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Abstract: The Youden index is often used to measure the effectiveness of biomarkers and aids
to find the optimal cutoff point. Since pooled specimens have been shown to be an effective cost-
cutting technique, we proposed the exact inferential procedures for the Youden index and its associated
cutoff point based on the pooled specimens under the gamma or the inverse Gaussian assumption.
The generalized confidence intervals (GCIs) were proposed for the Youden index and its associated
cutoff point. Monte Carlo simulations were used to assess the performance of the proposed GCIs.
The simulation results show that the proposed GCIs outperformed existing methods such as the
bootstrap-p CIs in terms of the coverage probability. Finally, the proposed procedures were illustrated
by an example.

Keywords: Youden index; gamma distribution; inverse Gaussian distribution; generalized pivotal
quantity; pooled specimens
Mathematics Subject Classification: 62F30

1. Introduction

The Youden index was first introduced in medical literature by Youden [1]. It is a commonly
used index to measure the effectiveness of the overall diagnosis. The Youden index has a wide range
of applications in the medicine and biology fields [2–4]. Demir et al. [5] used the Youden index to
measure the differentiation between thalamic traits and iron deficiency anemia. Schisterman et al. [6]
used the Youden index to analyze a data set related to the coronary calcium score. Otto et al. [7] used
the Youden index to diagnose Creutzfeldt-Jakob disease by the measurement of the S 100 protein in
serum. For more examples, one can refer to [8–10].

For any given cutoff point c, sensitivity(c) represents the probability of a diseased individual
having a positive test result, and specificity(c) represents the probability of a healthy individual having
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a negative test result. Then the Youden index J is defined as

J = max
c
{sensitivity(c) + specificity(c) − 1}

= sensitivity(c∗) + specificity(c∗) − 1,

where c∗ are the optimal cutoff points of the test results. As described by Perkins and Schisterman [11],
the Youden index J is a biomarker’s greatest differentiating ability when given the same weight to
sensitivity and specificity. The range of J is from 0 to 1, and a value of 0 means that the diagnosis is
ineffective, while a value of 1 means that the diagnosis is perfect.

For diagnostic purposes, biomarkers can be divided into patient (cases) and healthy (controls)
groups. Let f1 and f2 be the probability density functions (PDFs) of the cases and controls, respectively.
We know from Schisterman et al. [12] that the optimal cutoff point to separate the cases and controls
is the intersection of two density functions, then the optimal cutoff point c∗ can be obtained based on
the following criterions:

f1(c∗) = f2(c∗), (1.1)
f1(c∗ + ε) > f2(c∗ + ε), for some small ε > 0. (1.2)

The criterion (1.2) is necessary when there exist multiple intersections. This is true when the mean of
the cases is greater than the mean of the controls.

Statistical inference on the Youden index has been extensively studied. Nakas et al. [13] used a
generalization of the Youden index to analysis cutoff point selection problems in three-class
classification, and used nonparametric and parametric approaches to estimate the Youden index and
the cutoff points. Fluss et al. [2] compared several estimation procedures for the Youden index and its
associated cutoff point. Liu [14] proposed an alternative to the traditional methods based on the
Youden index and the closest-to-(0, 1) criterion for threshold selection, and used nonparametric
method to search for the optimal cutoff point. Rota and Antolini [15] used theoretical and simulation
investigation to compare four methods commonly used to define cutoff points of continuous
biomarkers. Nakaset et al. [16] extended the Youden index to k-class classification problems. For
more literature on the Youden index, one can refer to [17–21].

However, costs may hinder the evaluation of the effectiveness of new biomarkers. Smaller number
of pooled specimens method have been used by analysts in order to cost-cutting, which has been
shown to be an effective cost-cutting technique [22–24]. Assume that X1, X2, . . . , XN are the biomarker
values of the case individuals, and Y1,Y2, . . . ,YM are the biomarker values of the control individuals.
As described by Gunasekera et al. [25], the average of the member’s measurements can be seen as
the pool’s measurement. Suppose that there are n and m pooled observations available of cases and
controls, respectively, with groups of size g. Then n = N/g, and m = M/g. Assume that X1, X2, . . . , XN

are randomly placed into the case groups with size g, and Y1,Y2, . . . ,YM are randomly placed into the
control groups with size g. Denote XP1, XP2, . . . , XPn as the pooled observations for the case groups,
and YP1,YP2, . . . ,YPm as the pooled observations for the control groups. Then from Gunasekera
et al. [25], we have XP j = 1

g

∑g
i=1 Xi, j, j = 1, 2, . . . , n, and YPk = 1

g

∑g
i=1 Yi,k, k = 1, 2, . . . ,m, where Xi, j

is the ith biomarker value in the jth case group, and Yi,k is the ith biomarker value in the kth control
group. For more information on the inference for the Youden index and its associated optimal cutoff

point based on pooled specimens, one can refer to [12, 25–28].
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As everyone knows, the gamma and inverse Gaussian (IG) distributions are two commonly used
distributions in statistics. They have a wide range of applications in several fields, including but not
limited to reliability theory, life test, financial analysis, biostatistics, health science, ecology,
entomology, etc., which should be attributed to their very natural and excellent probabilistic and
statistical properties. However, few of the existing studies on the Youden index involve gamma and
IG distributions, especially for the latter, which is the original intention and motivation of our
research. In this paper, we propose exact inference procedures for the Youden index and its associated
cutoff point based on the pooled specimens under the gamma or the IG assumption. According to our
experience, the method proposed in this paper has better coverage probabilities (CPs), even when the
sample size is small. Our approach is based on the tool of generalized pivotal quantities (GPQs),
which was introduced in [29]. For the literatures on constructing confidence intervals for the Youden
index and its associated cutoff point based on the GPQ method, one can refer to [25, 30], in which the
two-parameter exponential and other distributions were assumed.

