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Abstract: Progressive first-failure censoring has been widely-used in practice when the experimenter
desires to remove some groups of test units before the first-failure is observed in all groups. Practically,
some test groups may haphazardly quit the experiment at each progressive stage, which cannot
be determined in advance. As a result, in this article, we propose a progressively first-failure
censored sampling with random removals, which allows the removal of the surviving group(s) during
the execution of the life test with uncertain probability, called the beta-binomial probability law.
Generalized extreme value lifetime model has been widely-used to analyze a variety of extreme value
data, including flood flows, wind speeds, radioactive emissions, and others. So, when the sample
observations are gathered using the suggested censoring plan, the Bayes and maximum likelihood
approaches are used to estimate the generalized extreme value distribution parameters. Furthermore,
Bayes estimates are produced under balanced symmetric and asymmetric loss functions. A hybrid
Gibbs within the Metropolis-Hastings method is suggested to gather samples from the joint posterior
distribution. The highest posterior density intervals are also provided. To further understand how
the suggested inferential approaches actually work in the long run, extensive Monte Carlo simulation
experiments are carried out. Two applications of real-world datasets from clinical trials are examined
to show the applicability and feasibility of the suggested methodology. The numerical results showed
that the proposed sampling mechanism is more flexible to operate a classical (or Bayesian) inferential
approach to estimate any lifetime parameter.
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1. Introduction

In reliability studies, censoring frequently occurs, allowing the experiment to be stopped before all
of the units have failed. These approaches produce observations known as censored samples. First-
failure censoring refers to a life-test in which the experimenter may choose to divide the units into
various sets, each serving as an assembly of test units, and then run the test for all groups concurrently
until the first failure in each set is seen. One can test the sample units with n = k × s, where s is the
number of groups, each of which has the same k size of items. It is useful when the survival time is very
large and test facilities are limited, but test material is substantially less expensive, see Balasooriya [1].

The main drawback of first-failure censoring is that it prevents units from being removed anywhere
at time other than the final termination time. Thus, to process this drawback, Wu and Kuş [2] suggested
progressively first-failure censored sampling (PFFC), a life-testing strategy that combines the first-
failure and progressive Type-II censoring (PCT2) plans. Thus, the PFFC allows us to exclude some sets
of units from the life-test before seeing the first-failures in all sets. They also investigated inferences
for the Weibull parameters and demonstrated that this censoring provides shorter test durations than
the PCT2. Upon PFFC data, several works have been created in the literature, for example, see Ashour
et al. [3], Yousef and Almetwally [4], Nassar et al. [5], Ramadan et al. [6], and references cited therein.

Within the past decade, the PFFC strategy has attracted considerable interest and has become highly
common in reliability research. Nevertheless, in certain real-life scenarios, such as clinical trials, the
number of patients dropping out of the trial at each step is random, and the specific design of the
removals cannot be predetermined. As a result, the number of patients that drop out of the experiment
at each stage will follow a discrete distribution. Mostly, researchers used discrete uniform or binomial
probability distributions. Thus, Huang and Wu [7] studied the estimation issue for progressively first-
failure censored data with a discrete uniform distribution of units removed at each step. Since the
discrete uniform removal design may not be appropriate since it presupposes that each removal event
occurs with the same probability regardless of the number of objects removed, consequently, Ashour
et al. [8] proposed a progressively first-failure censoring with binomial removals.

In contrast, it appears implausible that a binomial distribution would assume that the probability of
removal for each patient is constant throughout each stage. The likelihood of removal will therefore
vary from patient to patient in practice and is still unknown to the experimenter. The removal
probability p should be regarded as random and as following a probability distribution. To account
for this uncertainty, Singh et al. [9] hypothesized that the distribution of the number of removals would
follow a binomial distribution and that the probability of removals (p) would be a random variable
with a beta distribution. They called this new censoring mechanism as a progressive Type-II censoring
with beta-binomial removals. Kaushik et al. [10] (Sangal and Sinha [11]), to extend the PFFC from
pre-fixed removals, suggested progressive Type-I interval (progressive Type-I hybrid) censoring with
beta-binomial removals. Over the past decade, several works have been developed on the basis of the
progressive censorship framework with random removal, see, for example, Ding et al. [12], Ding and
Tse [13], Kaushik et al. [14], Chacko and Mohan [15], and Elshahhat and Nassar [16], among others.

As far as we are aware, there hasn’t been any research that focuses on the analysis of PFFC when
the number of objects removed at each stage follows a beta-binomial distribution. The major goal of
this work is to extend the PFFC plan from pre-fixed removals to beta-binomial removals. To define
methodology, we propose a new censoring scheme called progressive first-failure censored sampling
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with beta-binomial removal (PFFC-BBR).
Extreme value theory, today, has become one of the most important statistical issues in various

applied sciences. The generalized extreme value (GEV) distribution is often used to model the
smallest or largest value from a group or block of independent, identically distributed random
values representing measurements or observations. It is also useful in situations where data indicate
exponentially increasing failure rates. As a result, it has been used to analyze a variety of extreme
value data, including flood flows, wind speeds, and radioactive emissions; for further information, see
Lai [17]. The distribution may be obtained from the beta log-Weibull distribution by Cordeiro et al. [18]
as a special case. Suppose that a lifetime random variable X follows the three-parameter GEV(α, λ, µ).
However, to illustrate our theory, we consider a PFFC-BBR sample to follow a GEV distribution.
Hence, the respective probability density function (PDF) and cumulative distribution function (CDF)
of X are given by

f (x) = αλ exp (λ (x − µ)) exp
(
−α exp (λ (x − µ))

)
, x ∈ R (1.1)

and
F (x) = 1 − exp

(
−α exp (λ (x − µ))

)
, x ∈ R, (1.2)

where α and λ are shape and scale parameters, respectively and µ is a location parameter.
Putting α = 1 in (1.1), Type-I extreme value distribution discussed in Balakrishnan et al. [19] is

obtained. Note that Z = exp (λ (X − µ)) follows the exponential distribution with scale parameter
α. From (1.1) and (1.2), the hazard rate function (HRF), h(t), at a distinct mission time t, is given
by h(t) = αλ exp (λ (t − µ)). In the reliability context, Pandey et al. [20] discussed the maximum
likelihood estimators (MLEs) and Bayes estimators (BEs) of the GEV distribution in the presence of
PCT2 data; and Kumari and Pandey [21] discussed the Bayes estimation procedures for estimating the
GEV parameters based on Type-II censoring. Without loss of generality, we take µ = 0 and develop
inferential procedures for the shape α and scale λ parameters.

Briefly, we can provide the main objectives of the present work as follows:

• When the lifetime points are gathered using PFFC-BBR, infer both point and interval estimations
of the unknown parameters of the GEV distribution using the maximum likelihood and Bayesian
inferential procedures.
• The BEs are developed under various balanced symmetric and asymmetric loss functions,

including balanced squared-error loss (BSEL), balanced linear-exponential loss (BLL), and
balanced general-entropy loss (BGEL), which are used as an interesting decision-making tool.
This is presuming that the parameters α and λ have independent gamma and Hartigan priors,
respectively.
• Two different confidence interval-estimation procedures are also constructed, namely:

approximate confidence intervals (ACIs) and highest posterior density (HPD) intervals.
• Since the likelihood function is expressed in complex-form, the BEs, along with their HPD

interval estimates, are developed via Monte-Carlo Markov-chain (MCMC) techniques, namely:
Metropolis-Hastings (M-H) algorithm and Gibbs sampler.
• Numerically, the acquired MLEs are evaluated via ‘maxLik’ package by Henningsen and

Toomet [22], which implements the Newton-Raphson method. Further, the acquired BEs are
evaluated via ‘CODA’ package by Plummer et al. [23], which creates the MCMC variates.
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• Since the performances of different estimates cannot be compared analytically, we perform Monte
Carlo simulations to examine and compare the performances of the various estimates in terms of
their simulated mean squared-errors, relative absolute biases and average confidence lengths.
• Analyzing two real-life data sets from clinical trials, representing mortality rates from coronavirus

disease 2019 (COVID-19) and survival times for ovarian cancer patients after surgical treatment,
the proposed methodology is illustrated.
• Lastly, several extensions from the proposed censoring are demonstrated and may be obtained as

special cases.

The remaining sections are arranged as follows: We present a formulation of PFFC-BBR in
Section 2. In Sections 3 and 4, respectively, the classical and Bayesian approaches to model parameter
estimation are developed. Section 5 presents the outcomes of the simulations. Section 6 examines two
practical applications. Lastly, in Section 7, we draw a conclusion to the research.

2. PFFC-BBR model

Progressive censoring mechanisms with random removals happen naturally in certain real-world
situations. Consider a clinical test in which a doctor examines various cancer patients, but after the first
patient dies, some of the patients may leave the hospital out of fear and/or a lack of confidence in the
doctor. Following the second death, a couple more leave, and so on. Ultimately, the doctor stops taking
observations once a certain number of deaths (say, m) have been documented. As a result, the number
of patients who leave a hospital at each stage is random, and the exact pattern of removals cannot
be determined. Thus, one should consider that the number of removals is random and follows the
binomial distribution with uncertain probability following a certain probability distribution instead of
a fixed probability. Therefore, Singh et al. [9], making use of the beta-binomial distribution for random
removals, introduced a progressive Type-II censoring scheme with beta-binomial removals (PCT2-
BBR). They also investigated different inferences for the generalized Lindley distributed lifetimes.
Several inferences for different lifetime models based on the PCT2-BBR have been carried out, e.g.,
by Usta et al. [24], Kaushik et al. [10] and Vishwakarma et al. [25], among others.

