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Abstract: Discrete Hopfield Neural Network is widely used in solving various optimization problems 

and logic mining. Boolean algebras are used to govern the Discrete Hopfield Neural Network to 

produce final neuron states that possess a global minimum energy solution. Non-systematic 

satisfiability logic is popular due to the flexibility that it provides to the logical structure compared to 

systematic satisfiability. Hence, this study proposed a non-systematic majority logic named Major 3 

Satisfiability logic that will be embedded in the Discrete Hopfield Neural Network. The model will be 

integrated with an evolutionary algorithm which is the multi-objective Election Algorithm in the 

training phase to increase the optimality of the learning process of the model. Higher content 

addressable memory is proposed rather than one to extend the measure of this work capability. The 

model will be compared with different order logical combinations 𝑘 = 3,2, 𝑘 = 3,2,1 and 𝑘 = 3,1. 

The performance of those logical combinations will be measured by Mean Absolute Error, Global 

Minimum Energy, Total Neuron Variation, Jaccard Similarity Index and Gower and Legendre 

Similarity Index. The results show that 𝑘 = 3,2 has the best overall performance due to its advantage 

of having the highest chances for the clauses to be satisfied and the absence of the first-order logic. 

Since it is also a non-systematic logical structure, it gains the highest diversity value during the learning 

phase. 

Keywords: Discrete Hopfield Neural Network; non-systematic logic; flexible logical rule; Major 3 

Satisfiability logic; Election Algorithm 

 



22448 

AIMS Mathematics Volume 8, Issue 9, 22447–22482. 

1. Introduction  

The rapid development of data processing has increased the development of Artificial Intelligence 

(AI). AI systems have been rapidly created and deployed in practically all types of sectors over the last 

several years by emulating human features like problem-solving, learning, perception, comprehension, 

reasoning and awareness of surroundings. Artificial neural networks (ANNs) have received the most 

attention among the common and significant AI techniques because of their capacity to handle large 

amounts of data and anticipate outcomes [1]. ANNs are a network of neuron-like units that is optimized 

by a series of training. ANNs models are best used for logic mining and prediction for big data 

problems and ANNs are a form of AI. ANNs are mathematical models inspired by the biological 

processes of the human brain [2]. If the brain is the operating system for humans, then ANNs are the 

operating system for machines. NNs are a decision-making system that goes through a training process 

based on a set of rules and logic. Like a brain, ANNs consist of neurons that are connected by a synaptic 

weight. This synaptic weight carries crucial information for ANNs to perform. [3] presented the 

Hopfield Neural Network (HNN) a form of ANNs as a way to address a combinatorial problem. In the 

work, the computing capacity and speed of collective analog networks of neurons in solving 

optimization problems have been quantitatively demonstrated. In searching for the best solution, a very 

good answer computed in a quick enough period to be employed in the choice of suitable action is 

more important than a nominally improved “best” solution. This is especially true in perception and 

pattern recognition tasks in biology and robotics [3]. Wan Abdullah method [4] is used in this study 

since the study capitalizes on the energy minimization of the Lyapunov energy function and the cost 

function. To accelerate the convergence property of the logic programming of the Hopfield Neural 

Network, [5] propose a relaxation method. This relaxation method can stabilize the high neuron 

oscillations. In an exploration of searching for a very good answer computed in a quick enough period, 

HNN has evolved throughout time due to countless improvization that has been made by AI researchers. 

Scholars have been applying logical structure in HNN as a tool to navigate HNN for obtaining a better 

final solution. Satisfiability logic (SAT) is a popular logical structure that can be applied in HNN to 

counter this problem [6]. SAT also complies with the Wan Abdullah method, which caters to bipolar 

representation [4]. This is important, as it will convey the data that is provided into mathematical 

information [7]. [8] has proposed a study that utilizes kSAT in Discrete Hopfield Neural Network 

(DHNN). The logical structures used are Horn-Satisfiability (HORN-SAT), 2 Satisfiability (2SAT) and 

3 Satisfiability (3SAT) logic. Moreover, [9] are proposing 3SAT logic that will be aided by an Artificial 

Immune System (AIS) in solving the 3SAT problem. [10] also use the 3SAT logical structure to 

represent the entries of Amazon Employees Resources Access (AERA). There are also a few works 

that highlight the 3SAT clauses in a non-systematic environment. [11] propose higher-order Random 

3 Satisfiability (RAN3SAT), where the 3SAT clauses are generated randomly, including other types of 

clauses. This logical structure is able to increase the flexibility of the logical structure. Next, inspired 

by the work of [12] that captures the majority concept in terms of literal, [5] proposes a new novel 

non-systematic logic named Major 2 Satisfiability (MAJ2SAT) logic. The logical structure features the 

2SAT clauses as the majority clauses in a logical string. This logical structure emphasizes the majority 

ratio of 2SAT clauses with other types of clauses. [9] utilize 3SAT clauses in a systematic environment, 

while [11] and [5] utilize 3SAT clauses in a non-systematic environment. While MAJ2SAT and 

RAN3SAT have high flexibility, systematic 3SAT still has the highest chances for clauses to be 

satisfied. Therefore, inspired by [9], [11] and [5] a new variant of non-systematic logic named Major 
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3 Satisfiability (MAJ3SAT) logic is proposed in this study majoring the 3SAT clauses. 

In improving the learning process, metaheuristics have been applied in this study to compensate 

for the high computational load that will occur in the learning phase when higher neuron numbers (𝑁𝑁) 

are applied [13]. It is said that Exhaustive Search (ES) is not optimal for delivering the best 

performance since the computational cost is increasing [8]. Hence, due to the likelihood of discovering 

the HNN's ideal cost function value reducing to zero, learning algorithms are needed to aid the model 

produces final neuron states with an optimal state. The metaheuristic is used to maximize the logical 

rule's fitness so that the cost function can be minimized effectively. Election Algorithm (EA) is a 

known metaheuristic that is proposed by [14]. It is inspired by the social-politic phenomenon of the 

presidential election. EA is an iterative population algorithm that works with a solution of people, each 

of whom is either a candidate or voter and EA is an evolutionary and swarm-based algorithm [7]. [15] 

then modified the benchmark EA. The work modified the party formation stage, added chaotic positive 

advertisement, and included a migration operator to create a novel Chaotic Election Algorithm (CEA). 

It is said that CEA is able to increase the population’s diversity and prevents early convergences. Next, 

[16] becomes a pioneering work for applying EA in the non-systematic logic-Discrete Hopfield Neural 

Network model. EA is able to improve the learning capability of the model. [7] then use the same 

method to deal with non-systematic higher-order Random k Satisfiability logic. EA is used to 

compensate for the high computational cost during the learning phase. [6] then proposed a multi-

objective Hybrid Election Algorithm (HEA) in a non-systematic logic DHNN model. The proposed 

HEA will broaden the logical rule while maximizing the fitness of a logical string to boost the DHNN's 

storage capacity. [6] and [7] then inspired this work to propose a multi-objective EA as the learning 

algorithm that will be integrated into the learning phase of DHNN. It is the same EA as [7] but with 

multi-objective functions. As the number of neurons that hold pattern rises, the capacity problems in 

the discrete neural network get worse [17]. While attempting to increase the storage capacity of DHNN, 

accuracy and diversity are the aims that need to be noted. Therefore, the diversity phase will be 

considered after the learning process to ensure a better solutions profile since this model is considering 

higher Content Addressable Memory (CAM). This attempt is inspired by [6] in expanding the model’s 

storage capacity while avoiding over-fitting solutions. The new contributions of our work are as 

follows: 

1) To formulate a new non-systematic logical structure named Major 3 Satisfiability logic where 

3SAT is the majority clauses in the logical string with different logical combinations, 𝑘 and 

embedded it in Discrete Hopfield Neural Network to increase the chances of obtaining more 

correct synaptic weight. 

2) To imply a multi-objective Election Algorithm in the learning phase of Major 3 Satisfiability 

logic to enhance the learning process by capitalizing the explore and exploit mechanism and 

replacing the Exhaustive Search. 

3) To formulate multi-objective functions that can optimize the solutions’ fitness and diversity 

while expanding the storage capacity. 

4) To evaluate the compatibility and the behavior of the proposed model with different logical 

combinations in terms of learning error, diversity error, testing error, energy management, 

global minimum energy and neuron variations. 

This model will be generated randomly by computer and utilize simulated data. The same 𝛼 as 

proposed by [5] is used to control the ratio of the 3SAT clauses and the other clauses. This study 

consists of the introduction of the work in Section 1 and the motivation of the work in Section 2. The 
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detailed explanation of MAJ3SAT and DHNN will be covered in Sections 3 and 4, respectively. The 

algorithm of the multi-objective Election Algorithm is explained in Section 5 and the experimental 

setup and parameter control can be seen in Section 6. Section 7 will cover the discussions of the 

model’s performance and Section 8 will conclude the work. This model is suitable for classification 

and forecasting which can be extended in the logic mining model [18]. The likelihood that the best-

induced logic will be found by logic mining to represent the datasets is increased by the best logical 

rule [19]. 