The rest of this paper is organized as follows. In Section 2, we provide the inferential method for
the Youden index and its associated optimal cutoff point based on the gamma assumption. The GCIs
for the Youden index and its associated optimal cutoff point are also derived under the IG distributions
in Section 3. In Section 4, we use Monte Carlo simulation to assess the performances of the proposed
inference procedures. In Section 5, the proposed procedures are illustrated by an example. Finally, we
provide some conclusions in Section 6.

2. Gamma distributed biomarker

Let X and Y denote the results on a specific biomarker for the diseased and healthy subjects,
respectively. Suppose that X and Y have independent gamma distributions with X ∼ Gamma(α1, β1)
and Y ∼ Gamma(α2, β2). The PDF and cumulative distribution function (CDF) of the gamma
distribution Gamma(α, β) are given by

fGa(t|α, β) =
1

Γ(α)βα
tα−1e−

t
β , t > 0,

and

FGa(t|α, β) =

∫ t

0
fGa(υ|α, β)dυ, t > 0.

Where α is the shape parameter, β is the scale parameter, and Γ(s) =
∫ +∞

0
ts−1e−tdt is the gamma

function. Without loss of generality, we assume that α1β1 > α2β2. If α1β1 < α2β2, the following
inference can be used by switching the cases with the controls.

As discussed previously, the optimal cutoff point is realized at an intersection of the PDFs of cases
and controls. When α1 = α2 = α, then

c∗ = c∗(α, β1, β2)

= α log
(
β1

β2

) (
1
β2
−

1
β1

)−1

.

AIMS Mathematics Volume 9, Issue 10, 26702–26720.



26705

When β1 = β2 = β, then

c∗ = c∗(α1, α2, β)

= β

(
Γ(α1)
Γ(α2)

) 1
α1−α2

.

Otherwise, there may exist one or two real solutions to c∗. McCrimmon [31] provided the
following solution

c∗ = c∗(α1, α2, β1, β2) =
W(kθ)

k
,

where W(·) is the Lambert-W function, and

k =
β1 − β2

(α1 − α2)β1β2
, θ =

(
Γ(α1)βα1

1

Γ(α2)βα2
2

) 1
α1−α2

.

From [31], we know that when kθ ≥ 0, W(kθ) is single-valued, and otherwise, W(kθ) is double-
valued. When kθ > −e−1, all values of W(kθ) are real. When W(kθ) is double-valued, the optimal
cutoff point c∗(α1, α2, β1, β2) is located based on the criterion (1.2).

After getting the optimal cutoff point c∗, the Youden index J can be expressed as

J = J(α1, α2, β1, β2, c∗)
= FGa(c∗|α2, β2) − FGa(c∗|α1, β1).

Let XPi, i = 1, 2, . . . , n, and YP j, j = 1, 2, . . . ,m, be the pooled observations for cases and controls,
respectively. By virtue of the additivity of the gamma distribution, we have

XPi ∼ Gamma(α1p, β1p), i = 1, 2, . . . , n,

YP j ∼ Gamma(α2p, β2p), j = 1, 2, . . . ,m,

where α1p = gα1, α2p = gα2, β1p = β1/g, and β2p = β2/g.

2.1. GCIs for the optimal cutoff point c∗ and Youden index J

In this subsection, we will derive the GCIs for c∗ and J by using the GPQ method. To derive these
GCIs, the following lemmas, which are given by Wang and Wu [32], are needed.

Lemma 2.1. Let Z1,Z2, · · ·,Zn be a random sample of size n from a gamma population Gamma(α, β),
Z =

∑n
i=1 Zi/n, Z̃ =

(∏n
i=1 Zi

)1/n , T = log(Z̃/Z). Then the ϑth cumulant of the statistic T is

κ1(α) = log(n) + ψ(α) − ψ(nα),

κϑ(α) =
1

ni−1ψ
(ϑ−1)(α) − ψ(ϑ−1)(nα), ϑ = 2, 3, . . . ,

where ψ is the digamma function, and ψ(ϑ)(·) is the ϑth derivative of ψ(·).
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Lemma 2.2. Let κϑ(α) be the ϑth cumulant of the statistic T . Define Q(α, τ) by

Q(α, τ) = uτ +
1
6
κ′3(α)(u2

τ − 1) +
1

24
κ′4(α)(u3

τ − 3uτ) −
1

36
(κ′3(α))2(2u3

τ − 5uτ)

+
1

120
κ′5(α)(u4

τ − 6u2
τ + 3) −

1
24
κ′3(α)κ′4(α)(u4

τ − 5u2
τ + 2)

+
1

324
(κ′3(α))3(12u4

τ − 53u2
τ + 17),

where κ′i (α) = κi(α)/(κ2(α))i/2, i = 3, 4, 5, and uτ is the τ percentile of the standard normal distribution.
Then, based on the Cornish-Fisher expansion, the τ percentile of the statistic T can be approximated
by κ1(α) + [κ2(α)]1/2Q(α, τ).