Suppose that s independent groups, each having k items, are put on a life-testing experiment at time
zero. Let m be a pre-fixed number of failures, and R = (R1,R2, . . . ,Rm) denote the random removals of
the groups. At the time of the first observed failure (X(1)), some R1 groups and the group in which the
first failure occurred are removed from the experiment. Following the second observed failure (X(2)),
some R2 groups and the group in which the second failure is observed are removed from the remaining
live s−R1−1 groups, and so on. This procedure continues until the mth failure has occurred and removes
all remaining live groups Rm = s − m −

∑m−1
i=1 Ri from life-test. Then, X(1), X(2), . . . , X(m) represent the

independent lifetimes of the PFFC order statistics with a pre-determined number of removals, say
(R1 = r1,R2 = r2, . . . ,Rm = rm). If the failure times of elements originally placed in the life test
come from a continuous population with PDF, f (·), and CDF, F(·), then the likelihood function of the
observed data x = (x(1), x(2), . . . , x(m)) can be expressed as

L1 (θ|R, x) = C1km
m∏

i=1

f
(
x(i); θ

) [
1 − F

(
x(i); θ

)]k(ri+1)−1, (2.1)

where C1 = s (s − r1 − 1) (s − r1 − r2 − 2) · · ·
(
s −

∑m−1
i=1 (ri + 1)

)
and m = n −

∑m
i=1 ri.
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Suppose the probability of a removal ri of group(s) at the i − th failure i = 1, 2, . . . ,m − 1, follows a
binomial distribution with parameters s − m −

∑i−1
j=1 r j and p as

Pr (R = r| p) =

(
s − m −

∑i−1
j=1 r j

ri

)
pri (1 − p)s−m−

∑i
j=1 r j , i = 1, 2, . . . ,m − 1, (2.2)

where 0 6 r1 6 s − m and 0 6 ri 6 s − m −
∑i−1

j=1 r j for i = 2, 3, . . . ,m − 1.
According to Singh et al. [9], we assume that the probability of removals p is not fixed during the

whole experiment but a random variable that follows the beta distribution with parameters ξ and ζ

having the following PDF

g ( p| ξ, ζ) =
1

B (ξ, ζ)
pξ−1 (1 − p)ζ−1 , ξ, ζ > 0, 0 < p < 1, (2.3)

where B (ξ, ζ) = Γ (ξ) Γ (ζ)/(Γ (ξ + ζ)) is beta function.
Thus, from (2.2) and (2.3), the unconditional distribution of R′i s can be derived as

Pr (R = r| ξ, ζ) =
1

B (ξ, ζ)

(
s − m −

∑i−1
j=1 r j

ri

) ∫ 1

0
pξ+ri−1 (1 − p)ξ+s−m−

∑i
j=1 r j−1 dp.

After simplification, we get

Pr (R = r| ξ, ζ) =

(
s − m −

∑i−1
j=1 r j

ri

)B
(
ξ + ri, ζ + s − m −

∑i
j=1 r j

)
B (ξ, ζ)

· (2.4)

The probability mass function given in (2.4) is known as the beta-binomial distribution, and it is
denoted by BB(n′, ξ, ζ), where n′ denotes the number of trials. Thus, the joint probability distribution
of beta-binomial removals is given by

L2 (R = r| ξ, ζ) = Pr (R1 = r1) × Pr (R2 = r2|R1 = r1)

× · · · × Pr (Rm−1 = rm−1|Rm−2 = rm−2, . . . ,R1 = r1) . (2.5)

Substituting (2.4) in (2.5), the joint probability of R1 = r1,R2 = r2, . . . ,Rm = rm is given by

L2 (R = r| ξ, ζ) = C2 (B (ξ, ζ))−(m−1)
m−1∏
i=1

B
(
ξ + ri, ζ + s − m −

∑i

j=1
r j

)
, (2.6)

where C2 =
(s−m)!

(s−m−
∑m−1

i=1 ri)!
m−1∏
i=1

ri!
·

Furthermore, we assume that Ri = ri is independent of X(i) for all i = 1, 2, . . . ,m. Hence, the full
likelihood function of PFFC-BBR takes the following form

L (θ, ξ, ζ |R, x) = L1 (θ|R, x) × L2 (R = r| ξ, ζ) , (2.7)

where L1(θ|R, x) and L2(R = r|ξ, ζ) are defined in (2.1) and (2.6), respectively.
Also, it is noted that L1(·) is a function of the unknown parameter θ of the parent distribution only,

whereas L2(·) is a function of the beta-binomial parameters ξ and ζ only. Therefore, L1(·) and L2(·) can
be maximized (independently) directly by obtaining the MLEs θ̂, ξ̂ and ζ̂ of θ, ξ and ζ respectively. It
should be noted here that the PCT2-BBR, which was proposed by Singh et al. [9], can be obtained as a
special case from (2.7) by setting k = 1. The sampling procedure for a life test based on the PFFC-BBR
is reported in Table 1.
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Table 1. Sampling procedure of the PFFC-BBR life-test.

Stage Failure item Removed group(s) Survived group(s)

1 X(1) r1 ∼ BB(s − m, ξ, ζ) s − r1 − 1
2 X(2) r2 ∼ BB(s − m − r1, ξ, ζ) s − r1 − r2 − 2
...

...
...

...

m − 1 X(m−1) rm−1 ∼ BB(s − m −
∑m−2

i=1 ri, ξ, ζ) s − (m − 1) −
∑m−1

i=1 ri

m X(m) rm = s − m −
∑m−1

i=1 ri 0

3. Likelihood inference

This section discusses the procedures for obtaining the MLEs and ACIs of α, λ, ξ, and ζ from the
proposed plan.

3.1. Maximum likelihood estimators

Consider placing s × k independent units from a population on a PFFC-BBR life test with the
associated lifetimes having an identical distribution and the PDF and CDF specified in (1.1) and (1.2),
respectively. When (1.1) and (1.2) are substituted into (2.1), the likelihood function (2.1) can be
expressed up to proportional as

L1 (α, λ| x, r) ∝ (αλ)m exp
(
λ
∑m

i=1
x(i)

)
exp

(
−αk

∑m

i=1
(ri + 1) exp

(
λx(i)

))
. (3.1)

The corresponding log-likelihood function `1(·) ∝ log L1(·) of (3.1) becomes

`1 (α, λ| x, r) ∝ m log (αλ) + λmx̄ − αk
∑m

i=1
(ri + 1) exp

(
λx(i)

)
, (3.2)

where x̄ = m−1 ∑m
i=1 x(i). The MLEs α̂ and λ̂ for the parameters α and λ, respectively, are obtained by

solving the log-likelihood equations,

m
α̂
− k

∑m

i=1
(ri + 1) exp

(
λ̂x(i)

)
= 0, (3.3)

and
m
λ̂

+ mx̄ − α̂k
∑m

i=1
(ri + 1) x(i) exp

(
λ̂x(i)

)
= 0. (3.4)

From (3.3), we get

α̂
(
λ̂
)

= m
[
k
∑m

i=1
(ri + 1) exp

(
λ̂x(i)

)]−1
. (3.5)

Substituting (3.5) into (3.4), then λ̂ is the solution of

m

1
λ̂

+ x̄ −

∑m
i=1 (ri + 1) x(i) exp

(
λ̂x(i)

)
∑m

i=1 (ri + 1) exp
(
λ̂x(i)

)  = 0. (3.6)
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Similarly, the MLEs ξ̂ and ζ̂ of ξ and ζ, respectively, can be found by maximizing (2.6) directly.
Hence, the natural logarithm, `2 (·) ∝ log L2 (·) can be written as

`2 (R = r| ξ, ζ) ∝ − (m − 1)
[
log (Γ (ξ)) + log (Γ (ζ)) − log (Γ (ξ + ζ))

]
+

∑m−1

i=1
log (Γ (ξ + ri)) +

∑m−1

i=1
log (Γ (ζ∗)) −

∑m−1

i=1
log (Γ (ξ + ζ∗ + ri)), (3.7)

where ζ∗ = ζ + s − m −
∑i

j=1 r j.

From (3.7), the MLEs ξ̂ and ζ̂ can be obtained as the simultaneous solutions of the following two
normal non-linear equations, respectively, as

− (m − 1)

 ψ̂ξ̂
(
ξ̂
)

Γ
(
ξ̂
) − ψ̂ξ̂ (ξ̂ + ζ̂

)
Γ
(
ξ̂ + ζ̂

)  +

m−1∑
i=1

ψ̂ξ̂
(
ξ̂ + ri

)
Γ
(
ξ̂ + ri

) − m−1∑
i=1

ψ̂η̂1

(
ξ̂ + ζ̂∗ + ri

)
Γ
(
ξ̂ + ζ̂∗ + ri

) = 0, (3.8)

and

− (m − 1)

 ψ̂ζ̂
(
ζ̂
)

Γ
(
ζ̂
) − ψ̂ζ̂ (ξ̂ + ζ̂

)
Γ
(
ξ̂ + ζ̂

)  +

m−1∑
i=1

ψ̂ζ̂
(
ζ̂∗

)
Γ
(
ζ̂∗

) − m−1∑
i=1

ψ̂η̂2

(
ξ̂ + ζ̂∗ + ri

)
Γ
(
ξ̂ + ζ̂∗ + ri

) = 0, (3.9)

where Γ (ϑ (x)) and ψx (ϑ (x)) = ∂
∂x log (Γ (ϑ (x))) =

Γ′(ϑ(x))
Γ(ϑ(x)) are the gamma and digamma functions,

respectively, see Lawless [26]. From the expressions as in (3.5), (3.6), (3.8), and (3.9), the likelihood
equations with respect to the unknown parameters α, λ, ξ, and ζ, respectively, do not yield a closed-
form solution. The MLEs outlined above can therefore be numerically assessed using any iterative
approach, such as the Newton-Raphson method.

3.2. Asymptotic intervals estimators

This subsection deals with obtaining the 100(1 − ε)% ACIs of α, λ, ξ and ζ based on asymptotic
distributions of their MLEs α̂, λ̂, ξ̂ and ζ̂, respectively. The components of the inverse Fisher
information matrix, say I−1 (ϕ) where ϕ = (α, λ, ξ, ζ)T, provide the asymptotic variances and
covariances of the acquired MLEs of α, λ, ξ, and ζ. Hence, from (3.2) and (3.7), we get

∂2`1

∂α2 = −
m
α2 ,

∂2`1

∂λ2 = −
m
λ2 − α̂k

∑m

i=1
(ri + 1) x2

(i) exp(λ̂x(i)),
∂2`1

∂α∂λ
= −k

∑m

i=1
(ri + 1) x(i) exp(λ̂x(i)),

∂2`2

∂ξ2 = − (m − 1)
[
ψ′ξ (ξ)

Γ (ξ)
−
ψ′ξ (ξ + ζ)

Γ (ξ + ζ)

]
+

∑m−1

i=1

ψ′ξ (ξ + ri)

Γ (ξ + ri)
−

∑m−1

i=1

ψ′ξ (ξ + ζ∗ + ri)

Γ (ξ + ζ∗ + ri)
,

∂2`2

∂ζ2 = − (m − 1)
[
ψ′ζ (ζ)

Γ (ζ)
−
ψ′ζ (ξ + ζ)

Γ (ξ + ζ)

]
+

∑m−1

i=1

ψ′ζ (ζ∗)

Γ (ζ∗)
−

∑m−1

i=1

ψ′ζ (ξ + ζ∗ + ri)

Γ (ξ + ζ∗ + ri)
,

and

∂2`2

∂ξ∂ζ
=

(m − 1)ψ′ξ,ζ (ξ + ζ)

Γ (ξ + ζ)
−

∑m−1

i=1

ψ′ξ,ζ (ξ + ζ∗ + ri)

Γ (ξ + ζ∗ + ri)
,

where ψ′x (ϑ (x)) = ∂
∂xψx (ϑ (x)) is the trigamma function.
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Thus, by replacing ϕ with their ϕ̂, the approximated variance-covariance matrix, I−1(·) of ϕ̂, is given
by

I−1(ϕ̂) �


σ̂2
α̂ σ̂α̂λ̂ 0 0

σ̂λ̂α̂ σ̂2
λ̂

0 0
0 0 σ̂2

ξ̂
σ̂ξ̂ζ̂

0 0 σ̂ζ̂ξ̂ σ̂2
ζ̂

 , (3.10)

where ϕ̂ = (α̂, λ̂, ξ̂, ζ̂)T.
Thus, for large n, the asymptotic distribution of the MLEs ϕ̂ is approximately with multivariate

normal, i.e., ϕ̂ ∼ N
(
ϕ, I−1 (ϕ̂)

)
see Lawless [26]. Then, 100(1 − ε)% two-sided ACIs for α, λ, ξ, and ζ,

are given by

α̂ ∓ zε/2
√
σ̂2
α̂, λ̂ ∓ zε/2

√
σ̂2
λ̂
, ξ̂ ∓ zε/2

√
σ̂2
ξ̂
, ζ̂ ∓ zε/2

√
σ̂2
ζ̂
,

respectively, where the percentile of the standard normal distribution with the right-tail probability
(ε/2) − th is zε/2.

