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Abstract: In this paper, we study a time-delayed free boundary of tumor growth with Gibbs-Thomson
relation in the presence of inhibitors. The model consists of two reaction diffusion equations and
an ordinary differential equation. The reaction diffusion equations describe the nutrient and inhibitor
diffusion within tumors and take into account the Gibbs-Thomson relation at the outer boundary of the
tumor. The tumor radius evolution is described by the ordinary differential equation. It is assumed that
the regulatory apoptosis process takes longer than the natural apoptosis and proliferation processes.
We first show the existence and uniqueness of the solution to the model. Next, we further demonstrate
the existence of the stationary solutions and the asymptotic behavior of the stationary solutions when
the blood vessel density is a constant. Finally, we further demonstrate the existence of the stationary
solutions and the asymptotic behavior of the stationary solutions when the blood vessel density is
bounded. The result implies that, under certain conditions, the tumor will probably become dormant
or will finally disappear. The conclusions are illustrated by numerical computations.
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1. Introduction

The growth of the tumor is a very complicated phenomenon. In the last fifty years, a number
of mathematical models have been proposed and studied from various angles to explain the growing
process of tumors. In [1,2], Greenspan proposed and analyzed the non-vascularized solid tumor growth
model under free boundary conditions. In 1995, Byrne and Chaplain proposed the following free
boundary problem modeling tumor growth [3]:

c
∂σ

∂t
=

1
r2

∂

∂r

(
r2∂σ

∂r

)
+ Γ(σB − σ) − λσ, 0 < r < R(t), t > 0,

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231140


22355

∂σ

∂r
(0, t) = 0, σ(R(t), t) = σR(t), t > 0,

dR
dt
=

1
R2

∫ R(t)

0
S (σ)r2dr, t > 0,

σ(R(t), t) = σR(t), σ(r, 0) = σ0(r), 0 ≤ r ≤ R(0),

R(0) = R0,

which is called the Byrne-Chaplain tumor model, where σ is nutrient concentration, R(t) is the radius
of the tumor and S (σ) denotes the cell proliferation rate within the tumor. Based on this model,
many researchers have analyzed it from different perspectives and reached some conclusions about the
well-posedness of the stationary solution, the existence and uniqueness of the solution and asymptotic
behavior of global solution, which can be seen in the literature [4–9] and so on.

Moreover, numerous experiments show that tumor cell proliferation does not occur instantly and
that it requires mitosis, a process that takes some time. Following this idea, Byrne established the
following time-delayed avascular tumor growth model [10]:

0 =
1
r2

∂

∂r

(
r2∂σ

∂r

)
− Γσ, 0 < r < R(t), t > 0,

∂σ

∂r
= 0, σ(R(t), t) = σ̄, t > 0,

dR(t)
dt
= η(R(t),R(t − τ)), t > 0,

R(t) = φ(t), − τ ≤ t ≤ 0,

where σ is nutrient concentration, R(t) represents the radius of the tumor at time t, τ is a positive
constant representing the time delay and the nonlinear smooth function η has a monotonic increase in
the second variable. Cui and Xu studied the asymptotic behavior of mathematical model solutions for
tumor growth with cell proliferation time delays in [11]. Xu and Feng [12] studied a mathematical
model for tumor growth with a time delay in proliferation under the indirect influence of an inhibitor.
Many researchers have taken an interest in the model and have published numerous research results
about the well-posedness of the stationary solution, the existence and uniqueness of the solution and
asymptotic behavior of global solution with the time-delays in [13–16].

In [17], the nutrients are hypothesized to be the energy needed to maintain the tightness of a tumor
by cell-to-cell adhesion at the tumor boundary; thus, the nutrient concentration at the tumor boundary
is smaller than the externally supplied nutrient concentration, and this difference satisfies the Gibbs-
Thomson relation. However, Roose, Chapman and Maini [18] further found that tumor growth satisfied
the modified Gibbs-Thomson relation, and the modified Gibbs-Thomson relation will be introduced in
the following:
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[∂σ
∂r

(r, t) + α(σ − N(t))
]
|r=R(t) = 0,

where N(t) fulfill the subsequent relationship

N(t) = σ̄(1 −
γ

R(t)
)H(R(t)),

where N(t) is induced by Gibbs-Thomson relation. H(·) is a smooth function on (0,∞), such that
H(x) = 0 if x ≤ γ, H(x) = 1 if x ≥ 2γ and 0 ≤ H′(x) ≤ 2/γ for all x ≥ 0. Continuing with this
thinking, Wu analyzed the effect of the Gibbs-Thomson relation on tumor growth with the external
nutrient supply [19]. Others have researched the Gibbs-Thomson relation and drawn some conclusions
about stationary solutions and asymptotic behavior of the solution, which can be found in [20, 21].

