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Abstract: The article considers a generalization of Piatetski-Shapiro sequences in the sense of Beatty
sequences. The sequence is defined by (⌊αnc + β⌋)∞n=1, where α ≥ 1, c > 1, and β are real numbers.
The focus of the study is on solving equations of the form ⌊αnc + β⌋ = smk, where m and n are positive
integers, 1 ≤ n ≤ N, and s is an integer. Bounds for the solutions are obtained for different values of
the exponent k, and an average bound is derived over k-free numbers s in a given interval.

Keywords: kth power; Piatetski-Shapiro sequence; exponential sum; asymptotic formula
Mathematics Subject Classification: 11B83, 11L05

1. Introduction

The Piatetski-Shapiro sequences are defined by N (c) = (⌊nc⌋)∞n=1, where c > 1 and c < N. In 1953,
Piatetski-Shapiro [8] proved that N (c) contains infinitely many primes if c ∈ (1, 12

11 ). Moreover, he
showed that the prime counting function π(c)(x), which counts the number of primes in N (c) up to x,
satisfies the asymptotic relation π(c)(x) ∼ x1/c

log x as x → ∞. Since then, the range of c for which it is
known thatN (c) contains infinitely many primes has been extended several times, and it is now known
that the above formula holds for all c ∈ (1, 2817

2426 ) thanks to the work of Rivat and Sargos [10].
This study is related to the topic of Beatty sequences. A non-homogeneous Beatty sequence is a

sequence of integers obtained from fixed real numbers α > 0 and β, defined as Bα,β = (⌊αn + β⌋)∞n=1,
which is sometimes referred to a generalized arithmetic progression. It is well-known that the sequence
contains infinitely many prime numbers if α is irrational [4]. Moreover, it is possible to establish an
asymptotic relation for the distribution of primes in such sequences, which is the subject of extensive
research in number theory. We get that

#
{
prime p ≤ x : p ∈ Bα,β

}
∼ α−1π(x), x→ ∞

holds, where π(x) is the prime counting function.
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The author of this study proposes a generalization of Piatetski-Shapiro sequences in the context of
Beatty sequences, which similarly consists of infinitely many prime numbers. Specifically, let α ≥ 1
and β be real numbers. We investigate the following generalized Piatetski-Shapiro sequences:

N
(c)
α,β = (⌊αnc + β⌋)∞n=1 .

The Piatetski-Shapiro sequences have deep connections to several fundamental concepts in number
theory, such as smooth numbers, square-free numbers and so on. Previous research by Liu, Shparlinski,
and Zhang [5] focused on the distribution of squares in Piatetski-Shapiro sequences, while Qi, Guo,
and Xu [9] investigated an intriguing equation related to these sequences. In this paper, we aim to
extend their work by exploring the distribution of k-th powers in a generalization of Piatetski-Shapiro
sequences, which can be viewed as an extension of their previous findings. To be precise, we define
Qα,β

c,k (s; N) as the number of solutions to the equation:

⌊αnc + β⌋ = smk, 1 ≤ n ≤ N, m, n ∈ Z.

We mention the trivial bound

Qα,β
c,k (s; N) ≤ min

(
N, s−

1
k (αNc + β)

1
k
)
.

We prove the following theorem.

Theorem 1.1. Let k > 1 be an integer. For any exponent pair (κ, λ), we have

Qα,β
c,k (s; N) =γ(kγ − k + 1)−1s−

1
k N1−c+ c

k

+ O
(
s−

λ
k(1+κ) N

kκ+cλ
k(1+κ)+ε + s

κ−λ
k N

kκ+c(λ−κ)
k +ε + s−

1
k N−c+ c

k

)
.

We also study Qα,β
c,k (s; N) on average over positive k-free integers s ≤ S . Recall that γ = c−1and

define that
Q
α,β
c,k (S ,N) =

∑
s≤S

s is k-free

Qα,β
c,k (s; N).

We remark that only the case S ≤ αNc+β is meaningful, hence we always assume this. Liu, Shparlinski
and Zhang [5] showed that

Q
1,0
c,2(S ,N) =

12γ
π2(2γ − 1)

S 1− 1
k N1− c

2

+ O
(
S

1
5 N

1
5+

2c
5 + S

5
8 N

3c
8 + S

1
8 N

1
4+

3c
8 + S N1−c

)
.