4. Bayesian inference

The Bayes approach to deriving point and interval estimates of α, λ, ξ, and ζ under BSEL, BLL,
and BGEL functions will be discussed in this section.

4.1. Balanced loss functions

A loss function is essential in statistical decision making since it focuses on estimating precision.
Zellner [27] proposed a more generalized loss function known as the balanced loss function. The
balanced loss (BL) function achieves a compromise between classical and Bayesian techniques and
produces an estimate that is a linear mixture of likelihood and Bayesian estimates. Estimating the
unknown parameter θ on the basis of a random vector X = (X1, X2, . . . , Xn) is defined as

ω

n

n∑
i=1

(Xi − θ̃) + ω̄(θ̃ − θ)2, 0 6 ω < 1,

where ω̄ = 1 − ω. Another class of balanced type loss functions, proposed by Jozani et al. [28], is
defined as

lB(θ, θ̃) = ωl(θ∗, θ) + ω̄l(θ, θ̃). (4.1)

The expression in (4.1) involves a loss function, denoted by l(·), which is used to estimate the
parameter θ using the estimator θ̃. Additionally, the parameter θ∗ is selected beforehand as a ‘target’
estimator for θ. The topic has been the subject of consideration by numerous authors in the recent past,
see Barot and Patel [29], Maiti and Kayal [30], Ahmadi and Doostparast [31], and the citation given
therein.

However, the BSEL lBS (·), BLL lBL(·) and BGEL lBG(·) functions are defined as

lBS (θ, θ̃) = ω(θ̃ − θ̂)2 + ω̄(θ̃ − θ)2, (4.2)
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lBL(θ, θ̃) = ω[exp (h(θ̃ − θ̂)) − h(θ̃ − θ̂) − 1] + ω̄[exp (h(θ − θ̃)) − h(θ − θ̃) − 1], h , 0, (4.3)
lBG(θ, θ̃) = ω[(θ̃/θ̂)q − q log (θ̃/θ̂) − 1] + ω̄[(θ̃/θ)q − q log(θ̃/θ) − 1], q , 0. (4.4)

Using (4.2)–(4.4), the BEs of θ against the BSEL, BLL and BGEL functions are, respectively, given
by

θ̃BS = ωθ̂ + ω̄[Eθ(θ|x)], (4.5)

θ̃BL = −
1
h

log[ω exp(−hθ̂) + ω̄[Eθ(exp(−hθ)|x)]], h , 0, (4.6)

θ̃BG = [ωθ̂−q + ω̄[Eθ(θ−q|x)]]−1/q, q , 0, (4.7)

where θ̂ is the MLE of θ. In particular, if setting ω = 0 (or ω = 1), the BE from BL-based function
reduced to the conventional BE from an unbalanced loss-based (or MLE).

4.2. Posterior functions

In accordance with Kumari and Pandey [21], we made the assumption that α and λ have conjugate
gamma and Hartigan’s non-informative priors, respectively. Thus, the respective prior distributions α
and λ are given by

π (α) ∝ αa−1 exp (−bα) , α > 0, a, b > 0, (4.8)

and
π (λ) ∝ λ−c, λ > 0, c > 0, (4.9)

where the hyper-parameters a, b and c are assumed to be non-negative and known. Here, the gamma
prior (4.8) is chosen to reflect prior knowledge about α. If putting c = 1, Eq (4.9) reduced to Jeffrey’s
prior. Also, Hartigan’s [32] asymmetrically invariant prior, which is a popular non-informative prior
among data analysts, can be obtained by putting c = 3 in (4.9). Consequently, from (4.8) and (4.9),
joint prior PDF of α and λ is given by

π (α, λ) ∝ λ−3αa−1 exp (−bα) , α, λ > 0, a, b, c > 0. (4.10)

Combining (3.1) with (4.10) in continuous Bayes’ theorem, the joint posterior PDF of α and λ is

π∗1 (α, λ| x, r) ∝ αm+a−1λm−3 exp (−αb∗ (λ) + λmx̄) , (4.11)

where b∗ (λ) = b + k
∑m

i=1 (ri + 1) exp
(
λx(i)

)
. The normalizing constant, C∗1, of (4.11) is given by C∗1 =∫ ∞

0

∫ ∞
0
π(α, λ)L1 (α, λ| x, r) dαdλ.

Since, we do not have priori information about ξ and ζ, it is better to consider the non-informative
prior for the Bayesian analysis. Thus, the joint independent non-informative prior of ξ and ζ is given
by π (ξ, ζ) = (ξζ)−1 for ξ, ζ > 0. Hence, the joint posterior PDF of ξ and ζ becomes

π∗2 (ξ, ζ |R = r) ∝ (ξζ)−1 (B (ξ, ζ))−(m−1)
m−1∏
i=1

B (ξ + ri, ζ
∗) , (4.12)

where the normalizing constant, C∗2, of (4.12) is given by C∗2 =
∫ ∞

0

∫ ∞
0
π (ξ, ζ) L2 (r| ξ, ζ) dξdζ.
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Since the likelihood functions (3.1) and (2.6) are obtained in nonlinear forms, for this reason, the
Gibbs sampler and M-H algorithm can be effectively used to approximate the Bayes (point and interval)
estimates. First, the conditional distributions of α, λ, ξ, and ζ must be obtained as

π∗α (α| λ, x, r) ∝ αm+a−1 exp (−αb∗ (λ)) , (4.13)
π∗λ (λ|α, x, r) ∝ λm−3 exp (−αb∗ (λ) + λmx̄) , (4.14)

π∗ξ (ξ| ζ, r) ∝ ξ−1
m−1∏
i=1

Γ (ξ + ζ) Γ (ξ + ri)
Γ (ξ) Γ (ξ + ζ∗ + ri)

, (4.15)

and

π∗ζ (ζ | ξ, r) ∝ ζ−1
m−1∏
i=1

Γ (ξ + ζ) Γ (ζ∗)
Γ (ζ) Γ (ξ + ζ∗ + ri)

, (4.16)

respectively.
It is evident from Eq (4.13) that the generation of samples for α can be accomplished with ease by

employing any gamma density that has a shape parameter of (m + a) and a scale parameter of b∗ (λ).
However, the conditional distributions presented in Eqs (4.14)–(4.16) cannot be simplified to conform
to any standard distribution.

Therefore, making use of the M-H sampler is required for updating these unknown parameters λ, ξ,
and ζ. The hybrid generation algorithm, including Gibbs steps for α within M-H steps for updating λ,
ξ and ζ, is carried out as

Step 1: Start with initial guess ϕ(0) =
(
α(0), λ(0), ξ(0), ζ(0)

)
.

Step 2: Set t = 1.

Step 3: Simulate α(t) from Gamma (m + a, b∗ (λ)).

Step 4: Generate λ(t), ξ(t) and ζ(t) from π∗λ(λ
(t−1)|•), π∗ξ(ξ

(t−1)|•) and π∗ζ(ζ
(t−1)|•), using M-H algorithm as

(a) Obtain λ∗, ξ∗ and ζ∗ from N(λ(t−1), σ2
λ), N(ξ(t−1), σ2

ξ) and N(ζ(t−1), σ2
ζ) respectively.

(b) Obtain ρλ =
π∗λ(λ∗ |α(t),x,r)

π∗λ(λ(t−1)|α(t),x,r) , ρξ =
π∗ξ( ξ∗ |ζ(t−1),r)

π∗ξ( ξ(t−1)|ζ(t−1),r) and ρζ =
π∗ζ( ζ∗ |ξ(t),r)
π∗ζ ( ζ

(t−1) |ξ(t),r) .

(c) Generate random samples u1, u2 and u3 from uniform U(0, 1) distribution.
(d) If u1 6 min{1, ρλ}, set λ(t) = λ∗, else set λ(t) = λ(t−1).
(e) If u2 6 min{1, ρξ}, set ξ(t) = ξ∗, else set ξ(t) = ξ(t−1).
(f) If u3 6 min{1, ρζ}, set ζ(t) = ζ∗, else set ζ(t) = ζ(t−1).

Step 5: Put t = t + 1.

Step 6: Repeat Steps 3–5 for N times, then ignore the first simulated varieties (say N?) and obtain
ϕ(t) = (α(t), λ(t), ξ(t), ζ(t)), t = N? + 1,N? + 2, . . . ,N .

Step 7: Compute the approximated BE of ϕ = (α, λ, ξ, ζ), based on (4.2)–(4.4), as

θ̃BS = ωϕ̂ +
ω̄

N̄?

∑N

t=N?+1
ϕ(t),
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θ̃BL = −
1
h

log
[
ω exp (−hϕ̂) +

ω̄

N̄?

∑N

t=N?+1
exp

(
−hϕ(t)

)]
, h , 0,

and

θ̃BG =

[
ωϕ̂−q +

ω̄

N̄?

∑N

t=N?+1

(
ϕ(t)

)−q
]−1/q

, q , 0,

respectively, where N̄? = N −N?.

Step 8: Order the sampled items ϕ(t) for t = N? + 1,N? + 2, . . . ,N as
(
ϕ(N?+1), ϕ(N?+2), . . . , ϕ(N)

)
.

Construct the 100(1 − ε)% HPD interval of ϕ by the method suggested by Chen and Shao [33] as(
ϕ(t∗), ϕ(t∗+[(1−ε)N̄?])

)
,

such

ϕ(t∗+[(1−ε)N̄?]) − ϕ(t∗) = min
1≤t≤εN̄?

(
ϕ(t+[(1−ε)N̄?]) − ϕ(t)

)
, t∗ = N? + 1,N? + 2, . . . ,N ,

where [y] represents the floor function, which returns the largest integer that is less than or equal
to the input value y.