2. Motivation 

2.1. Boolean logical structure 

The boolean logical structure is needed to represent information in a logical state. SAT is a logical 

structure that is formed in the Conjunctive Normal Form (CNF). The Boolean logical structure consists 

of a set of literals that are connected by the OR operator (Ú) and a set of clauses that are connected by 

the AND operator (Ù) [5]. The logical structure provides a pattern behavior that maps to DHNN to 

generate initial and final neuron states. It is hard for DHNN to achieve global minimum energy as no 

guide can drive the neuron states to global minimum energy [20]. [8] and [9] proposed systematic 

satisfiability logic, which is effective in producing global minimum energy. However, this kind of logic 

lacks diversity and flexibility in terms of logical interpretations. Therefore, [11] proposed a study that 

utilized higher-order non-systematic logic that can tend to this problem. The proposed Random k-

Satisfiability (RANkSAT) logic is able to achieve minimum cost function while having variation of 

final neuron states. Another variant of non-systematic logic is the logical structure that is proposed by 

[5]. This study featured the majority of the 2SAT clauses to provide higher chances of obtaining 

satisfying interpretations. Although without using any metaheuristics, this logical structure manages 

to obtain a higher number of final neuron states that can escape sub-optimal conditions. Inspired by 

this work and the work of [9] that features the 3SAT clauses, MAJ3SAT logic is proposed. The major 

characteristic that 3SAT provides will increase the chances of obtaining correct interpretations clauses 

and higher correct synaptic weights can be generated. 

2.2. Metaheuristic 

The metaheuristic is a learning algorithm that is developed in order to minimize the cost function. 

The aim of applying metaheuristics in the learning phase is to minimize the cost function as minimum 

as possible to obtain a more correct synaptic weight. Metaheuristics can also guide the network to 

produce better outcomes [21]. [8] has used the Genetic Algorithm (GA) as the learning algorithm in 

the paper. GA is able to minimize the cost function of a systematic logical structure. In the same year 

also, the author proposed Artificial Bee Colony (ABC) a learning algorithm that take inspired by the 

colony of bees. Then, in working with metaheuristic algorithms, [7] utilized EA in the learning phase 

of DHNN embed with RANkSAT logic. It is proven that EA works well with non-systematic logic to 

minimize the cost function. [6] proposed a hybrid EA with an extra objective function in the paper. 

Inspired by [7] and [6], this study then proposed multi-objective EA, utilizing the same EA as [7] and 

integrating an additional objective function, which is the diversity function. The diversity function is 

proposed to obtain diverse neurons during the learning phase since this study will consider 5 CAM to 
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increase the storage capacity. It is also to avoid an over-fitting solution that may be generated. 

3. Major 3 Satisfiability logic (MAJ3SAT) 

Major 3 Satisfiability logic is a novel variant of a non-systematic logic represented in CNF. The 

logical string consists of clauses with different orders of clauses (3SAT, 2SAT and first-order logic). 

This type of satisfiability logic provides flexibility for the user interface. MAJ3SAT features the 3SAT 

clauses as the majority clauses in the logical string. The number of the 3SAT clauses per string must 

be more than the other SAT. This logical structure will lose its majority feature if the number of 3SAT 

clauses is the same or lesser than the other SAT. The majority of terms in the logical structure can 

increase the variation and the solution generated [5]. The logical string consists of non-redundant literal 

to obtain the correct synaptic weight. The general formula of MAJ3SAT is presented in Eqs (1–3) for 

each possible logical combination. 𝑘 represent the logical combination of the order of the clauses and 

𝑛, 𝑚 and 𝑟 are the total number of 3SAT, 2SAT and first-order logic clauses respectively. The logical 

structure of MAJ3SAT is presented in a few components which are: 

a) A set of variables 𝑐1
∗, 𝑐2

∗, 𝑐3
∗, . . . , 𝑐𝑦

∗ . 

b) A set of literals 𝑐𝑦
∗  or the negation of it, ¬𝑐𝑦

∗ . 

c) A set of 3SAT clauses 𝐶1
(3)

, 𝐶2
(3)

, 𝐶3
(3)

, . . . , 𝐶𝑛
(3)

 where 𝐶𝑖
(3)

= (𝑎𝑖 ∨ 𝑏𝑖 ∨ 𝑐𝑖), 𝑖 ∈ ℕ. 

d) A set of 2SAT clauses 𝐶1
(2)

, 𝐶2
(2)

, 𝐶3
(2)

, . . . , 𝐶𝑚
(2)

 where 𝐶𝑖
(2)

= (𝑑𝑖 ∨ 𝑒𝑖), 𝑖 ∈ ℕ. 

e) A set of first-order logic clauses 𝐶1
(1)

, 𝐶2
(1)

, 𝐶3
(1)

, . . . , 𝐶𝑟
(1)

 where 𝐶𝑖
(1)

= (𝑓𝑖), 𝑖 ∈ ℕ.  

where ℕ is natural numbers, 𝑖 is the index number and the bracket number (1), (2), (3) is the order of 

clauses. 

(𝑘 = 3,2,1): 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 =∧𝑖=1
𝑛 𝐶𝑖

(3)
∧𝑖=1

𝑚 𝐶𝑖
(2)

∧𝑖=1
𝑟 𝐶𝑖

(1)
. 

(1) 

(𝑘 = 3,2): 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 =∧𝑖=1
𝑛 𝐶𝑖

(3)
∧𝑖=1

𝑚 𝐶𝑖
(2)

. 
(2) 

(𝑘 = 3,1): 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 =∧𝑖=1
𝑛 𝐶𝑖

(3)
∧𝑖=1

𝑟 𝐶𝑖
(1)

. 
(3) 

In capitalizing majority terms, the ratio of the clauses is one of the aspects that we need to focus 

on. Hence, 𝛼 is proposed to represent the ratio of 3SAT clauses to the total number of clauses. 𝛼 needs 

to be between 0.5 and 1 (exclusive) and 𝑛 >  𝑚 and 𝑟. 𝛼 cannot include 0.5, as it will destroy the 

majority terms. 𝛼  also cannot include 1 as the logical structure will overlap with systematic 

satisfiability (kSAT) that is proposed by [11]. Even if the logical structure will be generated randomly, 

the number of clauses is pre-determined. The total number of 2SAT clauses and first-order logic cannot 

exceed the 3SAT clauses. Furthermore, the reason 𝛼 is proposed is to avoid bias, as the different logical 

combinations will give different neuron numbers. In some cases, the same 𝛼  can have a different 

number of clauses. Therefore, the total number of clauses (TC) is proposed. TC will fix the number of 

clauses that can exist in a particular logical string. Equation (4) presented the equation for 𝛼. 

𝛼 =
𝑛

𝑛+𝑚+𝑟
  where 𝛼 ∈ (0.5,1). (4) 

The numerator is the total number of 3SAT clauses whereas the denominator is TC. TC is used to 
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provide a domain for 𝛼. TC can be presented in an equation where TC = 𝑛 + 𝑚 + 𝑟. Each TC will 

possess all possible 𝛼  in the logical string. Each literal in the clauses is represented in bipolar 

representation which indicates that 𝑐𝑖
∗ = {1, −1} [5]. The advanced feature that 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 possessed 

can be utilized in the logic mining field. Equations (5)–(7) show the example of 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 logical 

structure for 𝛼 = 0.57 , 𝛼 = 0.60  and 𝛼 = 0.75  respectively. Equation 5 utilize 𝑛 = 4, 𝑚 =

2,  and 𝑟 = 1. While Eq 6 utilize 𝑛 = 3, 𝑚 = 2,  and 𝑟 = 0 and Eq 7 utilize 𝑛 = 3, 𝑚 = 0,  and 𝑟 = 1. 

𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 = (¬𝑎1 ∨ 𝑏1 ∨ 𝑐1) ∧ (¬𝑎2 ∨ ¬𝑏2 ∨ 𝑐2) ∧ (𝑎3 ∨ 𝑏3 ∨ ¬𝑐3) 

                      ∧ (𝑎4 ∨ 𝑏4 ∨ ¬𝑐4) ∧ (¬𝑑1 ∨ ¬𝑒1) ∧ (𝑑2 ∨ 𝑒2) ∧ (𝑓1). (5)  

𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 = (¬𝑎1 ∨ 𝑏1 ∨ 𝑐1) ∧ (¬𝑎2 ∨ ¬𝑏2 ∨ 𝑐2) ∧ (𝑎3 ∨ 𝑏3 ∨ ¬𝑐3) 

                      ∧ (¬𝑑1 ∨ ¬𝑒1) ∧ (𝑑2 ∨ 𝑒2). (6) 

𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 = (𝑎1 ∨ ¬𝑏1 ∨ 𝑐1) ∧ (¬𝑎2 ∨ ¬𝑏2 ∨ ¬𝑐2) ∧ (𝑎3 ∨ 𝑏3 ∨ 𝑐3) 

                     ∧ (𝑓1). (7) 

As we know, the proposed 𝝋𝑴𝑨𝑱𝟑𝑺𝑨𝑻 is a non-systematic logic. This logic is proposed based on 

MAJ2SAT that is proposed by [5]. MAJ2SAT features the majority of the 2SAT clauses while 

MAJ3SAT will feature the majority of the 3SAT clauses. This crucial concept also differentiates 

MAJ3SAT from RAN3SAT which is proposed by [7] where the number of clauses per string is 

randomized but needs to have at least one 3SAT clause. To be added, this logic is predicted to be able 

to provide higher satisfied interpretations. 