Let

X =

n∑
i=1

XPi/n, X̃ =

 n∏
i=1

XPi

1/n

, T1 = log(X̃/X),

and

Y =

m∑
i=1

YPi/m, Ỹ =

 m∏
i=1

YPi

1/m

, T2 = log(Ỹ/Y).

We know from Iliopoulos [33] that the CDFs of the statistics T1 and T2 are strictly decreasing functions
of α1p and α2p, respectively.

Let FT1(t1|α1p) and FT2(t2|α2p) be the CDFs of the statistics T1 and T2, respectively. Then U1 =

FT1(T1|α1p) and U2 = FT2(T2|α2p) are independent standard uniform U(0, 1) random variables. Hence
T1 and T2 can be regarded as the U1 and U2 quantiles of FT1(T1|α1p) and FT2(T2|α2p), respectively.
Therefore, for given U1 ∼ U(0, 1) and U2 ∼ U(0, 1), the following equations can be obtained based on
the Cornish-Fisher expansion.

T1 = κ1(α1p) + [κ2(α1p)]1/2Q(α1p,U1), (2.1)
T2 = κ1(α2p) + [κ2(α2p)]1/2Q(α2p,U2). (2.2)

Suppose that h1(T1,U1) and h2(T2,U2) represent the solutions of the Eqs (2.1) and (2.2), respectively.
Then α1p = h1(T1,U1) and α2p = h2(T2,U2).

Notice that 2nX/β1p ∼ χ
2(2nα1p) and 2mY/β2p ∼ χ

2(2mα2p).
Then we have

V1 = 2nX/β1p ∼ χ
2(2nh1(T1,U1)),

and
V2 = 2mY/β2p ∼ χ

2(2mh2(T2,U2)).

Since β1p = β1/g, β2p = β2/g. Therefore, the approximate GPQs of the parameters β1 and β2 are
given by

W1 = 2ngX/V1, (2.3)

W2 = 2mgY/V2, (2.4)

respectively.
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When α1 , α2, β1 , β2, using the substitution method proposed by Weerahandi [29], the GPQ for
c∗ can be derived by replacing (α1, α2, β1, β2) in the expressions of c∗ for
(h1(T1,U1)/g, h2(T2,U2)/g,W1,W2). Hence, the GPQ for c∗ is given by

W3 = c∗(h1(T1,U1)/g, h2(T2,U2)/g,W1,W2). (2.5)

The GPQ for J can be derived by replacing (α1, α2, β1, β2, c∗) in the expressions of J for
(h1(T1,U1)/g, h2(T2,U2)/g,W1,W2,W3). Hence, the GPQ for J is given by

W4 = J(h1(T1,U1)/g, h2(T2,U2)/g,W1,W2,W3). (2.6)

When α1 = α2 = α, define T3 = T1 + T2. Let FT3(t3|α) be the CDF of the statistic T3. Similarly,
U3 = FT3(T3|α) is a uniform U(0, 1) random variable. For given U3, we have

T3 = κ1(α) + [κ2(α)]1/2Q(α,U3), (2.7)

where κi(α) in the expression (2.7) are

κ1(α) = log(n) + log(m) + 2ψ(α) − ψ(nα) − ψ(mα),

κϑ(α) =
1

ni−1ψ
(ϑ−1)(α) +

1
mi−1ψ

(ϑ−1)(α) − ψ(ϑ−1)(nα) − ψ(ϑ−1)(mα), ϑ = 2, 3, · · · .

Let h3(T3,U3) be the solution of the Eq (2.7), and then α = h3(T3,U3). Using the substitution method,
we have the following results:

V∗1 =
2nX
β1p
∼ χ2(2nh3(T3,U3)),V∗2 =

2mY
β2p

∼ χ2(2mh3(T3,U3)).

Hence the approximate GPQs of the parameters β1 and β2 are given by

W∗
1 = 2ngX/V∗1 , (2.8)

W∗
2 = 2mgY/V∗2 . (2.9)

Based on the substitution method, the GPQs for c∗ and J are given by

W∗
3 = c∗(h3(T3,U3)/g, h3(T3,U3)/g,W∗

1 ,W
∗
2), (2.10)

W∗
4 = J(h3(T3,U3)/g, h3(T3,U3)/g,W∗

1 ,W
∗
2 ,W

∗
3), (2.11)

respectively.
When β1 = β2 = β, we have

V3 =
2
(
nX + mY

)
β/g

∼ χ2 (2nh1(T1,U1) + 2mh2(T2,U2)) .