We obtain the following result.

Theorem 1.2. For any c > 1, c < N, we have

Q
α,β
c,k (S ,N) =

k
ζ(k)(k − 1)(kγ − k + 1)

S 1− 1
k N1−c+ c

k

+ O
(
S

3
5−

4
5k N

1
5+

4c
5k + S 1− 3

4k N
3c
4k + S

1
2−

3
4k N

1
4+

3c
4k + S N1−c + S 1− 1

k N−c+ c
k
)
.

We remark that the topic is relative to harmonic numbers and their relationships which are
interesting mathematical concepts, including number theory, calculus, and physics, as well as the
study of degenerate versions or special cases.For further details, refer to [6, 7].
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2. Preliminaries

2.1. Notation

We denote by ⌊t⌋ and {t} the greatest integer ⩽ t and the fractional part of t, respectively. We also
write e(t) = e2πit for all t ∈ R, as usual. We make considerable use of the sawtooth function defined by

ψ(t) = t − ⌊t⌋ − 1
2 = {t} −

1
2 (t ∈ R).

In this study, we consider the Piatetski-Shapiro sequence (⌊nc⌋)∞n=1, where ⌊·⌋ denotes the floor
function, and γ is defined as the inverse of the constant c. The set of primes in the natural numbers is
denoted by P. We use the notation m ∼ M to indicate that m lies in the interval (M, 2M].

In order to state our results, we introduce some notation. Throughout the paper, the symbol ε
represents an arbitrarily small positive constant, which may vary from one occurrence to another. The
implied constants in the symbols O, ≪, and≫ may depend on the parameters c , ε , α, and β, but are
absolute otherwise. For given functions F and G, the notations F ≪ G, G ≫ F, and F = O(G) are all
equivalent to the assertion that the inequality |F| ⩽ C|G| holds with some constant C > 0.

2.2. Technical lemmas

Lemma 2.1. Let

L(Q) =
I∑

i=1

AiQai +

J∑
j=1

B jQ−b j ,

where Ai, ai, B j, b j > 0. Then, (1) for any Q2 ≥ Q1 > 0 there exists Q ∈ [Q1,Q2] such that

L(Q) ≪
I∑

i=1

J∑
j=1

(
Ab j

i Bai
j

) 1
ai+b j +

I∑
i=1

AiQ
ai
1 +

J∑
j=1

B jQ
−b j

2 .

(2) For any Q1 > 0 there exists Q ∈ (0,Q1] such that

L(Q) ≪
I∑

i=1

J∑
j=1

(
Ab j

i Bai
j

) 1
ai+b j +

J∑
j=1

B jQ
−b j

1 .

Proof. See [3, Lemma 2.4 ] □

Lemma 2.2. For any J > 0, there holds

ψ(x) =
∑

1≤| j|≤J

a je( jx) + O

∑
| j|≤J

b je( jx)

 ,
where

a j ≪ | j|−1, b j ≪ J−1.

Proof. This is the result of Vaaler [11]. □

Lemma 2.3.
(

13
84 + ε,

55
84 + ε

)
is an exponent pair.
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Proof. See [1, Theorem 6]. □

Lemma 2.4. Let α, α1, α2 be real constants such that

α < 1 and αα1α2 < 0.

Let M,M1,M2, x ≥ 1 and let

Φ = (φm)m∼M and Ψ =
(
ψm1,m2

)
m1∼M1,m2∼M2

be two sequences of complex numbers supported on m ∼ M,m1 ∼ M1 and m2 ∼ M2 with |φm| ≤ 1.
Then, for the sum

S Φ,Ψ (x; M,M1,M2) =
∑
m∼M

∑
m1∼M1

∑
m2∼M2

φmψm1,m2e
(
x

mαmα1
1 mα2

2

MαMα1
1 Mα2

2

)
we have

S Φ,Ψ (x; M,M1,M2) ≪
(
x

1
4 M

1
2 (M1M2)

3
4 + M

7
10 M1M2

+M (M1M2)
3
4 + x−

1
4 M

11
10 M1M2

)
log2 (2MM1M2) .