Furthermore, the tumor will have a time delay during its growth, and the boundaries of the tumor
model will also satisfy Gibbs-Thomson relation. Xu, Bai and Zhang [22] studied a free boundary
problem for the growth of tumor with the Gibbs-Thomson relation and time delays. Xu and Wu [23]
analyzed the problem of time-delayed free boundary of tumor growth with angiogenesis and the Gibbs-
Thomson relation. Gaussian white noise is regarded as an inhibitor in [24–26]. At present, there
is relatively limited research that considers a time-delayed free boundary of tumor growth with the
Gibbs-Thomson relation, simultaneously. Hence, in this paper, we mostly examine how the external
nutrient and inhibitor concentrations affect a time-delayed tumor growth under conditions that satisfy
the Gibbs-Thomson relation.

c1
∂u
∂t
= ∆u − u, 0 < r < R(t), t > 0, (1.1)

∂u
∂r
+ α1(t)

(
u − N1(t)

)
= 0, r = R(t), t > 0, (1.2)

c2
∂v
∂t
= ∆v − v, 0 < r < R(t), t > 0, (1.3)

∂v
∂r
+ α2(t)

(
v − N2(t)

)
= 0, r = R(t), t > 0, (1.4)

d
dt

(4πR3(t)
3

)
=4π

( ∫ R(t−τ)

0
µu(r, t − τ)r2dr −

∫ R(t)

0
νv(r, t)r2dr

−

∫ R(t)

0
µũr2dr

)
, t > 0,

(1.5)

u0(r, t) = ψ1(r, t), 0 ≤ r ≤ R(t), − τ ≤ t ≤ 0, (1.6)

v0(r, t) = ψ2(r, t), 0 ≤ r ≤ R(t), − τ ≤ t ≤ 0, (1.7)

R(t) = φ(t), − τ ≤ t ≤ 0, (1.8)

where u and v represent the concentration of nutrients and inhibitors, respectively; c1 and c2 are positive
constants, and ci = Tdi f f usion/Tgrowth(Tdi f f usion ≈ 1min,Tgrowth ≈ 1day) represents the relationship
between the tumor growth time scale and the nutrition and inhibitor diffusion time scales; r is the
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radial variable; τ is the time delay in cell proliferation; R(t) is an unknown variable related to time t;
α1(t) and α2(t) represent the blood vessel density. As there is just one vascular system in the tumor,
it is logical to suppose that α1(t) = α2(t) =: α(t); µ, ν and ũ are positive constants; ψ1, ψ2 and φ are
given nonnegative functions. The three terms in (1.5) to the right are explained as follows: The first
term is the overall volume increase caused by cell multiplication in a unit of time; µu is the rate of cell
proliferation per unit volume. The second term is the total volume reduction caused by cell killing by
the inhibitor in a unit time interval; νv is the rate of cell killing by the inhibitor per unit volume. The
last term is the total volume contraction caused by apoptosis or cell death due to senescence in a unit
time interval. N1(t) = ū(1 − γ

R(t) )H(R(t)) and N2(t) = v̄(1 − γ

R(t) )H(R(t)) represent the functions satisfied
by the external nutrient concentrations and the external inhibitor concentrations, respectively. Since the
inhibitor has great side effects during tumor treatment, we need to control the inhibitor concentration
without loss of generality, assuming that νv̄ < µū.

