + Bu̇(t) +
∂ f (x̂)
∂x̂

˙̂x(t) + L(ẏ(t) − ˙̂y(t))

˙̂y(t) = C ˙̂x(t) + Du̇(t) +
∂g(x̂)
∂x̂

˙̂x(t)
, (5)

where ∂ f (x̂)
∂x̂ and ∂g(x̂)

∂x̂ can be expressed as follows:

∂ f (x̂)
∂x̂

=


∂ f1(x̂)
∂x̂1

· · ·
∂ f1(x̂)
∂x̂n

· · · · · · · · ·
∂ fn(x̂)
∂x̂1

· · ·
∂ fn(x̂)
∂x̂n


=

n∑
i=1

n∑
j=1

en(i)eT
n ( j)

∂ fi(x̂)
∂x̂ j

, (6)

∂g(x̂)
∂x̂

=


∂g1(x̂)
∂x̂1

· · ·
∂g1(x̂)
∂x̂n

· · · · · · · · ·
∂gp(x̂)
∂x̂1

· · ·
∂gp(x̂)
∂x̂n


=

p∑
i=1

n∑
j=1

ep(i)eT
n ( j)

∂gi(x̂)
∂x̂ j

. (7)

For simplicity, the following notations are used.

φi j
∆
=
∂ fi(x̂)
∂x̂ j

, ηi j
∆
=
∂gi(x̂)
∂x̂ j

, ϕi j
∆
=
∂ fi(x)
∂x j

, ξi j
∆
=
∂gi(x)
∂x j

;
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and
φ

∆
= [φ11, · · · , φ1n, · · · , φn1, · · · , φnn],

η
∆
= [η11, · · · , η1n, · · · , ηp1, · · · , ηpn],

ϕ
∆
= [ϕ11, · · · , ϕ1n, · · · , ϕn1, · · · , ϕnn],

ξ
∆
= [ξ11, · · · , ξ1n, · · · , ξp1, · · · , ξpn].

Combined with A1, we assume φ, η, ϕ, and ξ are unknown parameter vectors whose elements satisfy

f
i j
≤ φi j ≤ f̄i j(i, j = 1, · · · , n),

g
i j
≤ ηi j ≤ ḡi j(i = 1, · · · , p, j = 1, · · · , n),

f
i j
≤ ϕi j ≤ f̄i j(i, j = 1, · · · , n),

g
i j
≤ ξi j ≤ ḡi j(i = 1, · · · , p, j = 1, · · · , n).

Notably, the unknown parameters φ and ϕ belong to the same bounded convex set:

ς1 = {σ = [σ11, · · · , σ1n, · · · , σn1, · · · , σnn] : f
i j
≤ σi j ≤ f̄i j, i = 1, · · · , n; j = 1, · · · , n}.

Similarly, the unknown parameters η and ξ belong to the same bounded convex set as shown below:

ς2 = {χ = [χ11, · · · , χ1n, · · · , χp1, · · · , χpn] : g
i j
≤ χi j ≤ ḡi j, i = 1, · · · , p; j = 1, · · · , n}.

The tracking error is defined as
e(t) = y(t) − r(t). (8)

From Eqs (1) and (8), the tracking error satisfies the following:

ė(t) = Cẋ(t) + Du̇(t) +
∂g(x)
∂x

ẋ(t) − ṙ(t)

= C(ξ)[ ˙̂x(t) + ε̇(t)] + Du̇(t) − ṙ(t), (9)

where

C(ξ) = C +

p∑
i=1

n∑
j=1

ξi jep(i)eT
n ( j). (10)

Moreover, using Eqs (3), (6), and (7) and the previously described notations, Eq (5) can be rewritten
as follows: 

d
dt

˙̂x(t) = [A(φ) + LG(ξ, η)] ˙̂x(t) + LC(ξ)ε̇(t) + Bu̇(t)

˙̂y(t) = C(η) ˙̂x(t) + Du̇(t)
, (11)

where C(ξ) is as stated in Eq (10),

A(φ) = A +

n∑
i=1

n∑
j=1

φi jen(i)eT
n ( j), (12)
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C(η) = C +

p∑
i=1

n∑
j=1

ηi jep(i)eT
n ( j), (13)