Then the approximate GPQs for β, c∗, and J are given by

W∗∗
1 = g

(
2nX + 2mY

)
/V3, (2.12)
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W∗∗
3 = c∗(h1(T1,U1)/g, h2(T2,U2)/g,W∗∗

1 ,W
∗∗
1 ), (2.13)

W∗∗
4 = J(h1(T1,U1)/g, h2(T2,U2)/g,W∗∗

1 ,W
∗∗
1 ,W

∗∗
3 ), (2.14)

respectively.
Let Wi,τ be the τ quantile of Wi. Then when α1 , α2, β1 , β2, [Wi,τ/2,Wi,1−τ/2], i = 3, 4 are the

100(1 − τ)% GCIs for c∗ and J, respectively. The following Monte Carlo simulation algorithm can be
used to obtain the quantiles of Wi.
Algorithm 1 : GCIs for c∗ and J based on gamma distribution.
Step 1. For the given data set, compute X,Y ,T1, and T2.
Step 2. Generate U1 ∼ U(0, 1),U2 ∼ U(0, 1), and then obtain h1(T1,U1), h2(T2,U2) by using the
Eqs (2.1) and (2.2), respectively.
Step 3. Generate V1 ∼ χ

2(2nh1(T1,U1)),V2 ∼ χ
2(2mh2(T2,U2)), use the Eqs (2.3) and (2.4) to compute

W1,W2.
Step 4. Compute W3 based on the Eq (2.5). If W3 is not a real number, then return to step 2. Otherwise,
go to step 5.
Step 5. Compute W4 based on the Eq (2.6).
Step 6. Repeat Steps 2 to 5 B times. Then we can obtain B values of Wi, i = 3, 4.
Step 7. Sort all Wi values in order: Wi,(1) < Wi,(2) < · · · < Wi,(B). Then the τ quantile of Wi can be
estimated by Wi,(τB).

Let W∗
i,τ and W∗∗

i,τ be the τ quantiles of W∗
i and W∗∗

i , respectively. Then when α1 = α2, the
100(1 − τ)% GCIs for c∗ and J are given by [W∗

i,τ/2,W
∗
i,1−τ/2], i = 3, 4, respectively. When β1 = β2,

[W∗∗
i,τ/2,W

∗∗
i,1−τ/2], i = 3, 4 are the 100(1 − τ)% GCIs for c∗ and J, respectively. Similar to Algorithm 1,

we can get estimates of these quantiles.

2.2. Hypothesis testing

In practice, we are interested in the following hypothesis testings
I. H0 : α1 = α2, H1 : α1 , α2.

II. H0 : β1 = β2, H1 : β1 , β2.

We use the generalized p-value procedure to complete the related hypothesis testing problems.
The generalized test variables for the hypothesis testing problems I and II are

W5 = h1(T1,U1) − h2(T2,U2) − (α1 − α2),
W6 = W1 −W2 − (β1 − β2),

respectively. The generalized p-value for testing the hypothesis problems are given by

p1 = 2 min {P(W5 ≤ 0|α1 = α2), P(W5 > 0|α1 = α2)} ,
= 2 min {P(h1(T1,U1) ≤ h2(T2,U2)), P(h1(T1,U1) > h2(T2,U2))} , (2.15)

p2 = 2 min {P(W6 ≤ 0|β1 = β2), P(W6 > 0|β1 = β2)} ,
= 2 min {P(W1 ≤ W2), P(W1 > W2)} , (2.16)

respectively.
The following Monte Carlo algorithm can be used to evaluate the generalized p-value in (2.15)

and (2.16).
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Algorithm 2 : Generalized p-value procedures for the hypothesis testing.
Step 1. Compute X1, X2,T1, and T2 based on the observed data set.
Step 2. Generate U1 ∼ U(0, 1),U2 ∼ U(0, 1), obtain the solutions h1(T1,U1) and h2(T2,U2) based on
the Eqs (2.1) and (2.2), respectively.
Step 3. Generate V1 ∼ χ

2(2nh1(T1,U1)),V2 ∼ χ
2(2mh2(T2,U2)), use the Eqs (2.3) and (2.4) to compute

W1,W2.
Step 4. Repeat Steps 2 and 3 B times. Then P(h1(T1,U1) ≤ h2(T2,U2)) and P(W1 ≤ W2) can be
estimated by the proportion of the events {h1(T1,U1) ≤ h2(T2,U2} and {W1 ≤ W2}, respectively.
Step 5. Compute the generalized p-values in the Eqs (2.15) and (2.16).

3. IG distributed biomarker

Suppose that X and Y have independent IG distributions with X ∼ IG(µ1, λ1) and Y ∼ IG(µ2, λ2).
The PDF and CDF of the IG distribution IG(µ, λ) are given by

fIG(x|λ, µ) =

√
λ

2πx3 exp

− λ2x

(
x
µ
− 1

)2
 , x > 0, (3.1)

and

FIG(x|λ, µ) = Φ

√λ

x

(
x
µ
− 1

) + exp(2λ/µ)Φ

−√
λ

x

(
x
µ

+ 1
) , x > 0, (3.2)

respectively. Here µ > 0 is the mean parameter, and λ > 0 is the shape parameter. Also, we assume
that µ1 > µ2. If µ1 < µ2, the following inference can be used by switching the cases with controls.