5. Monte Carlo simulations

It is necessary for us to simulate progressively first-failure censored samples with beta-binomial
removals from the GEV distribution so that we may evaluate the efficacy of the proposed estimators
that were obtained in the preceding sections. In this section, we first present a method for simulating
random samples from the PFFC-BBR and then analyze how well various estimators perform with those
simulated samples.

5.1. Simulation design

To obtain a PFFC-BBR sample, we propose the subsequent algorithm:

Step 1: Provide numerical values of the following parameters: k, s, m, α, λ, ξ and ζ.

Step 2: Generate r1 from BB (s − m, ξ, ζ).

Step 3: Generate ri from BB
(
s − m −

∑i−1
j=1 r j, ξ, ζ

)
, i = 2, 3, . . . ,m − 1.

Step 4: Set rm =

 s − m −
∑m−1

i=1 ri if
(
s − m −

∑m−1
i=1 ri

)
> 0,

0, for otherwise.

Step 5: Given R = r, generate a PCT2-BBR as

(a) Generate W ∼ U(0, 1) of size m.

(b) Set Vi = W
1
/(

i+
∑m

j=m−i+1 r j
)

i for all i = 1, 2, . . . ,m.
(c) Set Ui = 1− (Vm) (Vm−1) · · · (Vm−i+1) for all i = 1, 2, . . . ,m. Then U1,U2, . . . ,Um is the PCT2-

BBR sample obtained from U(0, 1).

Step 6: Set x(i) = F−1 (U) , i = 1, 2, . . . ,m. Hence, x(i), i = 1, 2, . . . ,m is the required FFCS-BBR
sample of size m from the GEV distribution.
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Now, using (α, λ, ξ, ζ) = (0.1, 1, 2, 2), we generate 1,000 PFFC-BBR samples from the GEV
distribution for different combinations of k, s and m, such as: s = 20(small), 50(moderate), and
80(large) for each group size k(= 1, 3). The test is terminated when the number of failed subjects
achieves (or exceeds) a specified value m, where the failure proportion is m

s = 30, 60 and 90%.
Using the hybrid strategy described in Subsection 4.2, the BEs are developed under BSEL, BLL (for
h = ∓0.5) and BGEL (for q = ∓0.5) each with three weight values as ω(= 0, 0.3, 0.8). The hyper-
parameter value of α is taken as (a, b) = (0.1, 1). A total of 10,000 MCMC samples were generated,
with the initial 2,000 iterations being discarded as a burn-in period. It should be mentioned here that the
Bayesian MCMC analysis is the most computationally expensive, followed by the frequentist analysis.

However, the average estimates (AEs) with their mean squared-errors (MSEs), relative absolute
biases (RABs), and average confidence lengths (ACLs) of the acquired estimators of α are calculated
using the following formulae, respectively, as

AE (α̌) =
1

1000

1000∑
i=1

α̌i,

MSE (α̌) =
1

1000

1000∑
i=1

(α̌i − α)2,

RAB (α̌) =
1

1000

1000∑
i=1

1
α
|α̌i − α|,

and

ACL(1−ε)%(α) =
1

1000

1000∑
i=1

(
Uα̌i(α) − Lα̌i(α)

)
,

where α̌ is the estimate of α at ith sample, L(·) and U(·) denote the lower and upper interval bounds.
In a similar fashion, the AEs, MSEs, RABs and ACLs of λ can be easily calculated.

All evaluations were performed using R software with two recommended statistical packages,
namely: ‘CODA’ and ‘maxLik’ packages by Plummer et al. [23] and Henningsen and Toomet [22],
respectively. The simulation results of α and λ are reported in Tables 2–6. In Tables 2–5, the AEs are
reported in the first row, while their (MSEs,RABs) are reported in the second row.

AIMS Mathematics Volume 8, Issue 9, 22419–22446.



22431

Table 2. The simulation results of α when k = 1.

s m MLE ω BSEL BLL BGEL

h = −0.5 h = 0.5 q = −0.5 q = 0.5

20 18 0.1004 0 0.0896 0.0897 0.0895 0.0884 0.0859
(0.0030,0.4342) (0.0001,0.1037) (0.0001,0.1025) (0.0001,0.1048) (0.0001,0.1162) (0.0002,0.1412)

0.3 0.0929 0.0931 0.0926 0.0904 0.0855
(0.0003,0.1519) (0.0003,0.1524) (0.0003,0.1515) (0.0003,0.1540) (0.0005,0.1646)

0.8 0.0982 0.0984 0.0981 0.0968 0.0937
(0.0019,0.3508) (0.0020,0.3514) (0.0019,0.3501) (0.0019,0.3491) (0.0017,0.3363)

12 0.1015 0 0.1176 0.1179 0.0734 0.1152 0.0689
(0.0041,0.4892) (0.0003,0.1757) (0.0003,0.1786) (0.0007,0.2665) (0.0002,0.1519) (0.0010,0.3108)

0.3 0.0817 0.0820 0.0814 0.0786 0.0725
(0.0007,0.2270) (0.0007,0.2274) (0.0007,0.2267) (0.0007,0.2349) (0.0009,0.2750)

0.8 0.0955 0.0957 0.0953 0.0936 0.0888
(0.0024,0.3813) (0.0024,0.3826) (0.0024,0.3799) (0.0022,0.3733) (0.0018,0.3438)

6 0.1059 0 0.0786 0.0789 0.0784 0.0755 0.0691
(0.0064,0.5896) (0.0005,0.2136) (0.0004,0.2111) (0.0005,0.2162) (0.0006,0.2450) (0.0010,0.3089)

0.3 0.0868 0.0874 0.0863 0.0816 0.0714
(0.0007,0.2293) (0.0008,0.2309) (0.0007,0.2278) (0.0008,0.2352) (0.0011,0.2865)

0.8 0.1005 0.1008 0.1001 0.0975 0.0900
(0.0041,0.4785) (0.0041,0.4806) (0.0040,0.4763) (0.0037,0.4690) (0.0027,0.4218)

50 45 0.0993 0 0.1101 0.1102 0.1101 0.1095 0.1084
(0.0012,0.2777) (0.0001,0.1014) (0.0001,0.1021) (0.0001,0.1008) (0.0001,0.0955) (0.0002,0.0835)

0.3 0.1069 0.1070 0.1068 0.1057 0.1069
(0.0002,0.0965) (0.0002,0.0966) (0.0002,0.0964) (0.0002,0.0974) (0.0002,0.0965)

0.8 0.1015 0.1015 0.1014 0.1008 0.0996
(0.0008,0.2211) (0.0008,0.2209) (0.0008,0.2212) (0.0008,0.2240) (0.0008,0.2270)

30 0.1005 0 0.1224 0.1225 0.1223 0.1214 0.1193
(0.0017,0.3231) (0.0005,0.2239) (0.0005,0.2252) (0.0005,0.2227) (0.0005,0.2138) (0.0004,0.1934)

0.3 0.1158 0.1160 0.1156 0.1140 0.1101
(0.0004,0.1624) (0.0004,0.1639) (0.0004,0.1611) (0.0004,0.1539) (0.0003,0.1508)

0.8 0.1049 0.1050 0.1048 0.1038 0.1020
(0.0011,0.2568) (0.0011,0.2564) (0.0011,0.2572) (0.0011,0.2626) (0.0012,0.2691)

15 0.1013 0 0.0758 0.0759 0.0758 0.0746 0.0721
(0.0024,0.3750) (0.0006,0.2415) (0.0006,0.2406) (0.0006,0.2425) (0.0006,0.2540) (0.0008,0.2794)

0.3 0.0835 0.0837 0.0833 0.0812 0.0767
(0.0005,0.1950) (0.0005,0.1949) (0.0005,0.1950) (0.0005,0.2028) (0.0007,0.2333)

0.8 0.0962 0.0964 0.0961 0.0949 0.0915
(0.0016,0.3084) (0.00160.3093) (0.0015,0.3075) (0.0015,0.3019) (0.0012,0.2811)

80 72 0.1005 0 0.0889 0.0889 0.0889 0.0886 0.0880
(0.0008,0.2230) (0.0001,0.1112) (0.0001,0.1109) (0.0001,0.1114) (0.0001,0.1142) (0.0001,0.1203)

0.3 0.0924 0.0925 0.0923 0.0917 0.0904
(0.0001,0.0944) (0.0001,0.0944) (0.0001,0.0944) (0.0001,0.0955) (0.0001,0.1002)

0.8 0.0982 0.0983 0.0982 0.0978 0.0969
(0.0005,0.1794) (0.0005,0.1797) (0.0005,0.1792) (0.0005,0.1777) (0.0005,0.1729)

48 0.0995 0 0.1258 0.1258 0.1257 0.1251 0.1238
(0.0010,0.2463) (0.0007,0.2576) (0.0007,0.2585) (0.0007,0.2568) (0.0006,0.2512) (0.0006,0.2383)

0.3 0.1179 0.1180 0.1178 0.1166 0.1138
(0.0004,0.1794) (0.0004,0.1807) (0.0004,0.1780) (0.0004,0.1686) (0.0003,0.1557)

0.8 0.1048 0.1049 0.1047 0.1040 0.1027
(0.0006,0.1964) (0.0006,0.1960) (0.0007,0.1968) (0.0007,0.2012) (0.0007,0.2082)

24 0.1016 0 0.1351 0.1353 0.1349 0.1337 0.1309
(0.0016,0.3090) (0.0012,0.3513) (0.0012,0.3532) (0.0012,0.3494) (0.0011,0.3373) (0.0010,0.3093)

0.3 0.1251 0.1254 0.1248 0.1227 0.1179
(0.0008,0.2508) (0.0008,0.2536) (0.0008,0.2481) (0.0007,0.2293) (0.0006,0.2029)

0.8 0.1083 0.1085 0.1082 0.1070 0.1049
(0.0011,0.2479) (0.0011,0.2474) (0.0011,0.2485) (0.0011,0.2549) (0.0011,0.2638)
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Table 3. The simulation results of α when k = 3.

s m MLE ω BSEL BLL BGEL

h = −0.5 h = 0.5 q = −0.5 q = 0.5

20 18 0.0331 0 0.0303 0.0303 0.0303 0.0299 0.0290
(0.0048,0.6704) (0.0049,0.6972) (0.0049,0.6971) (0.0049,0.6973) (0.0049,0.7013) (0.0050,0.7096)

0.3 0.0311 0.0311 0.0311 0.0303 0.0287
(0.0047,0.6888) (0.0047,0.6885) (0.0048,0.6890) (0.0048,0.6969) (0.0051,0.7129)

0.8 0.0333 0.0325 0.0325 0.0320 0.0310
(0.0047,0.6747) (0.0047,0.6745) (0.0048,0.6749) (0.0048,0.6795) (0.0049,0.6896)