4. 𝝋𝑴𝑨𝑱𝟑𝑺𝑨𝑻 in Discrete Hopfield Neural Network 

A Discrete Hopfield Neural Network is a feedback network made up of interconnected neurons 

that are modeled after the human brain system. DHNN acts as a decision-making system for a computer. 

This neural network has no hidden layers [22]. As a result, the input will go directly to the output. 

Second, during the testing phase, the synaptic weight is stored in DHNN's efficient content addressable 

memory [5]. Finally, DHNN updates the neurons asynchronously [16], which means they are not 

updated at the same time each cycle. Fourth, DHNN's neural network caters to bipolar representation 

which is a logical translation of true and false [11]. 1 represents the true value and -1 represents the 

false value connected by the logic gate. 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 = (1 ∨ −1 ∨ 1) ∧ (−1 ∨ −1 ∨ −1) ∧ (1 ∨ 1 ∨ 1) ∧

(1) is an example of the truth value of the logical string. DHNN utilizes synaptic weight to carry the 

information from the learning phase to the testing phase. The synaptic weight W  is always symmetric, 

𝑊𝑖𝑗
(2)

= 𝑊𝑗𝑖
(2)

 and the synaptic weight has no self-looping, 𝑊𝑖𝑖
(2)

= 𝑊𝑗𝑗
(2)

= 𝑊𝑘𝑘
(2)

= 𝑊𝑖𝑖𝑖
(3)

= 𝑊𝑗𝑗𝑗
(3)

=

𝑊𝑘𝑘𝑘
(3)

= 0. For your information, HNN suffers from the lack of symbolic rule that governs the neural 

network [7]. The global minimum energy for HNN is numerically challenging to acquire due to the 

lack of an effective symbolic rule [6]. Hence, that is why 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 is proposed in DHNN to fuse both 

domains to form DHNN-MAJ3SAT. 
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4.1. Learning phase 

The aim of the learning phase is to obtain the correct synaptic weight by minimizing the cost 

function which is why we apply 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 in DHNN. The fully satisfied interpretation of the logical 

structure will lead to the cost function, 𝐸𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
= 0 . Which then will lead to correct solution 

generation during the testing phase. The synaptic weight will be obtained by comparing the cost 

function, Eq (8) and the Lyapunov energy function, Eq (10) where 𝑞𝑖 is the literal state. 

𝐸𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
=

1

8
∑ (∏ 𝑞𝑖

(3)3
𝑗=1 )𝑛

𝑖=1 + 
1

4
∑ (∏ 𝑞𝑖

(2)2
𝑗=1 )𝑚

𝑖=1 +
1

2
∑ (∏ 𝑞𝑖

(1)1
𝑗=1 )𝑟

𝑖=1 . (8)  

{𝑞𝑖
(3)

, 𝑞𝑖
(2)

, 𝑞𝑖
(1)

} = {

1

2
(1 − 𝑆𝑛)𝑞𝑖

,   if 𝑞𝑖,

1

2
(1 + 𝑆𝑛)𝑞𝑖

,   otherwise.

 (9) 

𝐻𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
= −

1

3
∑ ∑ ∑ 𝑊𝑝𝑞𝑠

(3)
𝑆𝑝𝑆𝑞

𝑁

𝑠=1,𝑠≠𝑝≠𝑞

𝑁

𝑞=1,𝑞≠𝑝≠𝑠

𝑁

𝑝=1,𝑝≠𝑞≠𝑠

𝑆𝑠 

                      −
1

2
∑ ∑ 𝑊𝑝𝑞

(2)
𝑆𝑝𝑆𝑞

𝑁
𝑞=1,𝑝≠𝑞

𝑁
𝑝=1,𝑝≠𝑞 − ∑ 𝑊𝑝

(1)
𝑆𝑝

𝑁
𝑝=1 . 

(10) 

This method is proposed by Wan Abdullah (1992). 𝑛, 𝑚 and 𝑟 are the total number of clauses of 

each clause. 𝑊𝑝𝑞𝑠
(3)

, 𝑊𝑝𝑞
(2)

, 𝑊𝑝
(1)

 are the synaptic weight that will be generated and 𝑆𝑝, 𝑆𝑞, 𝑆𝑠 are the 

neuron states. Equations (8)–(10) will be employed with 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 with the aim that the cost function 

can be minimized. The most desired value is the cost function equal to 0 [5]. The energy profile of this 

model is depending on the effectiveness of the learning phase [5]. While the energy of the neuron is 

computed again by Eq (10), the neurons will undergo a diversity state where the benchmark diversity 

of the neuron will be analyzed. This is because we aimed to analyze the diversity of the solution 

produced with the benchmark solution during the learning phase. These new aspects that are proposed 

in DHNN will let the user know how diversified the solution is produced when applying higher storage 

capacity. 

𝑑𝑖 = ∑ 𝑝𝑖
𝑁𝑁
𝑖=1 , (11)  

𝑝𝑖 = {
1,    𝑆𝑖 ≠ 𝑆𝑖

𝑚𝑎𝑥,

0,   𝑆𝑖 = 𝑆𝑖
𝑚𝑎𝑥.

 (12) 

𝑑𝑖

𝑁𝑁
≥ 𝑡𝑜𝑙𝑑. (13) 

Equations (11)–(13) will be computed as the benchmark diversity of the solution and 𝑁𝑁 is the 

literals number. 𝑝𝑖  is the scoring scheme. 𝑝𝑖  will be 1 if the targeted variables are different from 

benchmark variables and 0 otherwise. 𝑑𝑖  will store the value of the summation of 𝑝𝑖  and will be 

evaluated. 𝑑𝑖 will be divided with neuron numbers, 𝑁𝑁 to obtain the diversity ratio. The solution is 

considered to diversify from the benchmark state if it exceeds the diversity tolerance value, 𝑡𝑜𝑙𝑑. For 



22454 

AIMS Mathematics Volume 8, Issue 9, 22447–22482. 

example, let 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 = (𝑎1 ∨ ¬𝑏1 ∨ 𝑐1) ∧ (¬𝑎2 ∨ ¬𝑏2 ∨ ¬𝑐2) ∧ (𝑎3 ∨ 𝑏3 ∨ 𝑐3) ∧ (𝑓1) . Then the 

benchmark states should be 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 = (1 ∨ −1 ∨ 1) ∧ (−1 ∨ −1 ∨ −1) ∧ (1 ∨ 1 ∨ 1) ∧ (1). Next, 

the obtained neuron is 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 = (−1 ∨ −1 ∨ 1) ∧ (−1 ∨ 1 ∨ −1) ∧ (1 ∨ 1 ∨ −1) ∧ (1). From this 

𝑝𝑖 will score the condition either 𝑆𝑖 equal to 𝑆𝑖
𝑚𝑎𝑥 or different. The obtained neuron has 3 different 

variables from the benchmark solution causing 𝑑𝑖 = ∑ 𝑝𝑖
𝑁𝑁
𝑖=1 = 3 . The neuron will be considered 

diversified if it satisfies Eq (13). For example, 
𝑑𝑖

𝑁𝑁
=

3

10
= 0.3 ≥ 𝑡𝑜𝑙𝑑 . 

4.2. Testing phase 

Most of the neurons still possess unstable energy management due to high oscillations. To 

stabilize this, the Sathasivam relaxation phase will be employed in this study to relax the neuron and 

reduce its oscillation [5]. The final neuron states 𝑆𝑖 can be generated by the local field equation, 

Eq (14) and the Hyperbolic Tangent Activation Function (HTAF) will squash the neuron energy 

value, Eq (15). 