When X and Y have independent IG distributions, based on the criterion (1.1), the intersections of
the PDFs of cases and controls are

c1,2(λ1, λ2, µ1, µ2) =
F ±
√

F2 − 4EG
2E

, (3.3)

where E = µ2
2λ1−µ

2
1λ2, F = 2µ1λ1µ

2
2−2µ2

1µ2λ2 +µ2
1µ

2
2 log (λ1/λ2), and G = µ2

1µ
2
2(λ2−λ1). The optimal

cutoff point c∗(λ1, λ2, µ1, µ2) is located based on the criterion (1.2).
After getting the optimal cutoff point c∗, the Youden index J can be expressed as

J = J(λ1, λ2, µ1, µ2, c∗)
= FIG(c∗|λ2, µ2) − FIG(c∗|λ1, µ1).

In order to develop the interval estimation methods, the following lemma is needed. This result is
obvious, and can be found in Folks and Chhikara [34].

Lemma 3.1. For a random sample X1, X2, · · ·, Xn from IG(µ, λ), then

1
n

n∑
i=1

Xi ∼ IG(µ, nλ), λ
n∑

i=1

(
1
Xi
−

n∑n
i=1 Xi

)
∼ χ2(n − 1).
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Let XPi, i = 1, 2, · · ·, n, and YP j, j = 1, 2, · · ·,m, be the pooled observations of cases and controls,
respectively. Then from Lemma 3.1, we have

XPi ∼ IG(µ1p, λ1p), i = 1, 2, · · ·, n,
YP j ∼ IG(µ2p, λ2p), j = 1, 2, · · ·,m,

where µ1p = µ1, µ2p = µ2, λ1p = gλ1, and λ2p = gλ2.
Let

X =
1
n

n∑
i=1

XPi,Y =
1
m

m∑
i=1

YPi, S 1 =

n∑
i=1

(
1

XPi
−

1

X

)
, S 2 =

m∑
i=1

(
1

YPi
−

1

Y

)
.

Based on Lemma 3.1, we know that

X ∼ IG(µ1p, nλ1p),Y ∼ IG(µ2p,mλ2p), λ1pS 1 ∼ χ
2(n − 1), λ2pS 2 ∼ χ

2(m − 1).

Let V4 = λ1pS 1 ∼ χ
2(n − 1), and V5 = λ2pS 2 ∼ χ

2(m − 1). Then the GPQs for λ1 and λ2 are

W7 = V4/(gS 1), (3.4)
W8 = V5/(gS 2). (3.5)

Let U4 ∼ N(0, 1),U5 ∼ N(0, 1), from [35], the approximate GPQs of µ1 and µ2 are

W9 =
X∣∣∣∣∣1 + U4

√
X/(nW7)

∣∣∣∣∣ , (3.6)

W10 =
Y∣∣∣∣∣1 + U5

√
Y/(mW8)

∣∣∣∣∣ , (3.7)

respectively.
Based on the substitution method, the GPQs of c∗ and J are obtained by replacing (λ1, λ2, µ1, µ2)

in c∗ and J by (W7,W8,W9,W10). Thus, the GPQs of c∗ and J are given by

W11 = c∗(W7,W8,W9,W10), (3.8)
W12 = J(W7,W8,W9,W10,W11). (3.9)

Let Wi,τ be the τ quantile of Wi. Then [Wi,τ/2,Wi,1−τ/2], i = 11, 12 are the 100(1 − τ)% GCIs for
c∗ and J, respectively. The following Monte Carlo simulation algorithm can be used to obtain the
quantiles of Wi.
Algorithm 3 : GCIs for c∗ and J based on IG distribution.
Step 1. Compute X,Y , S 1, and S 2 based on the observed data set.
Step 2. Generate U4 ∼ U(0, 1),U5 ∼ U(0, 1),V4 ∼ χ

2(n − 1), and V5 ∼ χ
2(m − 1), compute W7–W10

based on the Eqs (3.4)–(3.7), respectively.
Step 3. Compute W11 based on the Eq (3.8). If W11 is not a real number, then return to Step 2.
Otherwise, go to Step 4.
Step 4. Use the Eq (3.9) to compute W12.
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Step 5. Repeat the Steps 2 to 4 B times. Then we can obtain B values of Wi, i = 11, 12.
Step 6. Sort all Wi values in order: Wi,(1) < Wi,(2) < · · · < Wi,(B). Then the τ quantile of Wi can be
estimated by Wi,(τB).

As is known to all, the parametric bootstrap method is a classic approach to obtain confidence
intervals for model parameters and some interested quantities. In order to fully evaluate the
performances of the proposed GCIs, we also consider the bootstrap-p CIs for the optimal cutoff point
c∗ and Youden index J based on the IG distribution. The bootstrap-p CIs for the optimal cutoff point
c∗ and Youden index J based on the gamma distribution can similarly discussed.

In fact, given

XPi ∼ IG(µ1p, λ1p), i = 1, 2, · · ·, n,
YP j ∼ IG(µ2p, λ2p), j = 1, 2, · · ·,m,

and µ1p = µ1, µ2p = µ2, λ1p = gλ1, and λ2p = gλ2.
Note that

X =
1
n

n∑
i=1

XPi,Y =
1
m

m∑
i=1

YPi, S 1 =

n∑
i=1

(
1

XPi
−

1

X

)
, S 2 =

m∑
i=1

(
1

YPi
−

1

Y

)
.

The maximum likelihood estimates (MLEs) of model parameters µ1p, λ1p, µ2p, and λ2p can be
obtained by

µ̂1p = X, λ̂1p =
n

S 1
, µ̂2p = Y , λ̂2p =

m
S 2
.