G(ξ, η) =

p∑
i=1

n∑
j=1

(ξi j − ηi j)ep(i)eT
n ( j). (14)

Combining the first equation of system (11) and Eq (9) yields the following error system:[ d
dt

˙̂x(t)
ė(t)

]
=

[
A(φ) + LG(ξ, η) 0

C(ξ) 0

] [ ˙̂x(t)
e(t)

]
+

[
LC(ξ)
C(ξ)

]
ε̇(t) +

[
B
D

]
u̇(t) +

[
0
−I

]
ṙ(t). (15)

According to A2, the information r(τ)(t ≤ τ ≤ t + lr) of the reference signal r(t), which ranges
from the current time t to the future lr steps, is known in advance. To use such information to construct
the preview compensation mechanism and retain the dynamic process of the system itself, several
ingenious mathematical operations are now applied to system (15).

By defining a new state vector x̄(t) =

 ˙̂x(t)
e(t) −

∫ t+lr
t

ṙ(s)ds

 and a disturbance vector $(t) =

[
ω̇(t)

ṙ(t + lr)

]
,

Eq (15) can be expressed as

˙̄x(t) = A11(ξ, φ, η)x̄(t) + A12(ξ)ε̇(t) + B̄u̇(t) + Ē$(t), (16)

where

A11(ξ, φ, η) = A11
0 +

p,ni∑
i, j=1

ξijA11
1i j +

n,ni∑
i, j=1

φi jA11
2i j +

p,ni∑
i, j=1

(ξi j − ηi j)A11
1 A11

3i j,

A12(ξ) =

[
LC(ξ)
C(ξ)

]
, B̄ =

[
B
D

]
, Ē =

[
0 0
0 −I

]
,

with

A11
0 =

[
A 0
C 0

]
, A11

1i j =

[
0 0

ep(i)eT
n ( j) 0

]
, A11

2i j =

[
en(i)eT

n ( j) 0
0 0

]
,

A11
1 =

[
L
0

]
, A11

3i j =
[
ep(i)eT

n ( j) 0
]
.

Taking the derivatives of both sides of Eq (4) leads to

d
dt
ε̇(t) = [F(ϕ, φ) − LG(ξ, η)] ˙̂x(t) + [A(ϕ) − LC(ξ)]ε̇(t) + Eω̇(t), (17)

where G(ξ, η) and C(ξ) are given by Eqs (14) and (10), respectively, and

A(ϕ) = A +

n∑
i=1

n∑
j=1

ϕi jen(i)eT
n ( j),

F(ϕ, φ) =

n∑
i=1

n∑
j=1

(ϕi j − φi j)en(i)eT
n ( j).
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Combining Eqs (16) and (17), we obtain
˙̄x(t) = A11(ξ, φ, η)x̄(t) + A12(ξ)ε̇(t) + B̄u̇(t) + Ē$(t)
d
dt
ε̇(t) = A21(ϕ, φ, ξ, η)x̄(t) + A22(ϕ, ξ)ε̇(t) + Ẽ$(t)

, (18)

where A11(ξ, φ, η), A12(ξ), B̄ and Ē are as previously described, and

A21(ϕ, φ, ξ, η) = A21
0 +

n,ni∑
i, j=1

(ϕij − φi j)A21
1i j +

p,ni∑
i, j=1

(ξi j − ηi j)LA21
2i j,

A22(ϕ, ξ) = A(ϕ) − LC(ξ), Ẽ =
[
E 0
]
,

with
A21

0 = 0, A21
1i j =

[
en(i)eT

n ( j) 0
]
, A21

2i j =
[
ep(i)eT

n ( j) 0
]
.

To evaluate the system performance, we introduce the following linear quadratic
performance function

J =

∫ ∞

0

[
(y(t) − r(t + lr))TQe(y(t) − r(t + lr)) + ε̇T(t)Qεε̇(t) + u̇T(t)Ru̇(t)

]
dt, (19)

where Qe > 0,Qε > 0, and R > 0 are weighting matrices that can be tuned based on the
designer’s experience.