12 0.0338 0 0.0255 0.0255 0.0255 0.0250 0.0239
(0.0048,0.6635) (0.0056,0.7453) (0.0056,0.7451) (0.0056,0.7454) (0.0056,0.7504) (0.0058,0.7608)

0.3 0.0280 0.0280 0.0279 0.0269 0.0250
(0.0052,0.7202) (0.0052,0.7198) (0.0052,0.7205) (0.0054,0.7305) (0.0057,0.7504)

0.8 0.0322 0.0322 0.0321 0.0315 0.0300
(0.0049,0.6788) (0.0049,0.6786) (0.0049,0.6790) (0.0049,0.6847) (0.0051,0.6996)

6 0.0352 0 0.0174 0.0174 0.0174 0.0167 0.0153
(0.0050,0.6686) (0.0068,0.8261) (0.0068,0.8260) (0.0068,0.8262) (0.0069,0.8329) (0.0072,0.8469)

0.3 0.0227 0.0228 0.0227 0.0208 0.0175
(0.0060,0.7735) (0.0060,0.7730) (0.0061,0.7740) (0.0063,0.7915) (0.0068,0.8246)

0.8 0.0316 0.0317 0.0316 0.0304 0.0267
(0.0052,0.6936) (0.0052,0.6935) (0.0052,0.6938) (0.0053,0.7027) (0.0056,0.7334)

50 45 0.0330 0 0.0309 0.0309 0.0309 0.0309 0.0304
(0.0046,0.6686) (0.0047,0.6908) (0.0047,0.6908) (0.0048,0.6909) (0.0047,0.6925) (0.0048,0.6959)

0.3 0.0316 0.0316 0.0316 0.0313 0.0307
(0.0047,0.6841) (0.0047,0.6840) (0.0047,0.6842) (0.0047,0.6873) (0.0048,0.6935)

0.8 0.0327 0.0327 0.0327 0.0325 0.0321
(0.0046,0.6730) (0.0046,0.6730) (0.0046,0.6731) (0.0046,0.6749) (0.0047,0.6787)

30 0.0331 0 0.0241 0.0241 0.0241 0.0239 0.0235
(0.0046,0.6691) (0.0058,0.7589) (0.0058,0.7589) (0.0058,0.7590) (0.0058,0.7610) (0.0059,0.7650)

0.3 0.0268 0.0268 0.0268 0.0263 0.0253
(0.0054,0.7320) (0.0054,0.7318) (0.0054,0.7322) (0.0054,0.7372) (0.0056,0.7470)

0.8 0.0313 0.0313 0.0313 0.0310 0.0302
(0.0048,0.6871) (0.0048,0.6870) (0.0048,0.6872) (0.0049,0.6903) (0.0050,0.6984)

15 0.0338 0 0.0213 0.0213 0.0212 0.0209 0.0202
(0.0064,0.6626) (0.0062,0.7875) (0.0062,0.7874) (0.0062,0.7876) (0.0063,0.7910) (0.0064,0.7980)

0.3 0.0250 0.0250 0.0250 0.0241 0.0225
(0.0056,0.7499) (0.0056,0.7497) (0.0057,0.7502) (0.0058,0.7586) (0.0060,0.7747)

0.8 0.0313 0.0313 0.0313 0.0307 0.0293
(0.0049,0.6874) (0.0049,0.6873) (0.0049,0.6876) (0.0049,0.6929) (0.0051,0.6876)

80 72 0.0333 0 0.0328 0.0328 0.0328 0.0327 0.0325
(0.0045,0.6675) (0.0045,0.6719) (0.0045,0.6719) (0.0045,0.6720) (0.0045,0.6731) (0.0046,0.6753)

0.3 0.0329 0.0329 0.0329 0.0327 0.0323
(0.0045,0.6706) (0.0045,0.6705) (0.0045,0.6707) (0.0045,0.6727) (0.0046,0.6769)

0.8 0.0332 0.0332 0.0332 0.0330 0.0328
(0.0045,0.6684) (0.0045,0.6683) (0.0045,0.6684) (0.0045,0.6696) (0.0046,0.6721)

48 0.0334 0 0.0318 0.0318 0.0318 0.0317 0.0313
(0.0045,0.6658) (0.0047,0.6816) (0.0046,0.6815) (0.0046,0.6816) (0.0047,0.6833) (0.0047,0.6866)

0.3 0.0323 0.0323 0.0323 0.0320 0.0316
(0.0046,0.6768) (0.0046,0.6768) (0.0046,0.6769) (0.0046,0.6796) (0.0047,0.6852)

0.8 0.0331 0.0331 0.0331 0.0329 0.0326
(0.0045,0.6690) (0.0045,0.6689) (0.0045,0.6690) (0.0046,0.6705) (0.0046,0.6738)

24 0.0335 0 0.0280 0.0281 0.0280 0.0278 0.0272
(0.0046,0.6651) (0.0052,0.7196) (0.0052,0.7195) (0.0052,0.7196) (0.0052,0.7224) (0.0053,0.7282)

0.3 0.0297 0.0297 0.0297 0.0292 0.0282
(0.0050,0.7032) (0.0050,0.7030) (0.0050,0.7034) (0.0050,0.7081) (0.0052,0.7178)

0.8 0.0297 0.0324 0.0324 0.0321 0.0315
(0.0050,0.7032) (0.0047,0.6756) (0.0047,0.6761) (0.0047,0.6788) (0.0048,0.6852)
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Table 4. The simulation results of λ when k = 1.

s m MLE ω BSEL BLL BGEL

h = −0.5 h = 0.5 q = −0.5 q = 0.5

20 18 1.0762 0 1.0473 1.0474 1.0472 1.0472 1.0470
(0.0519,0.1661) (0.0022,0.0473) (0.0022,0.0474) (0.0022,0.0472) (0.0022,0.0472) (0.0022,0.0470)

0.3 1.0560 1.0586 1.0535 1.0538 1.0495
(0.0073,0.0639) (0.0081,0.0654) (0.0066,0.0625) (0.0068,0.0629) (0.0060,0.0613)

0.8 1.0704 1.0723 1.0685 1.0688 1.0654
(0.0345,0.1349) (0.0356,0.1357) (0.0332,0.1339) (0.0337,0.1344) (0.0318,0.1330)

12 1.1064 0 1.0489 1.0492 1.0486 1.0487 1.0481
(0.0740,0.1991) (0.0024,0.0489) (0.0024,0.0492) (0.0024,0.0486) (0.0024,0.0487) (0.0023,0.0481)

0.3 1.0646 1.0684 1.0610 1.0615 1.0555
(0.0099,0.0741) (0.0113,0.0766) (0.0088,0.0719) (0.0091,0.0726) (0.0077,0.0698)

0.8 1.0906 1.0933 1.0878 1.0884 1.0835
(0.0492,0.1591) (0.0511,0.1605) (0.0470,0.1575) (0.0478,0.1582) (0.0446,0.1557)

6 1.2240 0 1.0480 1.0482 1.0479 1.0789 1.0476
(0.2509,0.3298) (0.0023,0.0480) (0.0023,0.0482) (0.0023,0.0479) (0.0023,0.0479) (0.0023,0.0476)

0.3 1.1008 1.1139 1.0897 1.0926 1.0780
(0.0282,0.1146) (0.0413,0.1259) (0.0204,0.1052) (0.0229,0.1084) (0.0159,0.0981)

0.8 1.1888 1.1970 1.1784 1.1826 1.1679
(0.1641,0.2669) (0.1806,0.2736) (0.1426,0.2580) (0.1537,0.2624) (0.1288,0.2506)

50 45 1.0317 0 1.0423 1.0426 1.0420 1.0420 1.0414
(0.0171,0.1014) (0.0018,0.0423) (0.0018,0.0426) (0.0018,0.0420) (0.0018,0.0420) (0.0017,0.0414)

0.3 1.0391 1.0402 1.0380 1.0381 1.0360
(0.0030,0.0431) (0.0031,0.0436) (0.0029,0.0427) (0.0029,0.0427) (0.0027,0.0421)

0.8 1.0338 1.0345 1.0331 1.0331 1.0318
(0.0114,0.0824) (0.0115,0.0824) (0.0113,0.0824) (0.0114,0.0824) (0.0112,0.0824)

30 1.0406 0 1.0450 1.0451 1.0449 1.0449 1.0447
(0.0234,0.1181) (0.0020,0.0450) (0.0020,0.0451) (0.0020,0.0449) (0.0020,0.0449) (0.0020,0.0447)

0.3 1.0437 1.0449 1.0425 1.0425 1.0402
(0.0039,0.0494) (0.0040,0.0498) (0.0037,0.0489) (0.0037,0.0491) (0.0035,0.0486)

0.8 1.0414 1.0423 1.0406 1.0406 1.0389
(0.0156,0.0961) (0.0158,0.0962) (0.0155,0.0960) (0.0155,0.0961) (0.0153,0.0960)

15 1.0671 0 1.0509 1.0511 1.0507 1.0507 1.0503
(0.0377,0.1456) (0.0026,0.0509) (0.0026,0.0511) (0.0026,0.0507) (0.0026,0.0507) (0.0025,0.0503)

0.3 1.0558 1.0577 1.0539 1.0540 1.0506
(0.0061,0.0620) (0.0065,0.0630) (0.0058,0.0611) (0.0058,0.0613) (0.0054,0.0603)

0.8 1.0639 1.0652 1.0625 1.0626 1.0601
(0.0253,0.1193) (0.0258,0.1197) (0.0248,0.1188) (0.0250,0.1191) (0.0242,0.1184)

80 72 1.0183 0 1.0230 1.0231 1.0230 1.0230 1.0229
(0.0095,0.0771) (0.0005,0.0230) (0.0005,0.0231) (0.0005,0.0230) (0.0005,0.0230) (0.0005,0.0229)

0.3 1.0216 1.0221 1.0211 1.0211 1.0201
(0.0013,0.0280) (0.0013,0.0281) (0.0013,0.0279) (0.0013,0.0279) (0.0012,0.0278)

0.8 1.0192 1.0196 1.0189 1.0189 1.0181
(0.0063,0.0623) (0.0063,0.0623) (0.0062,0.0622) (0.0062,0.0623) (0.0062,0.0623)

48 1.0261 0 1.0216 1.0216 1.0215 1.0215 1.0214
(0.0130,0.0877) (0.0005,0.0216) (0.0005,0.0216) (0.0005,0.0215) (0.0005,0.0215) (0.0005,0.0214)

0.3 1.0229 1.0236 1.0222 1.0223 1.0210
(0.0016,0.0312) (0.0017,0.0314) (0.0016,0.0310) (0.0016,0.0310) (0.0015,0.0308)

0.8 1.0252 1.0257 1.0247 1.0247 1.0238
(0.0085,0.0708) (0.0086,0.0709) (0.0085,0.0707) (0.0085,0.0707) (0.0083,0.0706)