Using the invariance of the MLE, the MLEs of µ1, λ1, µ2, and λ2 are given as

µ̂1 = µ̂1p = X, λ̂1 =
n

gS 1
, µ̂2 = µ̂2p = Y , λ̂2 =

m
gS 2

.

On the basis of the model parameters’ MLEs µ̂1, λ̂1, µ̂2, and λ̂2, the bootstrap-p CIs for c∗ and J
based on IG distribution are obtained by the following Algorithm 4.
Algorithm 4 : Bootstrap-p CIs for c∗ and J based on IG distribution.
Step 1. Based on the observed data sets {XPi, i = 1, . . . , n} and {YP j, j = 1, . . . ,m}, compute X,Y , S 1,
and S 2, get the MLEs of model parameters µ̂1, µ̂2, λ̂1, and λ̂2.
Step 2. Generate the bootstrap samples {X∗Pi, i = 1, . . . , n} and {Y∗P j, j = 1, . . . ,m} from the IG
distributions IG(̂µ1, ĝλ1) and IG(̂µ2, ĝλ2), compute the bootstrap quantities X

∗
,Y
∗
, S ∗1, and S ∗2.

Step 3. Generate random numbers U4 ∼ U(0, 1),U5 ∼ U(0, 1),V4 ∼ χ
2(n − 1), and V5 ∼ χ

2(m − 1),
compute the bootstrap GPQs W∗

7 − W∗
10 based on the Eqs (3.4)–(3.7), respectively. (W∗

7 = V4/(gS ∗1),
W∗

8 = V5/(gS ∗2)).
Step 4. Compute the bootstrap GPQ W∗

11 based on the Eq (3.8). If W∗
11 is not a real number, then return

to step 3. Otherwise, go to step 5. (W∗
11 = c∗(W∗

7 ,W
∗
8 ,W

∗
9 ,W

∗
10)).

Step 5. Use the Eq (3.9) to compute the bootstrap GPQ W∗
12.

(W∗
12 = J(W∗

7 ,W
∗
8 ,W

∗
9 ,W

∗
10,W

∗
11)).

Step 6. Repeat the Steps 2 to 5 B times. Then we can obtain B values of W∗
i , i = 11, 12.

Step 7. Sort all W∗
i values in ascending order: W∗

i,(1) < W∗
i,(2) < · · · < W∗

i,(B). Then the τ quantile of W∗
i

can be estimated by W∗
i,(τB).

Then the 100(1 − τ)% bootstrap-p CIs for c∗ and J are given by [W∗

11,(B τ
2 ),W

∗

11,(B−B τ
2 )] and

[W∗

12,(B τ
2 ),W

∗

12,(B−B τ
2 )].
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4. Simulation study

In this section, the performances of the proposed GCIs for c∗ and J are assessed by Monte Carlo
simulations. When the biomarker follows the gamma distribution, controls are gamma distributed with
parameters α2 = 0.5, β2 = 1, and cases are gamma distributed with α1 = 1.5 and β1 = 0.5, 1.5, 2. When
the biomarker follows IG distribution, controls are IG distributed with parameters µ2 = 0.3, λ2 = 2, and
cases are IG distributed with µ1 = 0.5 and λ1 = 1, 2, 3.5. In the simulations, we assume that M = N.
All the simulation results are based on 10, 000 replications with B = 10, 000.

When the biomarker follows gamma distribution, the CPs and the average lengths (ALs) of the
proposed GCIs for c∗ and J are listed in Table 1. When the biomarker follows IG distribution, the CPs
and the ALs of the proposed GCIs and bootstrap-p CIs for c∗ and J are listed in Tables 2–4. It can be
seen from Table 1 to Table 4 that the CPs of the proposed GCIs are very close to the nominal levels in
all settings. In Tables 2–4, we also compare the GCIs with the bootstrap-p CIs. The results show that
the CPs of the bootstrap-p CIs are not close to the nominal levels, especially when the sample size is
small. These findings show that the performances of the proposed GCIs are better than bootstrap-p CIs
in terms of CP. In addition, from Table 1 to Table 4 we also find that the ALs of the GCIs decrease as
the groups of size g increases. This indicates that the pooled specimens method is effective. For fixed
parameters β1 or λ1, when the total sample size N increases, the ALs of the GCIs become shorter for
both gamma and IG distributions as expected. Therefore, we recommend the proposed GCIs for the
Youden index J and its associated cutoff point c∗ based on gamma and IG distributions.

Note that when the biomarker follows gamma distribution, we do not compare the GCIs with the
bootstrap-p CIs because the simulation results are similar to those in the IG case.
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Table 1. The CPs and the ALs (in parentheses) of the GCIs for c∗ and J with nominal levels
0.90, 0.95, based on 10,000 replications. (gamma case).