In fact, if we define a performance signal as follows:

z(t) = Mx̄(t) + Y ε̇(t) + Nu̇(t), (20)

where

M =

0 Q1/2
e

0 0
0 0

 ,Y =


0

Q1/2
ε

0

 ,N =


0
0

R1/2

 ;
then, the performance index function (19) can be expressed as the square of the L2 norm of the
performance signal:

J =

∫ ∞

0
zT(t)z(t)dt = ‖z(t)‖22 . (21)

Combining Eqs (18) and (20), we obtain
˙̄x(t) = A11(ξ, φ, η)x̄(t) + A12(ξ)ε̇(t) + B̄u̇(t) + Ē$(t)
d
dt
ε̇(t) = A21(ϕ, φ, ξ, η)x̄(t) + A22(ϕ, ξ)ε̇(t) + Ẽ$(t)

z(t) = Mx̄(t) + Y ε̇(t) + Nu̇(t)

. (22)

Notably, system (22) is still in the form of an LPV system. In the study of preview control, it
is generally referred to as an AES. By introducing state feedback control to this system, a dynamic
output feedback tracking controller with a preview compensation mechanism can be established for
the original system (1). At this point, the observer-based robust preview tracking control problem
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of system (1) is transformed into a robust H∞ controller design problem of system (22) under the
performance index (21).

Precisely, the main problem to be addressed is stated as follows:
The controller for system (22) is designed to satisfy these two requirements:
(i) The closed-loop system of AES (22) with $(t) = 0 is asymptotically stable.
(ii) Under the zero initial condition, the closed-loop system of AES (22) has a prescribed H∞

disturbance attenuation level γ > 0, i.e.,

‖z(t)‖2
‖$(t)‖2

≤ γ, (23)

is satisfied for any nonzero $(t) ∈ L2.
Note that the inequality (23) is also known as the disturbance attenuation condition, which means

that the effect of external disturbance $(t) on performance signal z(t) is attenuated at least by a level γ.
We say that the closed-loop system is asymptotically stable with H∞ performance level γ if the

above two requirements are satisfied. The corresponding controller is said to be the robust controller
with H∞ performance level γ.

3.2. Observer-based robust preview controller design

For AES (22), we introduce the following state feedback controller:

u̇(t) = Kx̄(t), (24)

where K is the controller gain matrix to be determined.
With control law (24), the closed-loop system of AES (22) is expressed as follows:

˙̄x(t) = (A11(ξ, φ, η) + B̄K)x̄(t) + A12(ξ)ε̇(t) + Ē$(t)
d
dt
ε̇(t) = A21(ϕ, φ, ξ, η)x̄(t) + A22(ϕ, ξ)ε̇(t) + Ẽ$(t)

z(t) = (M + NK)x̄(t) + Y ε̇(t)

. (25)

Notably, the unknown parameters φ and ϕ belong to the previously mentioned bounded convex set
ς1, whose set of vertices is defined by

υς1 = {σ = [σ11, · · · , σ1n, · · · , σn1, · · · , σnn] : f
i j
≤ σi j ≤ f̄i j, i = 1, · · · , n; j = 1, · · · , n}.

Moreover, the unknown parameters η and ξ belong to the previously stated bounded convex set ς2,
whose set of vertices is defined by

υς2 = {χ = [χ11, · · · , χ1n, · · · , χp1, · · · , χpn] : g
i j
≤ χi j ≤ ḡi j, i = 1, · · · , p; j = 1, · · · , n}.