24 1.0369 0 1.0273 1.0274 1.0272 1.0272 1.0271
(0.0224,0.1166) (0.0007,0.0273) (0.0008,0.0274) (0.0007,0.0272) (0.0007,0.0272) (0.0007,0.0271)

0.3 1.0302 1.0314 1.0290 1.0291 1.0269
(0.0028,0.0412) (0.0029,0.0416) (0.0027,0.0409) (0.0027,0.0410) (0.0026,0.0406)

0.8 1.0350 1.0358 1.0341 1.0342 1.0325
(0.0147,0.0941) (0.0149,0.0942) (0.0146,0.0938) (0.0146,0.0939) (0.0143,0.0936)
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Table 5. The simulation results of λ when k = 3.

s m MLE ω BSEL BLL BGEL

h = −0.5 h = 0.5 q = −0.5 q = 0.5

20 18 1.0837 0 1.0270 1.0271 1.0269 1.0269 1.0267
(0.0549,0.1728) (0.0007,0.0270) (0.0007,0.0271) (0.0007,0.0270) (0.0007,0.0269) (0.0007,0.0267)

0.3 1.0440 1.0468 1.0413 1.0417 1.0371
(0.0062,0.0585) (0.0071,0.0602) (0.0056,0.0569) (0.0057,0.0573) (0.0049,0.0554)

0.8 1.0724 1.0744 1.0702 1.0706 1.0669
(0.0359,0.1396) (0.0371,0.1407) (0.0344,0.1383) (0.0349,0.1388) (0.0327,0.1368)

12 1.0930 0 1.0392 1.0393 1.0391 1.0391 1.0389
(0.0635,0.1871) (0.0015,0.0392) (0.0015,0.0393) (0.0015,0.0391) (0.0015,0.0391) (0.0015,0.0389)

0.3 1.0553 1.0585 1.0523 1.0527 1.0476
(0.0080,0.0675) (0.0090,0.0694) (0.0072,0.0658) (0.0074,0.0663) (0.0064,0.0642)

0.8 1.0823 1.0845 1.0799 1.0803 1.0760
(0.0419,0.1517) (0.0433,0.1529) (0.0403,0.1503) (0.0409,0.1509) (0.0385,0.1488)

6 1.2127 0 1.0493 1.0495 1.0491 1.0491 1.0487
(0.2273,0.3237) (0.0024,0.0493) (0.0025,0.0495) (0.0024,0.0491) (0.0024,0.0491) (0.0024,0.0487)

0.3 1.0983 1.1101 1.0881 1.0906 1.0768
(0.0261,0.1126) (0.0365,0.1225) (0.0195,0.1044) (0.0215,0.1071) (0.0155,0.0980)

0.8 1.1800 1.1875 1.1708 1.1742 1.1607
(0.1489,0.2622) (0.1624,0.2680) (0.1317,0.2544) (0.1402,0.2581) (0.1196,0.2478)

50 45 1.0273 0 1.0243 1.0244 1.0243 1.0243 1.0242
(0.0142,0.0937) (0.0006,0.0243) (0.0006,0.0244) (0.0006,0.0243) (0.0006,0.0243) (0.0006,0.0242)

0.3 1.0252 1.0260 1.0245 1.0245 1.0231
(0.0018,0.0337) (0.0019,0.0339) (0.0018,0.0335) (0.0018,0.0336) (0.0017,0.0334)

0.8 1.0267 1.0273 1.0262 1.0262 1.0252
(0.0093,0.0758) (0.0094,0.0759) (0.0092,0.0757) (0.0092,0.0758) (0.0091,0.0756)

30 1.0397 0 1.0340 1.0341 1.0339 1.0339 1.0337
(0.0215,0.1108) (0.0012,0.0340) (0.0012,0.0341) (0.0011,0.0339) (0.0011,0.0339) (0.0011,0.0337)

0.3 1.0357 1.0369 1.0346 1.0347 1.0325
(0.0031,0.0426) (0.0032,0.0431) (0.0029,0.0422) (0.0029,0.0423) (0.0027,0.0417)

0.8 1.0385 1.0394 1.0377 1.0378 1.0362
(0.0142,0.0899) (0.0144,0.0901) (0.0140,0.0897) (0.0141,0.0898) (0.0137,0.0894)

15 1.0677 0 1.0242 1.0243 1.0241 1.0241 1.0240
(0.0391,0.1490) (0.0006,0.0242) (0.0006,0.0243) (0.0006,0.0241) (0.0006,0.0241) (0.0006,0.0240)

0.3 1.0373 1.0393 1.0353 1.0355 1.0321
(0.0045,0.0507) (0.0049,0.0518) (0.0041,0.0497) (0.0042,0.0499) (0.0037,0.0486)

0.8 1.0590 1.0604 1.0575 1.0577 1.0549
(0.0256,0.1203) (0.0262,0.1211) (0.0249,0.1195) (0.0251,0.1198) (0.0240,0.1185)

80 72 1.0191 0 1.0232 1.0232 1.0231 1.0231 1.0229
(0.0094,0.0765) (0.0005,0.0232) (0.0005,0.0232) (0.0005,0.0231) (0.0005,0.0231) (0.0005,0.0229)

0.3 1.0219 1.0225 1.0214 1.0214 1.0204
(0.0013,0.0284) (0.0013,0.0285) (0.0013,0.0283) (0.0013,0.0284) (0.0012,0.0282)

0.8 1.0199 1.0203 1.0195 1.0195 1.0188
(0.0062,0.0618) (0.0062,0.0619) (0.0062,0.0618) (0.0062,0.0619) (0.0061,0.0618)

48 1.0218 0 1.0163 1.0164 1.0163 1.0163 1.0162
(0.0121,0.0853) (0.0003,0.0163) (0.0003,0.0164) (0.0003,0.0163) (0.0003,0.0163) (0.0003,0.0162)

0.3 1.0180 1.0186 1.0173 1.0174 1.0161
(0.0014,0.0285) (0.0014,0.0286) (0.0013,0.0283) (0.0013,0.0284) (0.0013,0.0282)

0.8 1.0207 1.0211 1.0202 1.0202 1.0193
(0.0078,0.0686) (0.0079,0.0687) (0.0078,0.0685) (0.0078,0.0686) (0.0077,0.0684)

24 1.0431 0 1.0318 1.0319 1.0316 1.0316 1.0313
(0.0220,0.1116) (0.0010,0.0318) (0.0010,0.0319) (0.0010,0.0316) (0.0010,0.0316) (0.0009,0.0313)

0.3 1.0352 1.0364 1.0340 1.0341 1.0319
(0.0031,0.0424) (0.0032,0.0429) (0.0029,0.0419) (0.0029,0.0420) (0.0027,0.0413)

0.8 1.0352 1.0417 1.0399 1.0400 1.0384
(0.0031,0.0424) (0.0148,0.0907) (0.0143,0.0902) (0.0144,0.0903) (0.0140,0.0899)
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Table 6. The ACLs of 95% ACI/HPD intervals of α and λ.

k s m α λ

ACI HPD ACI HPD

1 20 18 0.1702 0.0822 0.6509 0.0762
12 0.1824 0.0797 0.7683 0.1173
6 0.2311 0.1174 1.2929 0.0915

50 45 0.1088 0.0639 0.3975 0.1135
30 0.1266 0.0868 0.4630 0.0727
15 0.1470 0.0755 0.5708 0.0901

80 72 0.0874 0.0409 0.3023 0.0510
48 0.0966 0.0703 0.3438 0.0453
24 0.1211 0.1058 0.4569 0.0720

3 20 18 0.2628 0.0273 0.6775 0.0595
12 0.2601 0.0277 0.7333 0.0743
6 0.2621 0.0260 1.2691 0.1001

50 45 0.2620 0.0177 0.3672 0.0451
30 0.2623 0.0171 0.4345 0.0709
15 0.2597 0.0207 0.5840 0.0568

80 72 0.2609 0.0179 0.3345 0.0376
48 0.2632 0.0203 0.3551 0.0423
24 0.2607 0.0218 0.4374 0.0810

5.2. Results and discussions

From Tables 2–6, some comments can be made as follows:

• In general, the proposed MLEs and BEs of the unknown parameters of GEV distribution are very
good in the sense of their MSEs, RABs, and ACLs.
• As s(or m/s) increases, the proposed estimates become even better in terms of their MSEs and

RABs, as expected.
• The MSEs and RABs associated with α and λ typically grow as k increases, while those related

to λ and α typically decrease.
• Since prior information is included, frequentist estimates are outperformed by Bayesian estimates

based on gamma conjugate priors and BL functions.
• Regarding the asymmetric BL functions, it can be seen that the BEs provide better results than

those obtained based on the symmetric BL functions.
• To assess the effect of the BL functions, it is clear that the BEs under the BLL and BGEL functions

of α and λ are overestimates (for h, q < 0) and underestimates (for h, q > 0). Working with the
asymmetric BL functions has some advantageous characteristics, one of which is this.
• Among all estimates, the BEs using the BGEL function become even better in most cases than

other competing loss functions.
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• In particular, when k = 1, the MSEs and RABs increase for different BEs for α and λ, for all
ω > 0.
• When k = 3, the MSEs and RABs associated with α decrease while those associated with λ

increase, for all ω > 0.
• When ω close to one, the MSEs and RABs corresponding to the Bayesian estimates of α and λ

are almost equal to the corresponding MLEs.
• When ω = 0, the Bayesian estimates are better than others in terms of the smallest MSEs and

RABs.
• The MSE and RAB values (with k = 3) are very similar to those for PCT2-BBR (with k = 1).
• As we would expect, the ACLs of ACI/HPD intervals narrowed down as s (or m/s increases).
• As k increases, the ACLs associated with α increase while those associated with λ decrease.
• As k increases, the ACLs of HPD intervals narrow down for α and λ.
• It should be mentioned that the Bayesian analysis is the most computationally expensive, followed

by the classical analysis.
• In conclusion, it is advised to use the Gibbs inside the M-H algorithm for Bayesian estimation of

the unknown parameters of the GEV distribution.

6. Clinical applications

This section aims to demonstrate the adaptability and flexibility of the proposed methodologies to
actual phenomena. To achieve this, two real applications from clinical trials are presented.

6.1. COVID-19 data analysis

This application provides analysis of the mortality rates of COVID-19 in the United Kingdom for 70
consecutive days from 1 January to 11 March 2021 [https://coronavirus.data.gov.uk/], see
Table 7. To check the validity of the proposed model, the Kolmogorov-Smirnov (K-S) statistic and
its P-value are obtained. First, using complete COVID-19 data, the MLEs with their standard errors
(SEs) of α and λ are 0.0767 (0.0236) and 1.9176 (0.1809), respectively, and the K-S (P-value) is 0.117
(0.293). This result indicates that the GEV distribution fits the COVID-19 data.