(β1,N) Parameters
g = 1 g = 2 g = 4

0.90 0.95 0.90 0.95 0.90 0.95
(0.5, 30) c∗ 0.9051 0.9544 0.9037 0.9536 0.9059 0.9563

ALs (0.2379) (0.3013) (0.2230) (0.2866) (0.2191) (0.2832)
J 0.9003 0.9485 0.9072 0.9531 0.9028 0.9510

ALs (0.2845) (0.3376) (0.2559) (0.3046) (0.2416) (0.2878)
(0.5, 50) c∗ 0.8995 0.9507 0.9030 0.9508 0.8982 0.9497

ALs (0.1688) (0.2057) (0.1484) (0.1824) (0.1403) (0.1741)
J 0.8960 0.9460 0.9037 0.9514 0.8995 0.9523

ALs (0.2228) (0.2649) (0.1999) (0.2382) (0.1889) (0.2252)
(1.5, 30) c∗ 0.9064 0.9547 0.9122 0.9604 0.9059 0.9602

ALs (0.4235) (0.5153) (0.3641) (0.4442) (0.3383) (0.4157)
J 0.9047 0.9523 0.9016 0.9506 0.9025 0.9520

ALs (0.2711) (0.3253) (0.2272) (0.2746) (0.2023) (0.2464)
(1.5, 50) c∗ 0.9019 0.9492 0.9045 0.9518 0.9035 0.9548

ALs (0.3209) (0.3856) (0.2755) (0.3308) (0.2559) (0.3071)
J 0.9019 0.9526 0.9030 0.9528 0.9047 0.9537

ALs (0.2113) (0.2518) (0.1759) (0.2100) (0.1560) (0.1864)
(2, 30) c∗ 0.9000 0.9515 0.9089 0.9592 0.9109 0.9625

ALs (0.4845) (0.5889) (0.4028) (0.4946) (0.3585) (0.4440)
J 0.9100 0.9565 0.9035 0.9507 0.9033 0.9522

ALs (0.2580) (0.3116) (0.2185) (0.2672) (0.1962) (0.2413)
(2, 50) c∗ 0.8974 0.9503 0.9007 0.9528 0.9084 0.9540

ALs (0.3673) (0.4407) (0.3038) (0.3647) (0.2705) (0.3262)
J 0.9003 0.9512 0.9049 0.9557 0.9014 0.9500

ALs (0.2007) (0.2393) (0.1688) (0.2016) (0.1508) (0.1809)
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Table 2. The CPs and the ALs (in parentheses) of the GCIs and bootstrap-p CIs for c∗ and J
with nominal levels 0.90, 0.95, based on 10,000 replications. (IG case, g = 1).

(λ1,N) Parameters
GCIs bootstrap-p CIs

0.90 0.95 0.90 0.95
(1, 20) c∗ 0.9020 0.9525 0.8525 0.9116

ALs (0.1877) (0.2448) (0.1581) (0.2022)
J 0.9047 0.9543 0.8698 0.9232

ALs (0.3337) (0.3943) (0.3537) (0.4214)
(1, 40) c∗ 0.8986 0.9517 0.8714 0.9295

ALs (0.1160) (0.1421) (0.1061) (0.1283)
J 0.9011 0.9507 0.8854 0.9401

ALs (0.2417) (0.2869) (0.2493) (0.2975)
(2, 20) c∗ 0.9082 0.9527 0.8888 0.9389

ALs (0.1286) (0.1616) (0.1093) (0.1350)
J 0.9071 0.9520 0.8545 0.9111

ALs (0.3534) (0.4181) (0.3640) (0.4326)
(2, 40) c∗ 0.9092 0.9537 0.8997 0.9479

ALs (0.0837) (0.1017) (0.0768) (0.0926)
J 0.9024 0.9494 0.8772 0.9305

ALs (0.2567) (0.3050) (0.2609) (0.3107)
(3.5, 20) c∗ 0.9077 0.9509 0.8753 0.9311

ALs (0.0935) (0.1146) (0.0857) (0.1035)
J 0.9080 0.9548 0.8569 0.9151

ALs (0.3400) (0.4030) (0.3463) (0.4117)
(3.5, 40) c∗ 0.9029 0.9512 0.8841 0.9381

ALs (0.0625) (0.0752) (0.0599) (0.0717)
J 0.9016 0.9509 0.8742 0.9298

ALs (0.2446) (0.2908) (0.2475) (0.2948)
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Table 3. The CPs and the ALs (in parentheses) of the GCIs and bootstrap-p CIs for c∗ and J
with nominal levels 0.90, 0.95, based on 10,000 replications. (IG case, g = 2).