ℎ𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
= ∑ ∑ 𝑊𝑝𝑞𝑠

(3)
𝑆𝑞𝑆𝑠

𝑁
𝑞=1,𝑞≠𝑠

𝑁
𝑠=1,𝑠≠𝑞 + ∑ 𝑊𝑝𝑞

(2)
𝑆𝑞

𝑁
𝑞=1,𝑝≠𝑞 + 𝑊𝑝

(1)
, (14)  

𝑡𝑎𝑛ℎ(ℎ𝜑) =
𝑒ℎ𝜑−𝑒ℎ𝜑

𝑒ℎ𝜑+𝑒ℎ𝜑
, (15) 

𝑆𝑖 = {
1, 𝑡𝑎𝑛ℎ(ℎ𝜑) ≥ 0,

−1, 𝑡𝑎𝑛ℎ(ℎ𝜑) < 0.
 (16) 

The model then will filter the final neurons by Eq (17) after it has achieved final energy where 

𝐻𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
 is the final energy and 𝐻𝜑𝑀𝐴𝐽3𝑆𝐴𝑇

𝑚𝑖𝑛  is the minimum energy. The one that is stable and able to 

converge its energy to achieve global minimum energy will be considered as the solution. Therefore, 

for an effective testing phase, an optimum learning phase needs to be achieved. That is why Election 

Algorithm is proposed in the learning phase of DHNN.  

|𝐻𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
− 𝐻𝜑𝑀𝐴𝐽3𝑆𝐴𝑇

𝑚𝑖𝑛 | < 𝑡𝑜𝑙. (17) 

The study by [5], [7] and [11] has proposed non-systematic logic in DHNN. It is shown that non-

systematic logic able to generate more satisfied interpretations. This study utilizes HTAF as it is able 

to provide more optimal solutions [23]. Also, to enhance the learning process, this study will consider 

Election Algorithm (EA) as a metaheuristic that will be integrated into the learning phase. EA can 

compensate for the high computational cost during the learning phase [7].  

Figure 1 represents the topology of the network where each box represents the connection 

between neurons in 3SAT, 2SAT and first-order logic clauses. The red dot is the synaptic weight of the 

clauses. This model is starting with the logic phase to set up a few parameters. The dashed line 

represents 3,2,1k =  , the thin line represents 3,2k =   and the bold line represents 3,1k =  . The 

network model will then proceed with stages in DHNN until the energy of the neurons is filtered. The 

passed neurons will consider having global minimum energy and otherwise will have local minimum 

energy.
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Figure 1. Topology of DHNN-MAJ3SAT.
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5. Multi-objective Election Algorithm 

The learning phase of this model can be improved by integrating metaheuristics. Election 

Algorithm will be able to maximize the fitness of each neuron which then leads to the minimization of 

the cost function. Election Algorithm is an evolutionary algorithm and a swarm intelligence algorithm 

[7]. EA replicates the behavior of candidates and voters in a presidential election process. EA divides 

the solution space into a few partitions and will be swarming the party based on the operators that it 

possessed. Each individual in EA is the possible solution that will be optimized by local and global 

operators. The state of the neuron also will be undergoing state flipping to create evolution in solution 

searching. This will increase the convergence rate of the solution search. EA is needed because the 

existence of 2SAT and first-order logic will lower the chances to obtain satisfied interpretations. 

Especially, if neuron numbers are increasing, it provides a computational burden to the model [8]. The 

three main operators of EA that cover local and global search operators are positive advertisement, 

negative advertisement and coalition. Each individual of 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 is represented in a bipolar state 

𝑆𝑖 = {1, −1} where 𝑖 = 1,2,3, . . . , 𝑁𝑝𝑜𝑝.  

Stage 1: Initialization 

A population of a random possible solution of 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 is initialized where each individual is a 

voter or a candidate. The fitness of each individual will be quantified by the objective function, Eq (18) 

and will pick the candidates with the highest fitness for the optimization problem.  

𝑓𝐿𝑖
= ∑ 𝐶𝑖

(3)𝑛
𝑖=1 + ∑ 𝐶𝑖

(2)𝑚
𝑖=1 + ∑ 𝐶𝑖

(1)𝑟
𝑖=1 . (18) 

𝐶𝑖
(𝑘)

= {
1,     satisfied

0,     otherwise
  , 𝑘 = 3,2,1. (19) 

Stage 2: Forming parties 

𝑁𝑃𝑜𝑝 will be divided into partitions of a party, 𝑁𝑃𝑎𝑟𝑡𝑦. The number of parties that are proposed in 

this study can be observed in Table 2. 𝑁𝑗 represent the total number of individuals per party. 

𝑁𝑗 =
𝑁𝑃𝑜𝑝

𝑁𝑃𝑎𝑟𝑡𝑦
, where   𝑗=1,2,3,4. (20) 

After candidates are selected, EA will compute the similarity of belief between candidates 𝐿𝑗 and 

voters 𝑣𝑗
𝑖. The similarity of belief is presented in distance form in Eq (21). 

dist(𝑓𝐿𝑗
, 𝑓

𝑣𝑖
𝑗) = 𝑓𝐿𝑗

− 𝑓
𝑣𝑖

𝑗. (21) 

Stage 3: Positive Advertisement 

The candidates that have been elected will start to advertise their campaign and will try to attract 

and influence the voters from their party. The candidates will try to attract as many voters as possible 

to have the majority voting. The number of voters that their decision-making will be influenced will 

be represented by Eq (22). 𝜎𝑝  is the positive advertisement rate and 𝜔
𝑣𝑖

𝑗  is the eligibility distance 

coefficient. Based on the effect of the candidates on the voters in Eq (23), the voters will undergo state 

flipping represented by Eq (24) and 𝑆
𝑣𝑖

𝑗  is the number of literals that will be flipped. 
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𝑁𝑠 = 𝜎𝑝𝑁𝑗 ,    𝜎𝑝 ∈ [0,0.5]. (22) 

𝜔
𝑣𝑖

𝑗 =
1

dist(𝑓𝐿𝑗
, 𝑓

𝑣
𝑖
𝑗) + 1

.  (23) 

𝑆
𝑣𝑖

𝑗 = 𝑁𝑐𝜔
𝑣𝑖

𝑗. (24) 

where 𝑁𝑐 is the total number of literals per individual. Next, the fitness of each voter will be updated 

by Eq (18) and the candidate will be replaced if the updated voters have higher fitness than the 

candidate. 

Stage 4: Negative advertisement 

In this stage, the candidates will try to influence the decision-making of other voters from another 

party. This global operator will try to expand the solution space by interacting with another party with 

its party. The voters that are influenced by the candidate’s advertisement will be represented by 

Eq (25). 

𝑁𝑣𝑖
∗ = 𝜎𝑛(𝑁𝑗 − 𝑁𝑠),    𝜎𝑛 ∈ [0,0.5]. (25) 

dist(𝑓𝐿𝑗
, 𝑓𝑣𝑖

∗) = 𝑓𝐿𝑗
− 𝑓𝑣𝑖

∗. (26) 

𝜔𝑣𝑖
∗ =

1

dist(𝑓𝐿𝑗
,𝑓𝑣𝑖

∗)+1
. (27) 

𝑆𝑣𝑖
∗ = 𝑁𝑐𝜔𝑣𝑖

∗. (28) 

𝜎𝑛 is the negative advertisement rate, 𝜔𝑣𝑖
∗ is the eligibility distance coefficient and 𝑆𝑣𝑖

∗ represents the 

number of variables that will undergo state flipping. The voters that are influenced will undergo state 

flipping, Eq (28). The candidate will be replaced if the updated voters have higher fitness.  

Stage 5: Coalition 

The different parties will cooperate and form allies. After the two parties have united, new 

candidates will be randomly picked. The effect of the candidate on the party will influence all the 

voters. Therefore, the similarity of belief and the eligibility distance coefficient will be computed the 

same as in Eq (26) and Eq (27), respectively. The number of variables that will undergo state flipping 

will be computed by Eq (28). If voters have the highest fitness, the voters will be elected as the new 

candidate and will proceed with election day. If not, the old candidate will proceed to compete on 

election day. 

Stage 6: Election day  

The candidates will fight for their spots. The candidate with the highest fitness will win the 

election and be elected as the winner. However, rather than choosing only one, all the candidates and 

voters that manage to achieve the highest fitness will be considered the optimal solution for this model. 