To evaluate the existence and uniqueness of α̂ and λ̂, the contour plot of the log-likelihood
function (3.2) using the complete COVID-19 data is plotted in Figure 1. It shows, from the maximum
point x in the innermost contour, that the MLEs α̂ � 0.077 and λ̂ � 1.918 exist and are also
unique. Therefore, we suggest taking these estimates as initial guesses in order to run any additional
computational iterations.

Table 7. Mortality rate of seventy COVID-19 patients in UK.

1.1, 1.1, 1.1, 1.3, 1.4, 1.4, 1.5, 1.5, 1.5, 1.6, 1.7, 1.8, 1.8, 1.8, 1.8, 1.9, 1.9, 1.9, 2.0, 1.9,
1.8, 1.9, 1.7, 1.7, 1.7, 1.6, 1.7, 1.6, 1.6, 1.4, 1.3, 1.3, 1.3, 1.3, 1.1, 1.1, 1.0, 0.9, 1.0, 0.9,
0.9, 0.9, 0.8, 0.7, 0.7, 0.8, 0.7, 0.6, 0.6, 0.6, 0.5, 0.5, 0.4, 0.4, 0.4, 0.4, 0.3, 0.3, 0.3, 0.3,
0.3, 0.2, 0.2, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2
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Now, we put the COVID-19 data into a life-test simultaneously, and randomly grouped it into s = 35
groups within k = 2 items in each group. Then, using the algorithm discussed in Section 5, three
artificial samples of PFFC-BBR are generated with ξ = ζ = 8 and different choices of m, see Table 8.
The Bayesian inferences of α, λ, ξ and ζ is developed based on N = 15, 000 and N? = 5, 000. The
loss parameters h and q are taken as h = q = (−5,−0.05, 5) with the fixed value of weight as ω = 0.5.
Since no prior information is available for α, the non-informative prior is considered, but, to run the
required calculations, we set a = b = 0.0001.
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Figure 1. Contour of the log-likelihood function of α and λ from COVID-19 data.

Table 8. Artificial PFFC-BBR samples Ck:s:m from COVID-19 data.

Scheme i 1 2 3 4 5 6 7 8 9 10

C2:35:20 ri 2 4 1 5 2 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

x(i) 0.2 0.2 0.3 0.3 0.4 0.6 0.6 0.7 0.7 0.9
1.0 1.1 1.1 1.1 1.3 1.3 1.4 1.4 1.5 1.5

C2:35:15 ri 4 4 6 4 0 1 1 0 0 0
0 0 0 0 0 - - - - -

x(i) 0.2 0.2 0.3 0.4 0.7 0.9 1.0 1.1 1.1 1.3
1.3 1.4 1.4 1.5 1.5 - - - - -

C2:35:10 ri 9 4 6 4 1 0 1 0 0 0
x(i) 0.2 0.3 0.4 0.7 1.1 1.3 1.3 1.4 1.5 1.5

Using Table 8, the point (with their SEs) estimates as well as the interval (with their lengths)
estimates of α, λ, ξ, and ζ are computed and reported in Tables 9 and 10, respectively. These tables
showed that the frequentist and Bayes estimates of the unknown parameters were quite close to each
other. Also, a similar pattern is observed in the case of ACI/HPD interval estimates.
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Moreover, some important vital statistics, namely: mean, median, mode, standard deviation (SD)
and skewness (Sk.) for the MCMC variates of α, λ, ξ and ζ after burn-in; are also computed, see
Table 11. To appreciate the convergence of MCMC outputs, the trace and density plots of α, λ, ξ and ζ
are plotted with their sample means (horizontal dashed lines (—)) and 95% HPD intervals (horizontal
dashed lines (- - -)), see Figure 2. It turns out that the proposed MCMC algorithm converges well and
shows that the size of burn-in samples is appropriate to disregard the effect of the initial guesses. Using
the Gaussian kernel, the approximate marginal densities (where the sample mean is represented with
a horizontal dashed line (—)) of α, λ, ξ, and ζ with their histograms are also plotted in Figure 2. It
evident that the generated posterior samples of all unknown parameters are fairly symmetric.

Table 9. Point estimates of α, λ, ξ and ζ (with their SEs) under COVID-19 data.

Scheme Parameter MLE BSEL BLL BGEL

h = −5 h = −0.05 h = 5 q = −5 q = 0.05 q = 5

C2:35:20 α 0.0170 0.01695 0.01692 0.01691 0.01690 0.01717 0.01686 0.01646
(0.0103) (2.08×10−5) (7.54×10−5) (8.07×10−5) (8.62×10−5) (1.72×10−4) (1.43×10−4) (1.43×10−4)

λ 2.9606 2.96059 2.96059 2.96058 2.96057 2.96058 2.96058 2.96058
(0.4627) (2.50×10−5) (1.10×10−5) (1.88×10−5) (2.67×10−5) (1.67×10−5) (1.93×10−5) (2.20×10−5)

ξ 3.3287 3.32869 3.34026 3.32777 3.31506 3.33059 3.32695 3.32320
(0.0095) (9.89×10−4) (1.16×10−2) (9.31×10−4) (1.36×10−2) (1.89×10−3) (1.75×10−3) (5.50×10−3)

ζ 7.7854 7.78536 7.79722 7.78456 7.77156 7.78571 7.78413 7.78251
(0.0070) (9.97×10−4) (1.18×10−2) (8.44×10−4) (1.38×10−2) (3.09×10−4) (1.27×10−3) (2.89×10−3)

C2:35:15 α 0.0090 0.00938 0.00891 0.00891 0.00890 0.00922 0.00884 0.00827
(0.0070) (1.65×10−5) (8.51×10−5) (8.84×10−5) (9.19×10−5) (2.16×10−4) (1.65×10−4) (7.29×10−4)

λ 3.2724 3.27250 3.27241 3.27240 3.27239 3.27241 3.27240 3.27240
(0.5831) (2.47×10−5) (1.22×10−5) (4.62×10−6) (3.12×10−6) (6.42×10−6) (4.10×10−6) (1.73×10−6)

ξ 8.7054 8.70531 8.71722 8.70435 8.69108 8.70539 8.70395 8.70247
(0.0081) (1.01×10−3) (1.18×10−2) (1.05×10−3) (1.43×10−2) (1.38×10−5) (1.45×10−3) (2.93×10−3)

ζ 15.465 15.4649 15.4775 15.4649 15.4520 15.4654 15.4646 15.4638
(0.0081) (9.95×10−4) (1.25×10−2) (1.32×10−4) (1.29×10−2) (3.83×10−4) (4.08×10−4) (1.22×10−3)

C2:35:10 α 0.0056 0.00551 0.00555 0.00554 0.00553 0.00577 0.00549 0.00504
(0.0054) (2.03×10−5) (5.41×10−5) (5.56×10−5) (5.72×10−5) (1.68×10−4) (1.12×10−4) (5.64×10−4)

λ 3.4003 3.4002 3.40031 3.40030 3.40030 3.40030 3.40031 3.40030
(0.7202) (2.03×10−5) (8.18×10−6) (5.39×10−6) (2.54×10−6) (6.02×10−6) (5.20×10−6) (4.37×10−6)

ξ 58.734 58.734 58.7469 58.7341 58.7211 58.7342 58.7339 58.7338
(0.0081) (2.03×10−5) (1.29×10−2) (1.31×10−4) (1.29×10−2) (1.76×10−4) (3.43×10−5) (2.49×10−4)

ζ 87.826 87.826 87.8391 87.8268 87.8143 87.8268 87.8267 87.8265
(0.0080) (2.03×10−5) (1.31×10−2) (7.93×10−4) (1.17×10−2) (7.82×10−4) (6.46×10−4) (5.08×10−4)

Table 10. Interval estimates of α, λ, ξ and ζ under COVID-19 data.

Scheme Parameter 95% ACI 95% HPD

Lower Upper Length Lower Upper Length

C2:35:20 α 0.0000 0.0373 0.0373 0.0151 0.0189 0.0038
λ 2.0537 3.8675 1.8138 2.9507 2.9701 0.0193
ξ 3.3100 3.3473 0.0373 3.3188 3.3383 0.0195
ζ 7.7717 7.7991 0.0274 7.7757 7.7952 0.0194

C2:35:15 α 0.0000 0.0226 0.0226 0.0076 0.0112 0.0036
λ 2.1296 4.4152 2.2856 3.2624 3.2820 0.0196
ξ 8.6896 8.7212 0.0317 8.6956 8.7151 0.0195
ζ 15.449 15.481 0.0316 15.455 15.475 0.0195

C2:35:10 α 0.0000 0.0162 0.0162 0.0038 0.0073 0.0035
λ 1.9886 4.8119 2.8233 3.3903 3.4099 0.0196
ξ 58.718 58.750 0.0320 58.724 58.744 0.0195
ζ 87.809 87.842 0.0330 87.816 87.836 0.0199
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Table 11. Vital statistics of α, λ, ξ and ζ from COVID-19 data.

Scheme Parameter Mean Median Mode SD Sk.

C2:35:20 α 0.01683 0.01681 0.01559 2.08×10−3 0.05264
λ 2.96056 2.96057 2.95786 2.51×10−3 -0.00457
ξ 3.32659 3.32576 3.26852 9.89×10−2 0.03448
ζ 7.78346 7.78408 7.70477 9.98×10−2 0.00873

C2:35:15 α 0.00882 0.00877 0.00859 1.65×10−3 0.19863
λ 3.27241 3.27240 3.27097 2.48×10−3 -0.00644
ξ 8.70304 8.70267 8.59840 1.01×10−1 -0.00089
ζ 15.4644 15.4647 15.3864 9.95×10−2 0.01284

C2:35:10 α 0.00549 0.00545 0.00476 1.12×10−3 0.19547
λ 3.40031 3.40029 3.39949 1.50×10−3 0.06644
ξ 58.7340 58.7334 58.7432 9.99×10−2 -0.01929
ζ 87.8273 87.8274 87.8538 9.82×10−2 0.00212

(a) C2:35:20 (b) C2:35:15 (c) C2:35:10

Figure 2. Trace (right) and Density (left) plots for MCMC draws of α, λ, ξ and ζ using
COVID-19 data.
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6.2. Ovarian cancer data analysis

To illustrate the proposed estimation methods, we consider the survival times (in days) for 26
ovarian cancer (OC) patients after surgical treatment. This data set, reported by Collett [34], is: 59,
115, 156, 268, 329, 353, 365, 377, 421, 431, 448, 464, 475, 477, 563, 638, 744, 769, 770, 803, 855,
1040, 1106, 1129, 1206, 1227. It has also been analyzed based on PCT2-BR by Singh et al. [35].