Proof. See [2, Theorem 3 ] □

3. Proof of Theorem 1.1

Denote γ = c−1 and θ = α−γ. A kth power equals ⌊αnc + β⌋ if and only if

smk ≤ αnc + β < smk + 1,

which is equivalent to
θ(smk − β)γ ≤ n < θ(smk + 1 − β)γ.

Let M = s−
1
k (αNc + β)

1
k , by a normal construction,

Qα,β
c,k (s; N) =

∑
m≤M

(⌊
−θ

(
smk − β

)γ⌋
−

⌊
−θ

(
smk + 1 − β

)γ⌋)
+ O(1)

= S 1 + S 2 + O(1),
(3.1)

where
S 1 =

∑
m≤M

(
θ
(
smk + 1 − β

)γ
− θ

(
smk − β

)γ)
= θ

∑
m≤M

(
γ
(
smk − β

)γ−1
+ O

((
smk − β

)γ−2
))

= θ
∑
m≤M

(
γsγ−1mk(γ−1) + O

(
sγ−2mk(γ−2)

))
= γ(kγ − k + 1)−1s−

1
k N1−c+ c

k + O(s−
1
k N−c+ c

k ), (3.2)
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and
S 2 =

∑
m≤M

({
−θ

(
smk + 1 − β

)γ}
−

{
−θ

(
smk − β

)γ})
=

∑
m≤M

(
ψ

(
−θ

(
smk + 1 − β

)γ)
− ψ

(
−θ

(
smk − β

)γ))
.

Consider S 2. From Lemma 2.2 we have

S 2 = S 3 + O (S 4) , (3.3)

where
S 3 =

∑
m≤M

∑
1≤| j|≤J

a j

(
e
(
− jθ

(
smk + 1 − β

)γ)
− e

(
− jθ

(
smk − β

)γ))
,

and
S 4 =

∑
m≤M

∑
| j|≤J

b j

(
e
(
− jθ

(
smk + 1 − β

)γ)
+ e

(
− jθ

(
smk − β

)γ))
,

for any J ≥ 1. We begin with S 3. Remembering a j ≪ | j|−1, we have

S 3 ≪
∑

1≤| j|≤J

| j|−1

∣∣∣∣∣∣∣∑m≤M

e
(

jθsγmkγ
)∣∣∣∣∣∣∣ .

Summing over m, we obtain

∑
m≤M

e
(

jθsγmkγ
)
≪ log M max

1≤L≤M

∣∣∣∣∣∣∣ ∑
L≤m≤2L

e
(

jθsγmkγ
)∣∣∣∣∣∣∣ .

Using the exponent pair (κ, λ) we get∑
L≤m≤2L

e
(

jθsγmkγ
)
≪

(
jθsγLkγ−1

)κ
Lλ.

Then, ∑
m≤M

e
(

jθsγmkγ
)
≪ jκθκs

κ−λ
k N

c(kγκ−κ+λ)
k +ε,

which yields
S 3 ≪ Jκθκs

κ−λ
k N

c(kγκ−κ+λ)
k +ε.

We can readily eliminate the contribution of S 4. By utilizing the fact that b j is bounded by J−1, we
obtain the following result:

S 4 ≪ J−1
∑
| j|≤J

∣∣∣∣∣∣∣∑m≤M

e
(

jθsγmkγ
)∣∣∣∣∣∣∣

≪ J−1s−
1
k N

c
k + J−1

∑
1≤| j|≤J

∣∣∣∣∣∣∣∑m≤M

e
(

jθsγmkγ
)∣∣∣∣∣∣∣ .
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By a similar argument, we have

S 4 ≪ J−1s−
1
k N

c
k + Jκs

κ−λ
k N

c(kγκ−κ+λ)
k +ε.

It yields that
J = s

λ−κ−1
k+kκ N

c(1+κ−kγκ−λ)
k+kκ .