If there is no individual with the highest fitness, the iteration will continue until the termination criteria 

are met.  
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Figure 2. Flowchart of proposed EA. 
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Algorithm 1: Pseudo-Code of the proposed EA 

1 Generate initial population 𝑁𝑝𝑜𝑝 

2 𝑤ℎ𝑖𝑙𝑒(𝑖 < 𝑚𝑎𝑥  iteration) or (𝑓𝐿𝑗
< 𝑓𝑚𝑎𝑥()) 

3 Forming initial parties 𝑁𝑗 by Eq (20) 

4 𝑓𝑜𝑟(𝑗 ≤ 𝑁𝑃𝑎𝑟𝑡𝑦), 𝑑𝑜 

5 Evaluate the fitness of each individual by Eq (18) 

6 Evaluate the similarity of belief between voters and candidates by Eq (21) 

7 𝑒𝑛𝑑 

8 {Positive Advertisement} 

9 Evaluate the number of influenced voters by Eq (22) 

10 𝑓𝑜𝑟(𝑖 ≤ 𝑁𝑠), 𝑑𝑜 

11 Evaluate the reasonable effect from the candidate, 𝜔
𝑣𝑖

𝑗 by Eq (23) 

12 Evaluate the number of state flipping by Eq (24) 

13 Update the fitness of the neuron by Eq (18) 

14 𝑖𝑓 (𝑓
𝑣𝑗

𝑖 > 𝑓𝐿𝑗
) 

15 Assign 𝑣𝑗
𝑖 as candidate 

16 𝑒𝑙𝑠𝑒 

17 Remain 𝐿𝑗 

18 𝑒𝑛𝑑 

19 {Negative Advertisement} 

20 Evaluate the number of influenced voters by Eq (25) 

21 𝑓𝑜𝑟(𝑖 ≤ 𝑁𝑣𝑖
∗), 𝑑𝑜 

22 Evaluate the reasonable effect from the candidate, 𝜔𝑣𝑖
∗ by Eq (27) 

23 Evaluate the number of states flipping by Eq (28) 

24 Update the fitness of the neuron by Eq (18) 

25 𝑖𝑓 (𝑓𝑣𝑖
∗ > 𝑓𝐿𝑗

) 

26 Assign 𝑣𝑖
∗ as candidate 

27 𝑒𝑙𝑠𝑒 

28 Remain 𝐿𝑗 

29 𝑒𝑛𝑑 

30 {Coalition} 

31 𝑓𝑜𝑟(𝑖 ≤ 𝑁𝑗 + 𝑁𝑘), 𝑑𝑜 

32 Evaluate the reasonable effect from the candidate, 𝜔𝑣𝑖
∗ by Eq (27) 

33 Evaluate the number of states flipping by Eq (28) 

34 Update the fitness of the neuron by Eq (18) 

35 𝑖𝑓 (𝑓𝑣𝑖
∗ > 𝑓𝐿𝑗

) 

36 Assign 𝑣𝑖
∗ as candidate 

37 𝑒𝑙𝑠𝑒 

38 Remain 𝐿𝑗 

39 𝑒𝑛𝑑 

40 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 

41 𝑟𝑒𝑡𝑢𝑟𝑛 output 
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[16] has proposed EA in the learning phase of DHNN to deal with the computational cost issues. 

The study by [7] also uses EA to tolerate the computational cost of a non-systematic logic-DHNN 

model. Then, the study by [6] proposed a hybrid EA that possessed few objective functions to work 

with in DHNN. Therefore, this study will imply the same EA structure that is proposed by [7] with an 

improvement that is inspired by [6]. After Election Day, the model needs to undergo a diversity phase 

which possessed another objective function. The multi-objective EA can ensure the optimality of the 

training of the neurons and the quality of the solutions produced. Algorithm 1 pictures the pseudo-code 

of the proposed multi-objective EA and its flow can be seen in Figure 2. 

6. Experimental setup 

The experimental setup and parameter control of this model’s framework will be listed in this 

section. The performance of this model will be analyzed based on the listed parameters. This 

experiment will observe the synaptic weight management, minimization of the cost function, testing 

capability, energy profile, diversity performance and neuron variation. The framework’s parameters 

are as follows: 

6.1. Simulation datasets 

This section describes the setup for simulation controls that are used in this model. The 

simulations were computed by Dev C++ Version 5.11 running on 12GB RAM Intel Core i5 7th 

Generation occupied with 64-bit Windows 10. The time threshold for the computational is 24h and the 

program will be terminated if it exceeds the time threshold. 

The simulated data of the logical structure are generated randomly based on 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 parameter 

settings to avoid biases. This model considers small size 𝑇𝐶 (𝑇𝐶 = 10) and large size 𝑇𝐶 (𝑇𝐶 = 20). 

Each 𝑇𝐶 will cover three types of logical combinations 𝑘 = 3,2, 𝑘 = 3,2,1 and 𝑘 = 3,1. Each 𝑘 will 

have a logical structure for 𝛼 ∈ (0.5,1). For 𝑘 = 3,2,1 the ratio of clauses between 2SAT and first-

order logic are randomized also to avoid logical biases. This model works with a simulated data 

program to observe the performance of the model. A simulated or synthetic dataset is data that is 

randomly generated by a compiler in bipolar representation {1, −1} [16]. The usefulness of the model 

then can be seen when integrated with real-life datasets. 

6.2. Parameter control 

The neuron combination used, 𝜀 is 100 and the number of learning is taken from [5], 10000. The 

relaxation rate for the Sathasivam relaxation phase is 3 taken from [5]. Worth to mention, that this 

study will utilize bipolar neuron states since bipolar neuron states help to converge to global minimum 

energy. It is said also that bipolar converges faster than the binary states [5]. This is due to the existence 

of zero states that will delete some important information like synaptic weight. This will slow down 

the convergence process. The operated synaptic weight will always be symmetric, 𝑊𝑖𝑗
(2)

= 𝑊𝑗𝑖
(2)

 and 

the synaptic weight has no self-looping, 𝑊𝑖𝑖
(2)

= 𝑊𝑗𝑗
(2)

= 𝑊𝑘𝑘
(2)

= 𝑊𝑖𝑖𝑖
(3)

= 𝑊𝑗𝑗𝑗
(3)

= 𝑊𝑘𝑘𝑘
(3)

= 0 . The 

learning process of this model will be handled by EA [16] which will be integrated into the learning 
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phase. The number of strings that will be considered during Election Day is the maximum which is 

different from [7]. The parameter settings will be presented in Tables 1 and 2.  

Table 1. Experimental settings for DHNN-MAJ3SATEA. 

Parameter Value 

Tolerance value, 𝑡𝑜𝑙 0.001 [16] 

Neuron combination, 𝜀 100 

Number of learning, 𝜔 10000 [5] 

Number of trials, 𝜈 100 [16] 

Number of strings Max 

Alpha, 𝛼 (0.5,1) [5] 

Order of clauses, 𝑘 𝑘 = 3,2,1 

𝑘 = 3,2 
𝑘 = 3,1 

Diversity tolerance value, 𝑡𝑜𝑙𝑑 0.1 

Type of diversity Benchmark 

Learning iterations 100 

Threshold time simulation 24 hours [24] 

Threshold constraint of DHNN 0 

Relaxation rate 3 [5] 

Activation function Hyperbolic Tangent Activation Function [8] 

Learning method Election Algorithm [16] 

Initialization of neuron states in the learning and 

testing phase 

Random 

Table 2. Parameter settings for Election Algorithm [16] 

Parameter Value 

Number of populations, 𝑁𝑃𝑜𝑝 120 

Number of parties, 𝑁𝑃𝑎𝑟𝑡𝑦 4 

Positive advertisement rate, 𝜎𝑝 0.1 

Negative advertisement rate, 𝜎𝑛 0.1 

Candidate selection Highest fitness (random) 

Type of voter’s attraction Random 

Type of state flipping Random 

Number of strings on election day Max 

The parameters remain static while doing this experiment. The same parameters are used for each 

𝛼 for each 𝑇𝐶. To summarize, most of the parameters are taken from [5,6,7,11,16,24] to ensure the 

producibility of the model. It has also proven that the listed parameters in Tables 1 and 2 can sync with 

the DHNN model effectively in producing solutions. 

6.3. Performance evaluation metrics 

The performance of the model will be examined by six main categories: synaptic weight 

management, minimization of the cost function, testing capability, energy profile, diversity and neuron 
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variation. 𝑀𝐴𝐸𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 , 𝑀𝐴𝐸𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ,  𝑀𝐴𝐸𝑇𝑒𝑠𝑡𝑖𝑛𝑔 , 𝑀𝐴𝐸𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑍𝑚 , total neuron variation (𝑇𝑉 ), 

Jaccard Similarity Index (JSI) and Gower and Legendre Similarity Index (GLSI) are the eight 

performance metrics that will be used in estimating the quality of the model performance. 

𝑀𝐴𝐸𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔  will be estimating the mean absolute error (MAE) of the learning phase. Next, 

𝑀𝐴𝐸𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 will evaluate the performance of diversity in the learning phase using MAE. 𝑀𝐴𝐸𝑇𝑒𝑠𝑡𝑖𝑛𝑔 

is an error analysis that will evaluate the performance of the testing phase. For energy analysis in the 

testing phase, 𝑀𝐴𝐸𝐸𝑛𝑒𝑟𝑔𝑦 will evaluate the energy management’s performance. Global minimum ratio 

(𝑍𝑚) is also evaluated in energy analysis. Meanwhile, 𝑇𝑉, JSI and GLSI will be computed in similarity 

analysis, analyzing the neuron variation. Table 3 lists some of the parameters that will be used in the 

performance metrics formula. 

Table 3. List of parameters in performance analysis. 