For convenience, we define the following matrices:

T1 =

[
In×n

0p×n

]
,Q1 =

[
In×n 0n×p

]
,T2 =

[
0n×p

Ip×p

]
,T3 =

[
In×n

0p×n

]
. (26)
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Theorem 1. Suppose that A1 and A2 hold. Given scalars ϑ > 0 and γ > 0, the closed-loop system (25)
is asymptotically stable with H∞ performance level γ for all admissible uncertainties ϕ, φ, ξ, and η if
there exist matrices P1 > 0, P2 > 0, X, U, and V such that

Θ11 ∗ ∗ ∗ ∗ ∗

Θ21 Θ22 ∗ ∗ ∗ ∗

ĒT ẼT −γ2I ∗ ∗ ∗

MP1 + NX YP2 0 −I ∗ ∗

Θ51 −ϑUT 0 0 −Sym{ϑVT} ∗

ϑUTT T
3 Θ62 0 0 0 −Sym{ϑVT}


< 0 (27)

for ∀ϕ ∈ υς1 , ∀φ ∈ υς1 , ∀ξ ∈ υς2 and ∀η ∈ υς2 , where

Θ11 = Sym{A(ξ, φ)P1 + B̄X + T1UG(ξ, η)Q1},

Θ21 = P2CT(ξ)T T
2 + CT(ξ)UTT T

3 + F(ϕ, φ)Q1P1 − UG(ξ, η)Q1,

Θ22 = Sym{A(ϕ)P2 − UC(ξ)},
Θ51 = ϑUTT T

1 + G(ξ, η)Q1P1 − VG(ξ, η)Q1,

Θ62 = −ϑUT + C(ξ)P2 − VC(ξ).

Furthermore, the controller and observer gain matrices are computed as K = XP−1
1 and L =

UV−1, respectively.

Proof. Consider the following positive-definite Lyapunov function candidate:

V(x̄(t), ε̇(t)) = x̄T(t)P−1
1 x̄(t) + ε̇T(t)P−1

2 ε̇(t). (28)

Inspired by [25], the asymptotic stability of the closed-loop system (25) is guaranteed under the
prescribed H∞ performance criterion if the following inequality holds:

V̇(x̄(t), ε̇(t)) + zT(t)z(t) − γ2$T(t)$(t) ≤ 0. (29)

In fact, by denoting

Γ1 =


(A11(ξ, φ, η) + B̄K)T 0 0

AT
12(ξ) 0 0
ĒT 0 0

 ,
Γ2 =


0 AT

21(ϕ, φ, ξ, η) 0
0 AT

22(ϕ, ξ) 0
0 ẼT 0

 ,
Γ3 =

[
M + NK Y 0

]
,

X(t) =
[
x̄T(t) ε̇T(t) $T(t)

]T
,

we have

V̇(x̄(t), ε̇(t)) = ˙̄xT(t)P−1
1 x̄(t)+ x̄T(t)P−1

1
˙̄x(t)+

d
dt
ε̇T(t)P−1

2 ε̇(t) + ε̇T(t)P−1
2

d
dt
ε̇(t)

AIMS Mathematics Volume 9, Issue 10, 26741–26764.



26751

= XT(t)(Γ1P−1
1 +P−1

1 ΓT
1 +Γ2P−1

2 +P−1
2 ΓT

2 )X(t). (30)

Using Eq (30), the left side of Eq (29) can be reformulated as follows:

V̇(x̄(t), ε̇(t)) + zT(t)z(t) − γ2$T(t)$(t) = XT(t)ΩX(t), (31)

where

Ω = Sym{Γ1P−1
1 + Γ2P−1

2 } + ΓT
3 Γ3 + diag(0, 0,−γ2I).

At this point, the problem is transformed to finding a sufficient condition for Ω < 0. By the Schur
complement lemma, i.e., Lemma 1, the inequality Ω < 0 is equivalent to

Sym{P−1
1 (A11(ξ, φ, η) + B̄K)} ∗ ∗ ∗

AT
12(ξ)P−1

1 + P−1
2 A21(ϕ, φ, ξ, η) Sym{P−1

2 A22(ϕ, ξ)} ∗ ∗

ĒTP−1
1 ẼTP−1

2 −γ2I ∗

M + NK Y 0 −I

 < 0. (32)

By performing the powerful congruence transformation, i.e., premultiplying and postmultiplying
the matrix on the left side of Eq (32) by the invertible matrix diag(P1, P2, I, I) and its transpose,
respectively, we obtain a sufficient condition for inequality (32):