(λ1,N) Parameters
GCIs bootstrap-p CIs

0.90 0.95 0.90 0.95
(1, 20) c∗ 0.8958 0.9509 0.8389 0.8994

ALs (0.1383) (0.1717) (0.1136) (0.1377)
J 0.9057 0.9535 0.8537 0.9104

ALs (0.2597) (0.3080) (0.2764) (0.3305)
(1, 40) c∗ 0.9017 0.9514 0.8676 0.9265

ALs (0.0901) (0.1093) (0.0817) (0.0981)
J 0.9008 0.9503 0.8737 0.9289

ALs (0.1852) (0.2202) (0.1913) (0.2286)
(2, 20) c∗ 0.9063 0.9542 0.8917 0.9437

ALs (0.1001) (0.1231) (0.0817) (0.0986)
J 0.9069 0.9530 0.8379 0.8983

ALs (0.2789) (0.3308) (0.2884) (0.3434)
(2, 40) c∗ 0.9062 0.9544 0.8977 0.9486

ALs (0.0676) (0.0819) (0.0606) (0.0727)
J 0.9004 0.9497 0.8645 0.9234

ALs (0.2000) (0.2378) (0.2037) (0.2427)
(3.5, 20) c∗ 0.9084 0.9560 0.8911 0.9419

ALs (0.0706) (0.0865) (0.0604) (0.0726)
J 0.9038 0.9524 0.8259 0.8902

ALs (0.2768) (0.3290) (0.2795) (0.3323)
(3.5, 40) c∗ 0.9008 0.9494 0.8900 0.9419

ALs (0.0476) (0.0575) (0.0438) (0.0525)
J 0.8982 0.9481 0.8596 0.9177

ALs (0.1981) (0.2357) (0.1993) (0.2373)
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Table 4. The CPs and the ALs (in parentheses) of the GCIs and bootstrap-p CIs for c∗ and J
with nominal levels 0.90, 0.95, based on 10,000 replications. (IG case, g = 4).

(λ1,N) Parameters
GCIs bootstrap-p CIs

0.90 0.95 0.90 0.95
(1, 20) c∗ 0.8999 0.9511 0.8228 0.8903

ALs (0.1150) (0.1419) (0.0921) (0.1108)
J 0.9046 0.9552 0.8274 0.8886

ALs (0.2097) (0.2491) (0.2245) (0.2687)
(1, 40) c∗ 0.9002 0.9489 0.8639 0.9203

ALs (0.0771) (0.0936) (0.0691) (0.0828)
J 0.9031 0.9530 0.8636 0.9232

ALs (0.1480) (0.1761) (0.1535) (0.1834)
(2, 20) c∗ 0.9078 0.9570 0.9007 0.9505

ALs (0.0853) (0.1050) (0.0664) (0.0798)
J 0.9097 0.9538 0.8129 0.8756

ALs (0.2304) (0.2735) (0.2396) (0.2853)
(2, 40) c∗ 0.9002 0.9542 0.8961 0.9504

ALs (0.0588) (0.0713) (0.0512) (0.0613)
J 0.9022 0.9512 0.8582 0.9162

ALs (0.1639) (0.1949) (0.1675) (0.1996)
(3.5, 20) c∗ 0.9089 0.9561 0.8726 0.9226

ALs (0.0598) (0.0736) (0.0486) (0.0584)
J 0.9020 0.9495 0.8049 0.8705

ALs (0.2323) (0.2763) (0.2353) (0.2800)
(3.5, 40) c∗ 0.9035 0.9531 0.8851 0.9352

ALs (0.0404) (0.0490) (0.0361) (0.0432)
J 0.9075 0.9495 0.8551 0.9151

ALs (0.1652) (0.1967) (0.1666) (0.1983)

5. An illustrative example

In this section, the Duchenne Muscular Dystrophy (DMD) data set available at
http://lib.stat.cmu.edu/datasets/ is used to illustrate the proposed methods. This data set includes
blood samples from carriers and normals, and measures four different variables (creatine kinase (ck),
hemopexin (h), pyruvate kinase (pk), and lactate dehydrogenase (ld)). We randomly select carriers
and normals of the fourth biomarker in this data set for illustrative purposes. Figures 1(a) and (b)
show the gamma P-P plots for those data.

It can be seen from Figure 1 that the gamma distribution can be used to fit those data. Based on
the DMD data set, the estimate of the generalized p-value (2.15) is 0.0270, and the estimate of the
generalized p-value (2.16) is close to zero. So we reject the null hypothesises in I and II. For g = 1,
the 90% and 95% GCIs for c∗ are given by (199.5595, 218.7058), and (197.8356, 220.9915),
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respectively. The 90% and 95% GCIs for J are given by (0.4145, 0.6009), and (0.3943, 0.6169),
respectively. For g = 2, the 90% and 95% GCIs for c∗ are given by (199.5082, 218.8851), and
(197.7328, 221.2453), respectively. The 90% and 95% GCIs for J are given by (0.4133, 0.6023), and
(0.3953, 0.6201), respectively. For g = 4, the 90% and 95% GCIs for c∗ are given by
(200.3053, 219.9091), and (198.7090, 222.7552), respectively. The 90% and 95% GCIs for J are
given by (0.4295, 0.6493), and (0.4106, 0.6676), respectively. We can see that the difference of these
intervals is small. This indicates that the pooled specimens method is effective.

(a) (b)

Figure 1. (a) The Gamma P-P plot for lactate dehydrogenase data of the carriers, and (b) the
Gamma P-P plot for lactate dehydrogenase data of the normals.

6. Conclusions

In this paper, we proposed the interval estimation methods for the Youden index and its
corresponding optimal cutoff point based on the pooled samples under the gamma or IG assumption.
Our method is based on the GPQ approach. In the case of the gamma assumption, the GCIs for the
Youden index and optimal cutoff points are obtained under equal shape parameters, equal scale
parameters, and unequal shape and scale parameters. The generalized p-value procedure is proposed
to test whether the shape parameters or the scale parameters are equal. When the biomarker follows
the IG distribution, the optimal cutoff point is derived based on the the criterions (1.1) and (1.2). The
GCIs are also proposed for the Youden index and its corresponding optimal cutoff point. The Monte
Carlo simulation study demonstrated that our methods given in this paper can work well. A real
example is given to illustrate the proposed method.
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