There are two main reasons to consider this data. First, the data show an increasing failure rate
that matches the GEV distribution. One may also trace the shape of the HRF using the total time
on test (TTT) transform plot. Figure 3 indicates that the TTT diagram is concave down for the OC
data, and this fact implies that the HRF is an increasing function of time. Second, we tested the GEV
distribution fit using the K-S statistic, which also suggests that the GEV distribution fits well with the
OC data. Here, the MLEs are α̂ = 0.0994 and λ̂ = 0.0029. The K-S(P-value) from the OC data is
0.19(0.22). Therefore, the GEV distribution may be a reasonable choice to model this OC data. Using
the complete OC data, the contour plot of (3.2) is also plotted and displayed in Figure 3. It supports the
same numerical findings, such that the MLEs of α and λ exist and are also unique. Further, we suggest
taking α̂ � 0.1 and λ̂ � 0.003 as initial guesses to start any other numerical calculations.
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Figure 3. The TTT transform (left); Contour of the log-likelihood function of α and λ (right)
plots from OC data.

From the real OC data set, for fixed ξ = ζ = 5 and different choices of m, three artificial samples
of PFFC-BBR are generated; see Table 12. The BEs using non-informative gamma priors of α, λ, ξ,
and ζ are obtained by running the chain of MCMC 6,000 times and discarding the first 1,000 values.
The initial MCMC values of α, λ, ξ, and ζ were taken to be their MLEs. Taking ω = 0.5, the shape
parameters h and q of BLL and BGEL functions, respectively, are taken as h = q = (−2, 0.02, 2).
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Table 12. Artificial PFFC-BBR samples Ck:s:m from OC data.

Scheme i 1 2 3 4 5 6 7 8 9 10

C2:13:10 ri 2 1 0 0 0 0 0 0 0 0
x(i) 59 353 421 431 464 475 638 769 770 1106

C2:13:8 ri 3 1 0 1 0 0 0 0 - -
x(i) 59 377 431 464 638 769 770 1106 - -

C2:13:5 ri 2 3 2 1 0 - - - - -
x(i) 59 353 464 769 1106 - - - - -

Using Table 12, the maximum likelihood and Bayes estimates of α, λ, ξ, and ζ with associated
SEs are computed and presented in Table 13. Also, 95% two-sided ACI/HPD intervals of α, λ, ξ, and
ζ along with their lengths, are computed and listed in Table 14. Some vital statistics for MCMC
outputs of the unknown quantities are computed and provided in Table 15. It is observed, from
Tables 13 and 14, that the Bayes MCMC estimates of α, λ, ξ, or ζ perform better than the frequentist
estimates. For more illustration, the trace and marginal PDFs plots using 5,000 MCMC outputs of α,
λ, ξ, and ζ are plotted in Figure 4. It shows that (i) the MCMC technique based on the remaining 5,000
variates converges successfully; (ii) removing the first 1,000 samples as burn-in is an appropriate size to
eliminate the influence of the starting values; and (iii) the generated posterior samples of all unknown
parameters are fairly symmetrical. As a summary, the results established based on the OC data support
the same findings established from the COVID-19 data.

Finally, we concluded that the analysis results developed from the complete lifetimes of coronavirus
disease 2019 or ovarian cancer provided a good demonstration of the proposed censoring and may be
recommended for examining other novel sampling designs in future work.

(a) C2:13:10 (b) C2:13:8 (c) C2:13:5

Figure 4. Trace (right) and Density (left) plots for MCMC draws of α, λ, ξ and ζ using OC
data.
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Table 13. Point estimates of α, λ, ξ and ζ (with their SEs) under OC data.

Scheme Parameter MLE BSEL BLL BGEL

h = −2 h = −0.02 h = 2 q = −2 q = 0.02 q = 2

C2:13:10 α 0.0358 0.03581 0.03580 0.03580 0.03580 0.03582 0.03579 0.03578

(0.0258) (9.94×10−6) (3.86×10−6) (3.13×10−6) (2.39×10−6) (1.69×10−5) (3.57×10−6) (2.46×10−5)

λ 0.0037 0.00365 0.00367 0.00367 0.00367 0.00369 0.00367 0.00368

(0.0008) (3.38×10−6) (2.59×10−5) (2.60×10−5) (2.61×10−5) (1.05×10−5) (3.39×10−5) (6.19×10−5)

ξ 123.20 123.201 123.208 123.201 123.193 123.201 123.200 123.200

(0.0152) (1.01×10−3) (8.09×10−3) (4.85×10−4) (7.24×10−3) (4.50×10−4) (3.89×10−4) (3.27×10−4)

ζ 41.643 41.6413 41.6499 41.6422 41.6342 41.6423 41.6421 41.6419

(0.0263) (1.02×10−3) (6.98×10−3) (7.95×10−4) (8.80×10−3) (7.49×10−4) (9.34×10−4) (1.12×10−3)

C2:13:8 α 0.0261 0.02611 0.02610 0.02610 0.02610 0.02612 0.02609 0.02606

(0.0218) (9.99×10−6) (2.94×10−6) (2.20×10−6) (1.44×10−6) (2.13×10−5) (7.12×10−6) (3.65×10−5)

λ 0.0039 0.00379 0.00384 0.00384 0.00384 0.00386 0.00383 0.00380

(0.0009) (3.67×10−6) (5.74×10−5) (5.75×10−5) (5.76×10−5) (3.96×10−5) (6.69×10−5) (1.01×10−4)

ξ 92.271 92.2699 92.2779 92.2705 92.2629 92.2705 92.2704 92.2703

(0.0124) (9.97×10−4) (6.94×10−3) (4.79×10−4) (8.12×10−3) (4.99×10−4) (5.79×10−4) (6.61×10−4)

ζ 74.286 74.2852 74.2933 74.2857 74.2779 74.2857 74.2856 74.2855

(0.0123) (1.01×10−3) (7.34×10−3) (3.14×10−4) (8.07×10−3) (3.22×10−4) (4.23×10−4) (5.27×10−4)

C2:13:5 α 0. 0190 0.01895 0.01898 0.01897 0.01898 0.01900 0.01896 0.01892

(0.0189) (1.00×10−5) (2.35×10−5) (2.42×10−5) (2.50×10−5) (2.07×10−6) (3.71×10−5) (7.82×10−5)

λ 0.0037 0.00359 0.00365 0.00364 0.00364 0.00367 0.00363 0.00357

(0.0011) (4.54×10−6) (5.30×10−5) (5.31×10−5) (5.33×10−5) (2.50×10−5) (6.82×10−5) (1.26×10−4)

ξ 67.847 67.8477 67.8550 67.8474 67.8397 67.8474 67.8473 67.8472

(0.0096) (1.01×10−3) (7.99×10−3) (4.34×10−4) (7.28×10−3) (4.33×10−4) (3.22×10−4) (2.10×10−4)

ζ 83.786 83.7885 83.7952 83.7873 83.7794 83.7831 83.7872 83.7871

(0.0118) (1.02×10−3) (9.20×10−3) (1.33×10−3) (6.56×10−3) (1.31×10−3) (1.22×10−3) (1.13×10−3)

Table 14. Interval estimates of α, λ, ξ and ζ under OC data.

Scheme Parameter 95% ACI 95% HPD

Lower Upper Length Lower Upper Length

C2:13:10 α 0.0000 0.0864 0.0864 0.0337 0.0376 0.0039
λ 0.0022 0.0053 0.0031 0.0030 0.0043 0.0013
ξ 123.17 123.23 0.0595 123.19 123.21 0.0038
ζ 41.591 41.695 0.1031 41.640 41.645 0.0049

C2:13:8 α 0.0000 0.0688 0.0688 0.0241 0.0281 0.0040
λ 0.0021 0.0056 0.0035 0.0031 0.0045 0.0014
ξ 92.247 92.295 0.0482 92.269 92.273 0.0039
ζ 74.262 74.310 0.0480 74.284 74.288 0.0037

C2:13:5 α 0.0000 0.0563 0.0563 0.0172 0.0211 0.0039
λ 0.0016 0.0059 0.0043 0.0031 0.0046 0.0016
ξ 67.828 67.866 0.0376 67.845 68.849 0.0038
ζ 83.763 83.809 0.0461 83.784 83.788 0.0041
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Table 15. Vital MCMC statistics of α, λ, ξ and ζ based on OC data set.

Scheme Parameter Mean Median Mode SD Sk.

C2:13:10 α 0.03581 0.03580 0.03656 9.94×10−4 0.00011
λ 0.00364 0.00367 0.00379 3.38×10−4 - 0.15328
ξ 123.201 123.202 123.307 1.01×10−1 0.00663
ζ 41.6413 41.6407 41.7659 1.02×10−1 - 0.01719

C2:13:8 α 0.02610 0.02611 0.02599 9.99×10−4 - 0.03366
λ 0.00379 0.00381 0.00363 3.67×10−4 - 0.15868
ξ 92.2699 92.2688 92.1777 9.97×10−2 - 0.03070
ζ 74.2852 74.2849 74.3670 1.01×10−1 0.04105

C2:13:5 α 0.01895 0.01896 0.01725 1.73×10−2 - 0.00993
λ 0.00359 0.00361 0.00403 4.54×10−4 - 0.14049
ξ 67.8477 67.8501 67.8861 1.00×10−1 - 0.01591
ζ 83.7885 83.7869 83.7116 1.02×10−1 0.04932

7. Conclusions

The present study introduces a novel sampling technique for life-testing investigations named
progressive first-failure censoring, in which the removals follow the beta-binomial probability law.
This approach enables the elimination of survival units from a life-test that adheres to a beta-binomial
probability distribution when the experiment is being conducted. The maximum likelihood and
Bayesian estimations for the unknown parameters of the generalized extreme value distribution have
been discussed based on the proposed scheme. Monte Carlo Markov Chain techniques have been
employed to derive Bayes estimators utilizing both symmetric and asymmetric balanced loss functions,
as closed-form solutions for such estimators have not been available. In addition, the asymptotic
confidence interval and highest posterior density interval of each unknown parameter have been
estimated. As expected, the computational results showed that the Bayes’ approach provides more
accurate estimates of the parameters compared to the classical estimates, even if we consider the vague
prior. To demonstrate the applicability of the proposed censoring plan in real-world practice, two
numerical applications using two clinical data sets have been analyzed. As a future study, one can
easily extend the methodologies described here to other lifetime models or to other new censoring
mechanisms, e.g., adaptive Type-II progressively hybrid censoring with beta-binomial removals. It is
also better to consider generalized extreme value distribution-based modelling for nonlinear functions
and fishery data; see, Contreras-Reyes et al. [36]. Lastly, it has been determined that the methodology
under discussion offers a highly adaptable approach for conducting life-test experiments, and is
therefore recommended for implementation in various fields such as medicine, engineering, chemistry
and other areas that necessitate this type of life-test mechanism.
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