Sym{(A11(ξ, φ, η) + B̄K)P1} ∗ ∗ ∗

P2AT
12(ξ) + A21(ϕ, φ, ξ, η)P1 Sym{A22(ϕ, ξ)P2} ∗ ∗

ĒT ẼT −γ2I ∗

(M + NK)P1 YP2 0 −I

 < 0. (33)

Using Eq (26), A11(ξ, φ, η), A12(ξ), and A21(ϕ, φ, ξ, η) in Eq (33) can be rewritten as follows:

A11(ξ, φ, η) = A(ξ, φ) + T1LG(ξ, η)Q1, (34)

A12(ξ) = T2C(ξ) + T3LC(ξ), (35)

A21(ϕ, φ, ξ, η) = F(ϕ, φ)Q1 − LG(ξ, η)Q1, (36)

where

A(ξ, φ) =

[
A(φ) 0
C(ξ) 0

]
.

From Eqs (34)–(36), inequality (33) can be rewritten as follows:
Λ11 ∗ ∗ ∗

Λ21 Sym{A22(ϕ, ξ)P2} ∗ ∗

ĒT ẼT −γ2I 0
(M + NK)P1 YP2 0 −I

 < 0, (37)

where
Λ11 = Sym{(A(ξ, φ) + T1LG(ξ, η)Q1 + B̄K)P1},

Λ21 = P2[(T2 + T3L)C(ξ)]T + [F(ϕ, φ) − LG(ξ, η)]Q1P1.
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Denote the matrix on the left side of inequality (37) as Φ. Because of the presence of some nonlinear
coupling terms, such as T3LC(ξ)P2, the matrix inequality Φ < 0 cannot be solved directly. To avoid
any nonlinearities and make the proposed design scheme easier to handle numerically, the change-of-
variable technique and a novel auxiliary matrix approach are used to solve this problem. With the
change in variable X = KP1, the controller gain matrix is calculated as K = XP−1

1 . To conveniently
determine the observer gain matrix, we introduce a nonsingular matrix V and define L = UV−1. Then,
the following equation holds:

LG(ξ, η)Q1P1 = UV−1[G(ξ, η)Q1P1 − VG(ξ, η)Q1] + UG(ξ, η)Q1, (38)

LC(ξ)P2 = UV−1[C(ξ)P2 − VC(ξ)] + UC(ξ). (39)

From Eqs (38) and (39), the matrix Φ on the left side of Eq (37) can be re-expressed as follows:

Φ = Σ1+Sym




[G(ξ, η)Q1P1 − VG(ξ, η)Q1]T 0

0 [C(ξ)P2 − VC(ξ)]T

0 0
0 0


[
V−T 0

0 V−T

]
︸                                                                                ︷︷                                                                                ︸

W

[
UTT T

1 −UT 0 0
UTT T

3 −UT 0 0

]
︸                     ︷︷                     ︸

H


,

where

Σ1 =


S 11 ∗ ∗ ∗

S 21 Sym{A(ϕ)P2 − UC(ξ)} ∗ ∗

ĒT ẼT −γ2I ∗

MP1 + NX YP2 0 −I

 ,
with

S 11 = Sym{A(ξ, φ)P1 + B̄X + T1UG(ξ, η)Q1},

S 21 = P2CT(ξ)T2
T + CT(ξ)UTT3

T + F(ϕ, φ)Q1P1 − UG(ξ, η)Q1.

According to Lemma 2, the matrix inequality Φ < 0 is satisfied if the following condition holds:[
Σ1 ∗

Σ2 −Sym{ϑVT}

]
< 0, (40)

where

Σ2 = ϑH + VTWT

=

[
ϑUTT T

1 + G(ξ, η)Q1P1 − VG(ξ, η)Q1 −ϑUT 0 0
ϑUTT T

3 −ϑUT + C(ξ)P2 − VC(ξ) 0 0

]
.