Parameter Value 

𝜔 Number of learning 

𝜀 Neuron combination 

𝜈 Number of trials 

𝑍𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
 Number of global minimum solution 

𝐿𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
 Number of local minimum solution 

𝑓𝑖 Current fitness of the solution 

𝑓𝑚𝑎𝑥 Maximum solution  

𝐻𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
 Final energy 

𝐻𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
𝑚𝑖𝑛  Minimum energy 

6.3.1. Assessment for learning phase 

Mean absolute error 

MAE is an average model-performance metric. MAE summing the magnitude of the error without 

considering the square of the error will avoid escalating the error. The general equation of MAE is 

presented by Eq (29). A best estimate is one where these errors are at their minimum [25]. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑒𝑖|

𝑛
𝑖=1 . (29) 

where 𝑛 is the number of errors and 𝑒𝑖 is the error. By this formula the MAE used for this study is 

formulated as below: 

𝑀𝐴𝐸𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 = ∑
1

𝜔

𝜔
𝑖=1 |𝑓𝑚𝑎𝑥 − 𝑓𝑖|. (30) 

𝑀𝐴𝐸𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = ∑
1

𝜔
|𝑆𝑖

𝑚𝑎𝑥 − 𝑆𝑖|
𝜔
𝑖=1 . (31) 

𝑀𝐴𝐸𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = ∑
1

𝜀𝜈
|𝑍𝜑𝑀𝐴𝐽3𝑆𝐴𝑇

− 𝐿𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
|𝜔

𝑖=1 . (32) 

𝑀𝐴𝐸𝐸𝑛𝑒𝑟𝑔𝑦 = ∑
1

𝜀𝜈
|𝐻𝜑𝑀𝐴𝐽3𝑆𝐴𝑇

− 𝐻𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
𝑚𝑖𝑛 |𝜔

𝑖=1 . (33) 
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6.3.2. Assessment for testing phase 

Global minimum ratio (𝑍𝑚) 

𝑍𝑚 evaluate the global minimum energy solution. It evaluates the ratio of the final neuron states 

that attained global minimum energy and the final neuron states that attained local minimum energy. 

The formula 𝑍𝑚 is: 

𝑍𝑚 =
1

𝜀𝜈
∑ 𝑍𝜑𝑀𝐴𝐽3𝑆𝐴𝑇

𝜔
𝑖=1 . (34) 

Total neuron variation and similarity index 

The retrieved final neuron states are compared with the benchmark solution and according to [5] 

the benchmark solution is presented below: 

𝑆𝑖
𝑚𝑎𝑥 = {

   1,   when 𝑎1,
−1,   when ¬𝑎1.

 (35) 

𝑎1 and ¬𝑎1 are the positive and negative states of the literals in 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 clauses. The formula for 𝑇𝑉 

is represented by a sum of a scoring mechanism 𝐹𝑖. 

𝑇𝑉 = ∑ 𝐹𝑖
𝛽
𝑖=0 . (36) 

𝐹𝑖 = {
1,    𝑆𝑖 ≠ 𝑆𝑖

𝑚𝑎𝑥,

0,   𝑆𝑖 = 𝑆𝑖
𝑚𝑎𝑥.

 (37) 

𝛽  represent the total solution produced by the model. For further exploration of analyzing the 

relationship between final neuron states and the benchmark states, this study will consider the 

similarity index as the performance metric. Table 4 presents the formula formulated for JSI and GLSI 

and Table 5 is the neuron states for the benchmark and target solution that will be considered in the 

formula.  

Table 4. Similarity Index Formula. 

Similarity Index Formula 

Jaccard [5] 
𝐽𝑆𝐼 =

𝑙

𝑙 + 𝑚 + 𝑛
 

Gower and Legendre [7] 
𝐺𝐿𝑆𝐼 =

𝑙𝑜

𝑙 + 0.5(𝑚 + 𝑛) + 𝑜
 

Table 5. Neuron states for benchmark and target solution. 

Parameter 𝑆𝑖
𝑚𝑎𝑥 𝑆𝑖 

𝑙 1 1 

𝑚 1 −1 

𝑛 −1 1 

𝑜 −1 −1 

7. Results and discussion 

In this section, the performance of different structures of DHNN-MAJ3SAT will be examined and 
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analyzed. The simulated data sets are generated based on the parameter control. The evaluation will 

be divided into 2 main parts which are the learning phase and the testing phase. 

7.1. Learning phase 

This section will be focused on the capability of the models with different logical combinations 

of cost function minimization and synaptic weight management. [26] ANNs are a network of neuron-

like units that is optimized by a series of training. Therefore, this section will estimate the diversity of 

the neuron generated based on the higher CAM used. 

7.1.1. Learning error analysis 

This study will use 𝑀𝐴𝐸𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 for analyzing the learning error of DHNN-MAJ3SATEA. The 

lower 𝑀𝐴𝐸𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 value depicts the optimality of the model [10]. The learning error shown is based 

on 𝜔 = 10000. 

 

Figure 3. Learning error analysis for (a)𝑇𝐶 = 10 and (b)𝑇𝐶 = 20 with different 𝑘. 

Note that the optimum learning phase provides a low error to the model performance due to fewer 

learning iterations. Figure 3 shows that 𝑘 = 3,2 manage to obtain the best learning process. This is due 

to the natural characteristics of 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 that have a higher probability to be satisfied with the absence 

of first-order logic causing more correct synaptic weight generation. The logical structure for 

MAJ3SAT for k = 3,2 does not need to obey the restriction that first-order logic will cause. Since first-

order logic has the lowest way possible to be satisfied. Due to these characteristics, other 𝑘 such as 

𝑘 = 3,2,1  and 𝑘 = 3,1  have higher MAE. The logical combinations for 𝑘 = 3,1  suffered the most 

  

(a) (b) 
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since for lower NN it was not able to achieve 0 error compare to the others because 𝑘 = 3,1 clause has 

the lowest likelihood of achieving 𝐸𝜑𝑀𝐴𝐽3𝑆𝐴𝑇
= 0  than those in other orders of clauses due to its 

limitations to obtain satisfied interpretations. The 𝑀𝐴𝐸𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 for higher NN(𝑇𝐶 = 20) shows an 

increasing trend. DHNN-MAJ3SATEA suffers due to high neuron numbers. It then provides more 

computational cost, resulting in a higher number of iterations of the model to obtain the correct 

synaptic weight. For 𝑇𝐶 = 10 the logical combination 𝑘 = 3,2,1 able to have the same performance 

as 𝑘 = 3,2. This is due to the 2SAT clauses in the logical string of 𝑘 = 3,2,1. It provides a shield as it 

can counters back the drawback that first-order logic has provided. The Wan Abdullah method 

succeeds in generating more correct optimal synaptic weights. Table 6 represents the Friedman test 

that has been conducted for 𝑘 = 3,2, 𝑘 = 3,2,1 and 𝑘 = 3,1. The Chi-Square value is 𝝌𝟐 = 𝟏𝟔 and 

the degree of freedom is 𝑑𝑓 = 2 for MAE learning. The null hypothesis is that there is no significant 

relation between different 𝑘 . Considering 𝛼0 = 0.05  the null hypothesis is rejected stresses the 

importance of comparing the different logical combinations as it validates different environments for 

the model. 

Table 6. Friedman test for learning between different 𝑘. 

𝜶 𝒌 = 𝟑, 𝟐 𝒌 = 𝟑, 𝟐, 𝟏 𝒌 = 𝟑, 𝟏 

0.55 0.68 18.0325 19.9999 

0.60 0.36 16.9428 19.8998 

0.65 0 15.939 19.8312 

0.70 0.04 11.3987 19.6976 

0.75 0 11.0198 18.8296 

0.80 0 2.68 17.8595 

0.85 0 1.68 14.5703 

0.90 0 1.4 8.3333 

Chi-Square, 𝝌𝟐 16 

𝒑 − Value 0.0003355 

Accept/Reject 𝑯𝟎 Reject 𝐻0 

7.1.2. Diversity error analysis 

Figure 4 describes the error of diversity generated in the learning phase. The targeted neuron is 

considered diverse from the benchmark solution if it exceeds the diversity tolerance value, 𝑡𝑜𝑙𝑑 = 0.1. 

Repetitive neurons while using 5 CAM will degrade the model optimality. The aim is to gain different 

5 CAM to be analyzed. This section takes place in the learning phase. The decreasing of MAE 

throughout 𝛼 conveys that a higher number of diverse solutions are generated. The logical patterns that 

MAJ3SAT provided were able to increase the number of satisfied interpretations. A higher satisfied 

interpretation leads the model to succeed in generating more satisfied neurons with different states. 