Applying Lemma 2.1 to the bounds on terms in (3.3), we have

S 2 ≪ s−
λ

k(1+κ) N
kκ+cλ
k(1+κ)+ε + s

κ−λ
k N

kκ+c(λ−κ)
k +ε.

Now the result follows from (3.3) and (3.1). Applying the exponent pair
(

13
84 + ε,

55
84 + ε

)
from

Lemma 2.3 by Bourgain [1], people can get the asymptotic formula

Qα,β
c,k (s; N) = γ(kγ − k + 1)−1s−

1
k N1−c+ c

k + O
(
s−

55
97k N

13
97+

55c
97k+ε + s−

1
2k N

13
84+

c
2k+ε

)
.

4. Proof of Theorem 1.2

This proof is almost identical to the proof given in [5, Theorem 2.3], so we will provide only a brief
outline. We start that

Φk(S ) =
∑
s≤S

s is k-free

s−
1
k .

Applying a commonly known result, (see [11, p. 181]),∑
s≤S

s is k-free

1 =
S
ζ(k)
+ O

(
S

1
k
)
,

and a partial summation, we obtain

Φk(S ) =
k

ζ(k)(k − 1)
S 1− 1

k + O(log S ). (4.1)

We proceed as in the proof of Theorem 1.1, so set θ = α−γ, T = (αNc + β)γ, and

Q
α,β
c,k (S ; N) = K0 + K1 + O(1),

where
K0 =

∑
smk≤αNc+β

s≤S
s is k-free

(
θ
(
smk + 1 − β

)γ
− θ

(
smk − β

)γ)
,

and
K1 =

∑
smk≤αNc+β

s≤S
s is k-free

(
ψ

(
−θ

(
smk + 1 − β

)γ)
− ψ

(
−θ

(
smk − β

)γ))
.

Using (3.2) and (4.1), we compute K0 directly as follows

K0 = γ(kγ − k + 1)−1N1−c+ c
kΦk(S ) + O

(
S N1−c + S 1− 1

k N−c+ c
k
)
.
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By Lemma 2.2
K1 ≪ K11 + K12,

where
K11 =

∑
smk≤αNc+β

s≤S
s is k-free

∑
0<| j|<J

a j

(
ψ

(
−θ

(
smk + 1 − β

)γ)
− ψ

(
−θ

(
smk − β

)γ))
,

and
K12 =

∑
smk≤αNc+β

s≤S
s is k-free

∑
0≤| j|<J

b j

(
ψ

(
−θ

(
smk + 1 − β

)γ)
− ψ

(
−θ

(
smk − β

)γ))
.

Using a similar approach in [5, p. 250] we have

K11 ≪
∑

0<| j|<J

j−1|S (R,D,M; j)|,

where
S (R,D,M; j) =

∑
r∼R,d∼D,m∼M

rdkmk≤αNc+β,rdk≤S

µ(d)e
(
− jθrγdkγmkγ

)
.

From Lemma 2.4, we have

S (R,D,M; j) =
(

jRγDkγMkγ
) 1

4 R
1
2 (DM)

3
4 + R

7
10 DM

+ R(DM)
3
4 +

(
jRγDkγMkγ

)− 1
4 R

11
10 DM.

Noting that γ > 1
2 , it can be easily verified that the fourth term can be combined with the third term on

the right-hand side. We can obtain

K11 ≪ j
1
4 N

1
4+

3c
4k S

1
2−

3
4k + N

c
k S

7
10−

1
k + N

3c
4k S 1− 3

4k .

Hence,
|K11| + |K12| ≪ J

1
4 N

1
4+

3c
4k S

1
2−

3
4k + J−1N

c
k S 1− 1

k

+N
c
k S

7
10−

1
k + N

3c
4k S 1− 3

4k ,

where the term J−1N
c
k S 1− 1

k results from the choice j = 0 in the summation on the right-hand side in
Lemma 2.2. Now Lemma 2.1 gives

|K11| + |K12| ≪ N
1
5+

4c
5k S

3
5−

4
5k + N

3c
4k S 1− 3

4k + N
1
4+

3c
4k S

1
2−

3
4k .

We have the final result.

5. Conclusions

We have proved Theorems 1.1 and 1.2.
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