The matrix inequality (40) is equivalent to condition (27) stated in Theorem 1. Hence, if
condition (27) is satisfied, then condition (37), i.e., Φ < 0, is satisfied. As a result, the condition
Ω < 0 is ensured. This completes the proof of Theorem 1. �
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Remark 3. Notably, a direct result of the LMI condition (27) being satisfied in Theorem 1 is

[A(ϕ) − LC(ξ)]TP−1
2 [A(ϕ) − LC(ξ)] − P−1

2 < 0 (41)

for ∀ξ ∈ υς2 . Furthermore, by applying the differential mean value theorem to f (x(t)) − f (x̂(t)) and
g(x(t)) − g(x̂(t)) in dynamic equation (4) for estimation error, the state matrix is A(ϕ) − LC(ξ). By
inequality (41), the estimation error system (4) is asymptotically stable, indicating that the proposed
observer system (2) achieves an asymptotic estimation of the true state of system (1). Therefore, the
LMI condition stated in Theorem 1 ensures that the state estimation and output tracking errors converge
to zero simultaneously as time tends to infinity.
Remark 4. To obtain a robust tracking control structure with superior performance, the disturbance
attenuation level γ should be reduced as much as possible. Thus, the controller design problem can be
formulated as the following minimization problem:minimize γ2

subject to P1 > 0, P2 > 0, X,U,V, and LMI (27)
.

Now we discuss the controller design structure of system (1).
If the LMI problem of Theorem 1 has a feasible solution, then the controller gain matrix is calculated

as K = XP−1
1 . To clearly illustrate the structure of the proposed tracking controller, the controller gain

matrix K is partitioned as follows:
K =
[
K1 K2

]
, (42)

where K1 ∈ R
m×n and K2 ∈ R

m×p. As a result, controller (23) can be expressed as follows:

u̇(t) = K1 ˙̂x(t) + K2[e(t) −
∫ t+lr

t
ṙ(s)ds]. (43)

To attain the control input u(t) of system (1), we choose a constant ` satisfying ` ≥ lr and calculate
the integral of both sides of Eq (43) over [−`, t]:

u(t) − u(−`) = K1(x̂(t) − x̂(−`)) + K2

∫ t

−`

e(s)ds − K2

∫ lr

0
[r(t + s) − r(−` + s)]ds.

Notably, u(−`) = 0, e(s) = 0(−` ≤ s < 0), x̂(−`) = 0, and r(−` + s) = 0(0 ≤ s ≤ lr). Substituting
these conditions into the above equation, the second theorem of this paper can be derived.
Theorem 2. Suppose that A1 and A2 hold. If LMI (27) in Theorem 1 has a feasible solution, then the
observer-based robust preview tracking controller of system (1) is

u(t) = K1 x̂(t) + K2

∫ t

0
e(s)ds − K2

∫ t+lr

t
r(s)ds, (44)

where the estimated state x̂(t) is given by the observer system (2) with the observer gain matrix L =

UV−1 and the controller gain matrices K1 and K2 are determined via Eq (42).
Remark 5. The innovation of this paper is the design of an observer-based robust preview controller for
Lipschitz nonlinear systems in the form of (1). As shown in Eq (44), the proposed controller consists of
three parts. The first part K1 x̂(t) represents the observer-based state feedback control action, the second
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part K2

∫ t

0
e(s)ds represents the integral control action used to eliminate the steady-state error, and the

third part −K2

∫ t+lr
t

r(s)ds represents the preview compensation action composed of the known future
information of the reference signal. The novel observer-based preview controller design significantly
enhances robust tracking control performance.
Remark 6. Recently, the tracking control problem of continuous-time Lipschitz nonlinear systems
has received considerable attention. Novel and interesting methods for solving related problems have
been proposed [22, 25]. Unlike [22], the previewable information of the reference signal is fully used
in the controller design in this paper. As such, the proposed tracking controller includes a preview
feedforward compensation mechanism, which can improve the output tracking performance of the
closed-loop system. Furthermore, compared with the two-step algorithm in [22], the observer-based
robust preview tracking controller design method in Theorem 2 is quite simple and straightforward, and
the observer and tracking controller gains can be determined simultaneously through a one-step LMI
algorithm. Hence, the design complexity and computational load are effectively reduced. In addition,
if the full system state information cannot be measured, the preview tracking controller in [25] will not
be applicable. In this case, the observer-based preview control method proposed in this paper offers
an effective and practical solution. In this sense, our design can be considered an improvement and
optimization of techniques in [22, 25].