For instance, for 𝑇𝐶 = 10 both 𝑘 = 3,2 and 𝑘 = 3,2,1 able to achieve 0 for all 𝛼. Both 𝑘 manage to 

generate all solutions that own at least 10% different literals state from 𝑆𝑖
𝑚𝑎𝑥. The disadvantage that 

first-order logic possesses in the logical structure can be covered by the 3SAT and 2SAT clauses 

causing more satisfied clauses with the help of EA. Figure 4 indicates that 𝑘 = 3,1  have the least 

diversity value (highest 𝑀𝐴𝐸𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦). Thus, it has the least number of diverse neurons. It shows that 
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the majority of the 3SAT clauses also were not able to shield the logical string due to the existence of 

the first-order logic. The logical string starts to lose the majority patterns and disrupt the synaptic 

weight management and induce less diverse neurons. Table 7 shows the Friedman test that has been 

conducted for 𝑘 = 3,2, 𝑘 = 3,2,1 and 𝑘 = 3,1 for MAE Diversity. The Chi-Square value is 𝝌𝟐 = 𝟏𝟔 

and the degree of freedom is 𝑑𝑓 = 2. While using 𝛼0 = 0.05, the null hypothesis is rejected. The fact 

that the null hypothesis is rejected emphasizes how important it is to compare various logical 

arrangements. The different logical combinations are important in investigating the model’s behavior 

in a higher storage capacity environment. 

 

Figure 4. Diversity error analysis for (a)𝑇𝐶 = 10 and (b)𝑇𝐶 = 20 with different 𝑘. 

Table 7. Friedman test for Diversity between different 𝑘. 

𝜶 𝒌 = 𝟑, 𝟐 𝒌 = 𝟑, 𝟐, 𝟏 𝒌 = 𝟑, 𝟏 

0.55 0.1734 3.6378 4.1496 

0.60 0.0936 3.6358 4.2504 

0.65 0 3.55 4.278 

0.70 0.0108 2.756 4.0416 

0.75 0 2.7878 4.01 

0.80 0 0.737 4.0352 

0.85 0 0.4704 3.5316 

0.90 0 0.399 2.2960 

Chi-Square, 𝝌𝟐 16 

𝒑 − Value 0.0003355 

Accept/Reject 𝑯𝟎 Reject 𝐻0 

  

(a) (b) 
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7.2. Testing phase 

This section discusses the performance of this model with different 𝑘 in the testing phase. The 

testing capability, energy profile and neuron variation are considered with the aim that DHNN-

MAJ3SATEA is able to achieve global minimum energy. 

7.2.1. Testing analysis 

Figure 6 demonstrates the performance of the testing phase in DHNN-MAJ3SATEA. It tells the 

value of neurons that are able to escape local minimum energy. Since 𝑘 = 3,2 has the best learning 

phase, it also will have the best testing phase. 𝑘 = 3,2  able to produce the most global minimum 

solution. The majority patterns that 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇  possessed succeeded in improving the model and 

generating more global minimum energy solutions even though NN is rising. This is due to optimal 

energy management for 𝑘 = 3,2. Also, HTAF manages to effectively squash the energy of the neurons 

due to its steep sigmoid function. Even if the first-order logic is present in 𝑘 = 3,2,1, the generated 

neurons can induce global minima states. The correct pattern of 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 can generate more correct 

final neuron states. The relaxation phase, local field and HTAF seem able to stabilize the neuron 

oscillation providing chances for the neuron to escape suboptimal conditions. The energy of the neuron 

for 𝑘 = 3,1 is the highest. This is because the disruption in obtaining a satisfied interpretation has 

affected the energy management for this logical structure causing high oscillating neurons. The 

neurons are not able to maintain within the tolerance area causing them to trap in suboptimal conditions. 

Note that as 𝛼 increases the NN will also increase. Therefore, based on the study [8], higher NN will 

cause a computational burden to the model dropping the model’s performance. However, in this study, 

the performance of the model is improving with the help of HTAF effectively improving the solution 

and decreasing the number of neurons that suffers from the suboptimal condition. This causes lower 

testing energy errors due to better energy management during the testing phase. The higher the ratio, 

the more neurons are able to acquire global minimum energy. As expected for 𝑇𝐶 = 10, 𝑘 = 3,2 and 

𝑘 = 3,2,1 able to achieve 𝑍𝑚 = 1 for all 𝛼. Note here for all cases the 𝑍𝑚 are increasing as 𝛼 increases. 

The majority patterns that 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 possessed succeeded in improving the model and generating more 

global minimum energy solutions even though NN is rising. The local field did not suffer from the 

computational burden and is able to generate optimal final neuron states. Figure 7 presents the energy 

error analysis for different 𝑇𝐶 = 10 and 𝑇𝐶 = 20 with different 𝑘. The energy error analysis is based 

on 5 CAM. For 0.6 ≤ 𝛼 ≤ 0.8 in 𝑇𝐶 = 10, 𝑘 = 3,2 and 𝑘 = 3,2,1 able to achieve 𝑀𝐴𝐸𝐸𝑛𝑒𝑟𝑔𝑦 = 0. 

This indicates that all of the neurons are able to achieve global minimum energy thanks to the 

relaxation operators that this model proposed. It also shows that the local field tends to generate 

optimal neuron states. This highlights the capability of 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 when the majority ratio is increasing, 

more final neuron states are able to achieve global minimum energy. We can prove this with 𝑘 = 3,1. 

The model loses its efficiency a little bit as the 𝑇𝐶 number is doubled. The computational burden that 

higher NN has produced is affecting the neuron stabilizing process. Therefore, more neurons are 

trapped in a suboptimal energy state. This can be seen for 𝑘 = 3,2,1  and 𝑘 = 3,1 . In addition, the 

Friedman test analysis for global minimum energy is displayed in Table 8. This Friedman test shows 

that the Chi-Square for 𝑘 = 3,2 , 𝑘 = 3,2,1  and 𝑘 = 3,1  for top 1 until 5 is 12, 16, 16, 15.0625, 

13.5625 respectively and the degree of freedom is 𝑑𝑓 = 2. The null hypothesis is rejected for all top 

considering 𝛼0 = 0.05. This again highlighted the significance of analyzing different 𝑘 in this study. 
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Figure 5. Global minima ratio, 𝑍𝑚 for (a)[𝑇𝐶, 𝑘] = [10, [3,2]], (b)[𝑇𝐶, 𝑘] = [10, [3,2,1]], 

(c) [𝑇𝐶, 𝑘] = [10, [3,1]], (d)[𝑇𝐶, 𝑘] = [20, [3,2]], (e)[𝑇𝐶, 𝑘] = [20, [3,2,1]], (f)[𝑇𝐶, 𝑘] =

[20, [3,1]]. 
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Figure 6. Testing error analysis for (a)𝑇𝐶 = 10 and (b)𝑇𝐶 = 20 with different 𝑘. 

Table 8. Friedman test for 𝑍𝑚 between different 𝑘. 

Top Chi-Square, 𝝌𝟐 𝒑 − Value Accept/Reject 𝑯𝟎 

1 12 0.002479 Reject 𝐻0 

2 16 0.0003355 Reject 𝐻0 

3 16 0.0003355 Reject 𝐻0 

4 15.0625 0.0005361 Reject 𝐻0 

5 13.5625 0.001135 Reject 𝐻0 

  

(a) (b) 

 



22470 

AIMS Mathematics Volume 8, Issue 9, 22447–22482. 

 

Figure 7. Energy error analysis for (a)[𝑇𝐶, 𝑘] = [10, [3,2]], (b)[𝑇𝐶, 𝑘] = [10, [3,2,1]], (c) 

[𝑇𝐶, 𝑘] = [10, [3,1]] , (d)[𝑇𝐶, 𝑘] = [20, [3,2]] , (e) [𝑇𝐶, 𝑘] = [20, [3,2,1]] , (f) [𝑇𝐶, 𝑘] =

[20, [3,1]]. 
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7.2.2. Testing analysis in total variation and similarity analysis 

 

Figure 8. Total Neuron Variation for (a)[𝑇𝐶, 𝑘] = [10, [3,2]], (b)[𝑇𝐶, 𝑘] = [10, [3,2,1]], 

(c) [𝑇𝐶, 𝑘] = [10, [3,1]], (d)[𝑇𝐶, 𝑘] = [20, [3,2]], (e)[𝑇𝐶, 𝑘] = [20, [3,2,1]], (f)[𝑇𝐶, 𝑘] =

[20, [3,1]]. 
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(a) (b) 

  

(c) (d) 
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(e) 

  

(f) (g) 

 



22474 

AIMS Mathematics Volume 8, Issue 9, 22447–22482. 

 

Figure 9. Jaccard Similarity Index (JSI) for (a)[𝑇𝐶, 𝑇𝑜𝑝] = [10,1], (b)[𝑇𝐶, 𝑇𝑜𝑝] = [10,2], 

(c) [𝑇𝐶, 𝑇𝑜𝑝] = [10,3] , (d)[𝑇𝐶, 𝑇𝑜𝑝] = [10,4] , (e) [𝑇𝐶, 𝑇𝑜𝑝] = [10,5] , (f) [𝑇𝐶, 𝑇𝑜𝑝] =

[20,1] , (g) [𝑇𝐶, 𝑇𝑜𝑝] = [20,2] , (h) [𝑇𝐶, 𝑇𝑜𝑝] = [20,3] , (i) [𝑇𝐶, 𝑇𝑜𝑝] = [20,4] , 

(j)[𝑇𝐶, 𝑇𝑜𝑝] = [20,5]. 