4. Numerical simulation

To illustrate the effectiveness and superiority of the proposed control scheme, simulation
experiments are performed using a well-known single-link flexible joint robot system and a numerical
example in this section. A simulation comparison is performed among the control scheme in [22], the
proposed scheme, and the LQR scheme based on linearization via MATLAB software.
Example 1. Consider the well-known single-link flexible joint robot system [19, 22, 36]ẋ(t) = Ax(t) + Bu(t) + f (x(t))

y(t) = Cx(t)
,

where

A =


0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 0

 , B =


0

21.6
0
0

 ,C =
[
12 0 4 0

]
, f (x) =


0
0
0

−3.33 sin(x3)

 .
The nonlinear term f (x) satisfies A1 with f

41
= f̄41 = f

42
= f̄42 = f

44
= f̄44 = 0, f

43
= −3.33, f̄43 =

3.33. f
i j

= f̄i j = 0, i = 1, 2, 3; j = 1, 2, 3, 4. Suppose that the desired reference signal satisfies A2.
Set Qe = 8,Qε = 0.06,R = 8, γ = 10, ϑ = 0.5. From Theorem 1, by resorting to the LMI toolbox in

MATLAB, the observer and tracking controller gain matrices are calculated concurrently as follows:

L =
[
1.0196 9.5952 0.6080 0.0090

]T
,

K1 =
[
−181.9502 −14.0566 −368.8490 −59.9944

]
,K2 = −51.6386.

AIMS Mathematics Volume 9, Issue 10, 26741–26764.



26755

According to Theorem 2, a robust observer-based preview tracking controller can then be derived.
For simulation, the previewable reference signal is taken as

r(t) =


0, t < 20

0.15(t − 20), 20 ≤ t ≤ 40
3, t > 40

.

The initial state of the system is x(0) =
[
0 0 0 0

]T
, and the initial state of the observer is set as

x̂(0) =
[
0.01 0 0.01 0.02

]T
.

The output response curve of the closed-loop system is plotted in Figure 1, and the response
curves of the tracking error and control input are shown in Figures 2 and 3, respectively. These
figures reveal that the system outputs in three methods can realize asymptotic tracking of the reference
signal regardless of the effects of disturbance and Lipschitz nonlinearities. Compared with the method
in [22] and the LQR method based on linearization, the proposed control scheme forces the output
signal to track the reference signal more rapidly and accurately. The excellent tracking performance
mainly benefits from the feedforward compensation mechanism of the preview information of the
reference signal.
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Figure 1. Time trajectories of the closed-loop output and reference signal.
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Figure 3. Time response of control input.

To quantitatively demonstrate the superiority of the proposed method, the ISE, ITSE, IAE, and
ITAE deviation integral indicators are evaluated (Table 1). Compared with the method in [22] and the
LQR method based on linearization, the proposed method can significantly decrease the integral index
values, thereby achieving excellent tracking performance.

Table 1. Performance index results.

Performance Index Method in [22] Proposed method lr = 0.6 LQR based on linearization
ISE 0.1621 0.0070 4.4076

ITSE 4.8244 0.0270 146.1312
IAE 1.8807 0.1928 10.3451

ITAE 54.7718 3.1560 346.8388

To illustrate the excellent observation effect, Figures 4–7 show the response curves of the true and
estimated system states. The estimated state provided by the observer converges quickly and accurately
to the true state.
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Figure 4. True and estimated states of x1.
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Figure 5. True and estimated states of x2.
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Figure 7. True and estimated states of x4.
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Example 2. Consider a nonlinear system in the form of Eq (1) with the following system parameters:

A =

[
−12 1

1 −5

]
, B =

[
5
−2.5

]
,C =

[
5 1
]
, E =

[
1
0

]
, f (x) =

[
0

−0.5 sin(x2)

]
, g(x) = 0.1 arctan(x2).