  

(h) (i) 

 

(j) 
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(a) (b) 

  

(c) (d) 
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(e) 

  

(f) (g) 
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Figure 10. Gower and Legendre Similarity Index for (a) [𝑇𝐶, 𝑇𝑜𝑝] = [10,1] , 

(b)[𝑇𝐶, 𝑇𝑜𝑝] = [10,2] , (c)[𝑇𝐶, 𝑇𝑜𝑝] = [10,3] , (d)[𝑇𝐶, 𝑇𝑜𝑝] = [10,4] , (e)[𝑇𝐶, 𝑇𝑜𝑝] =

[10,5] , (f) [𝑇𝐶, 𝑇𝑜𝑝] = [20,1] , (g) [𝑇𝐶, 𝑇𝑜𝑝] = [20,2] , (h) [𝑇𝐶, 𝑇𝑜𝑝] = [20,3] , 

(i)[𝑇𝐶, 𝑇𝑜𝑝] = [20,4], (j)[𝑇𝐶, 𝑇𝑜𝑝] = [20,5]. 

This part analyzed the behavior of the solutions and their similarity of the solution. Figure 8 

  

(h) (i) 

 

(j) 
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describes the variation of the solution generated by DHNN-MAJ3SATEA based on 5 CAM. An optimal 

solution is when the model is able to retrieve non-repeating final neuron states. JSI in Figure 9 analyzed 

the condition of the {1,1}  states to the other states excluding the {−1, −1}  state while GLSI in 

Figure 10 includes the {−1, −1}  states. Figure 9 shows that 𝑘 = 3,2  able to achieve an ideal 

performance of final neuron states as it holds the lowest JSI value compared to the other two 𝑘. The 

non-systematic structure that 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇  possesses is able to generate more satisfied different 

interpretations. More satisfied interpretations lead to a wide range of solutions space. The performance 

of 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 for all 𝑘 are proportional to Figure (8-10). In 𝑇𝐶 = 20, 𝑇𝑉 ranges from 0.79 to 0.97 for 

𝑘 = 3,2 which shows prominent results. While it is ranging from 0 to 0.97 for 𝑘 = 3,1. 𝑘 = 3,1 did 

not manage to produce more variety of neurons due to first-order logic that hinders the satisfaction of 

the logical string. The neurons are trapped in a suboptimal state preventing more variety of neurons 

to be generated. Figure 10 also shows that 𝑘 = 3,1  suffers low neuron variations. EA is able to 

improve the learning process, but EA tends to generate over-fitting solutions for 𝑘 = 3,1. Causing a 

high number of GLSI. The same thing occurs in Figure 9 which {−1, −1} are not considered. As 𝛼 

increases, the neuron variation and JSI value also increase. This portrays how the majority patterns 

that 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇  possess the ability to produce solutions with different dimensions. It gives higher 

chances for the logical string to be satisfied as 𝛼 increases, conjuring more neurons able to achieve 

global minimum energy. 𝑘 = 3,2 also seems able to reduce the number of repetitive solutions followed 

by 𝑘 = 3,2,1. Some top for lower 𝛼 in 𝑇𝐶 = 20, some 𝑘 is not able to generate even top 5 solutions. 

This is due to the poor diversity performance that it possesses during the learning phase which is due 

to bad synaptic weight management that 𝑘 has (especially 𝑘 = 3,1). This can be seen clearly in the 

fifth top in both Figures 9 and 10 where 𝑘 = 3,2 able to generate value for each 𝛼 while 𝑘 = 3,2,1 

only able to generate value starting from 𝛼 = 0.7 and 𝑘 = 3,1 able generate value starting from 𝛼 =

0.85. Due to its suboptimal condition 𝑘 = 3,2,1 and 𝑘 = 3,1 was not able to generate even the top five 

different satisfied interpretations. This concludes how bad the impact of the first-order logic has 

provided causing over-fitting solutions and low diverse solutions. 

7.3. The limitation of the DHNN-MAJ3SATEA 

Upon experimenting with this model, there are several limitations of this study that need to be 

mentioned. Major 3 Satisfiability is a non-systematic logic; the model will need to deal with multi-

clauses logical structures with different order combinations which include the first-order logic which 

has a very low probability to be satisfied. MAJ3SAT logical structure are dealing with random negated 

literals per clause, so there might exist clauses with no negated literals which will decrease the diversity 

of the solution. Next, since MAJ3SAT is focusing on the majority of the 3SAT clauses, the neuron 

number will also increase rapidly causing a high computational burden. On the other hand, DHNN 

utilizes bipolar representation, which implies that this model cannot use for the continuous problem. 

This study also deals with single-layer neural networks. Hence, this model is not suitable for deep 

learning optimization. In addition, this study integrated EA in DHNN. EA is known as a strict 

metaheuristic which means that if EA already has a neuron with max fitness, the neuron still needs to 

undergo all the stages in EA. It has multiple optimization operators which consist of local and global 

operators. These stages and operators in EA will increase the computational time for the learning 

process as it gets complex. This study also did not apply the chaotic positive advertisement and 

migration operator parameter that [15] has proposed and the caretaker party that [6] has proposed. 
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8. Conclusions 

The presented findings have proven that 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 are compatible with DHNN that have been 

assisted by Election Algorithm in the learning phase. The majority pattern that 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 has provided 

succeeded in increasing satisfied interpretations. In other words, 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇 are able to generate more 

correct synaptic weight during the learning phase due to the majority factor that it possessed. This 

model has been optimal in terms of synaptic weight management, cost function minimization, diversity, 

energy profile and neuron variation. 

During the learning phase, MAJ3SAT 𝑘 = 3,2 has the best learning performance. This logical 

combination can maximize the satisfied interpretation and minimize the cost function. This happens 

also for higher NN (𝑇𝐶 = 20). 𝑘 = 3,2 outperformed other logical combinations in terms of diversity. 

The absence of first-order logic has provided an advantage to 𝜑𝑀𝐴𝐽3𝑆𝐴𝑇. It provides more room for 

correct synaptic weight to be generated causing more diverse neurons to be generated. Next, during 

the testing phase, 𝑘 = 3,2 also seems to have the best testing phase. DHNN-MAJ3SATEA succeed to 

attain more stable final neuron states. This shows that neurons that suffer high oscillations are more 

for 𝑘 = 3,2,1 and 𝑘 = 3,1 compared to 𝑘 = 3,2 leading to local minimum energy. Furthermore, 𝑘 =

3,2 also outperformed other logical combinations in terms of neuron variation. Generally, for all 𝑘, the 

performance of DHNN-MAJ3SATEA increases as 𝛼  increases. DHNN-MAJ3SATEA manages to 

provide a higher satisfied interpretation during logical inconsistency. To sum up, the objective that has 

been stated in Section 1, this study succeeds in formulating the logical structure of MAJ3SAT. This 

study is also able to imply the multi-objective Election Algorithm in this model and succeeds in 

minimizing the cost functions. The multi-objective functions are also able to optimize the solutions’ 

fitness and diversity while expanding the storage capacity. The performance and the compatibility of 

the model have also shown prominent results. 

From the obtained experimental results, this model can be extended to real-life data sets for future 

work and can decrease its limitation by adding certain features to it. For future possible work of 

𝜑𝑀𝐴𝐽3𝑆𝐴𝑇, the logical structure can be extended to control its negated literals. Therefore, a weighted 

major logic can be proposed named Weighted Major 3 Satisfiability logic (rMAJ3SAT) as a weighted 

factor that can increase the diversity of the solution [27]. In addition, the fuzzy logic that [28] used in 

this study can be merged with MAJ3SAT in order to explore MAJ3SAT's continuous search space in 

the learning phase. Since we already observe how the majority of clauses of the logical structure have 

performed, maybe a new logical structure that highlights the minority characteristics can be explored. 

Besides, HEA that [6] has proposed also can be used as a substitution rather than classic EA. It is also 

interesting if Arithmetic Optimization Algorithm (AOA) that [29] proposed can be used as the learning 

algorithm. This algorithm operates based on the behavior of arithmetic operators, such as 

multiplication, division, subtraction and addition. A powerful learning algorithm called Firefly 

Algorithm (FA) can also be implemented [30]. FA is widely used in solving complex scheduling 

problems [30]. Another algorithm that can be integrated is the Bat Algorithm (BA) [31]. BA is a 

renowned metaheuristic that utilizes the echolocation feature of a bat and has been successfully applied 

to a variety of optimization issues. The classic DHNN also can be replaced with Rotor Hopfield Neural 

Network (RHNN) for further observation [32]. Since this model is using simulated data only, the data 

that are analyzed are synthetic. For its applications, this model can be further embedded in the logic 

mining field where it can filter the best logical rules that are suitable for the data [27,33]. Since it has 

great forecasting and classification ability, this model is good for CSI indoor fingerprint localization 
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[34], weather forecasting [35] and unmanned aerial vehicle (UAV) [36]. 
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