The nonlinear terms f (x) and g(x) satisfy A1 with f
11

= f̄11 = f
12

= f̄12 = f
22

= f̄22 = 0, f
21

=

−0.5, f̄21 = 0.5.g
11

= ḡ11 = 0, g
12

= 0, ḡ12 = 0.1. Suppose that the desired reference signal satisfies A2.
Set Qe = 1,Qε = 0.05,R = 2, γ = 2, ϑ = 0.1. By Theorem 1, using the LMI toolbox in MATLAB,

the observer and tracking controller gain matrices are computed simultaneously as follows:

L =
[
−1.2156 −0.4780

]T
,

K1 =
[
−2.7291 −1.2977

]
,K2 = −4.6757.

According to Theorem 2, a robust observer-based preview tracking controller can then be derived.
For simulation, the reference signal is taken as

r(t) =

{
0, t < 20
2, t ≥ 20

.

The external disturbance is considered ω(t) = sin(t)e−0.25t, the initial system state is x(0) =
[
0 0
]T

,

and the initial observer state is x̂(0) =
[
0.1 0.2

]T
.

The output response curve of the closed-loop system is shown in Figure 8, and the response
curves of the tracking error and control input are shown in Figures 9 and 10, respectively. By
analyzing the simulation graphs, it is evident that compared with the control method in [22] and
the LQR method based on linearization, the proposed control method reduces the effects caused by
the disturbance and has a faster response speed, lower overshoot, and smaller tracking error. The
significant improvement in tracking performance of the closed-loop system is mainly attributed to the
feedforward compensation mechanism of the preview information of the reference signal. Numerical
simulation results confirm the effectiveness and superiority of the proposed preview controller in
improving the system tracking performance.
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The quantitative comparison results via some direct and simple performance criteria, such as ISE,
ITSE, IAE, and ITAE, are provided in Table 2. As can be seen in the table, the performance indices are
decreased when using the proposed controller compared with the method in [22] and the LQR method
based on linearization.

Table 2. Performance index results.

Performance Index Method in [22] Proposed method lr = 0.1 LQR based on linearization
ISE 1.0443 0.2786 1.1768

ITSE 20.0064 4.4163 20.1584
IAE 1.3770 0.8986 1.9804

ITAE 18.1620 8.0184 20.9162

Figures 11 and 12 show the response curves of the true and estimated system states. The estimated
state provided by the observer produces fast and accurate convergence to the actual system state. The
observation performance of the constructed state observer is satisfactory.
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Figure 11. True and estimated states of x1.
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Figure 12. True and estimated states of x2.

Remark 7. The possible challenges for implementing the proposed method in practical applications
include the following: (i) The actual system is complex and variable, making it difficult to
mathematically model it in the form of system (1). (ii) Model simplification may lead to deviations
between theory and practice. (iii) It is uncertain whether suitable sensors can be found to detect the
preview information of the reference signal mentioned in A1 for specific tracking problems.

5. Conclusions

In this paper, a novel observer-based robust preview tracking controller is designed for a class of
continuous-time Lipschitz nonlinear systems with external disturbances and unknown states. First, a
state observer is considered to reconstruct the unmeasured system state variables. Second, based on
differentiation, the state lifting technique, the differential mean value theorem, and several ingenious
mathematical manipulations, an AES, which includes the preview information of a reference signal,
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is constructed in the form of an LPV system. Thus, the tracking problem is transformed into a robust
H∞ control problem. Based on the Lyapunov stability theory and the LMI approach, a state feedback
controller is developed to guarantee that the closed-loop system is asymptotically stable with robust
H∞ performance. Then, by regressing the controller to the original system, an observer-based robust
preview tracking controller design is derived. In particular, the preview information of the reference
signal is used as feedforward compensation to improve the tracking performance of the system. In
addition, the observer and tracking controller gains can be computed via a one-step LMI algorithm.
Numerical simulation results demonstrate that the tracking performance of the proposed controller is
superior to that of existing controllers.
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