From [3, 4] we know that T i
di f f usion ≈ 1(i = 1, 2) min and Tgrowth ≈ 1 day, noticing (1.1) and (1.3),

so that ci ≪ 1(i = 1, 2). In this paper, we just take into account the limiting situation in where ci =

0(i = 1, 2). The time-delayed free boundary mathematical model for tumor growth with angiogenesis
and the Gibbs-Thomson relation studied in this paper are as follows:

∆u = u, 0 < r < R(t), t > 0, (1.9)

∂u
∂r
+ α(t)

(
u − ū(1 −

γ

R(t)
)H(R(t))

)
= 0, r = R(t), t > 0, (1.10)

∆v = v, 0 < r < R(t), t > 0, (1.11)

∂v
∂r
+ α(t)

(
v − v̄(1 −

γ

R(t)
)H(R(t))

)
= 0, r = R(t), t > 0, (1.12)

d
dt

(4πR3(t)
3

)
= 4π

( ∫ R(t−τ)

0
µu(r, t − τ)r2dr −

∫ R(t)

0
νv(r, t)r2dr −

∫ R(t)

0
µũr2dr

)
, t > 0, (1.13)

u0(r, t) = ψ1(r, t), 0 ≤ r ≤ R(t), − τ ≤ t ≤ 0, (1.14)

v0(r, t) = ψ2(r, t), 0 ≤ r ≤ R(t), − τ ≤ t ≤ 0, (1.15)

R(t) = φ(t), − τ ≤ t ≤ 0. (1.16)

The organization of this paper is as follows: In Section 2, we present some preliminary findings.
The existence and uniqueness of the solution to the Problem (1.9)–(1.16) are proved in Section 3.
Section 4 is devoted to studying steady-state solutions and their stability. In Section 5, we give some
numerical computations and have some discussions. In the last section, we give a conclusion.

2. Preliminaries

In this section, we present some preliminary results that will be used in our following analysis:

p(x) =
x coth x − 1

x2 , g(x) = xp(x) = coth x −
1
x
,
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and
h(x) = x3 p(x), D(x) =

h(x)
α + g(x)

, l(x) =
αp(x)
α + g(x)

.

Lemma 2.1. (1) p′(x) < 0 for all x > 0, and limx→0+ p(x) = 1
3 , limx→∞ p(x) = 0.

(2) h(x) and g(x) are strictly monotone increasing for x > 0, and

g(0) = 0, lim
x→∞

g(x) = 1, g′(0) =
1
3
.

(3) For any α > 0, D(x) is strictly monotonely increasing for x > 0.
(4) For any α > 0, l(x) is strictly monotonely decreasing for x > 0.

Proof. For the proof of (1), (2) and (3) , please see [6, 7, 23].
(5) Through a simple differential calculation, we have

l′(x) =
αp′(x)

(
α + g(x)

)
− αp(x)g′(x)(

α + g(x)
)2 =

(α)2 p′(x) − αp2(x)(
α + g(x)

)2 < 0,

where we have to take advantage of p(x) > 0 and p′(x) < 0. Therefore, l(x) is strictly monotonely
decreasing for x > 0. This completes the proof. □

Lemma 2.2. [11] Consider the initial value problem of a delay differential equation

ẋ(t) = G
(
x(t), x(t − τ)

)
, t > 0, (2.1)

x(t) = x0(t), − τ ≤ t ≤ 0. (2.2)

Assuming that the function G is defined and continuously differentiable in R+ × R+ and strictly
monotone increasing in the second variable, we have the following results:
(1) If xs is a positive solution of the equation G(x, x) = 0 such that G(x, x) > 0 for x less than but
near xs, G(x, x) < 0 for x greater than but near xs. Let (c, d) be the (maximal) interval containing
only the root xs of the equation G(x, x) = 0. If x(t) is the solution of the problem of (2.1), (2.2) and
x0(t) ∈ C[−τ, 0], c < x0(t) < d for −τ ≤ t ≤ 0, then

lim
t→∞

x(t) = xs,

(2) If G(x, x) < 0 for all x > 0, then
lim
t→∞

x(t) = 0.

In the following, we will use the above properties to help us prove the main theorems.

3. Existence and uniqueness of the solution to Problem (1.9)–(1.16)

In this section, we will discuss the existence and uniqueness of the solution to Problems (1.9)–
(1.16).
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Theorem 3.1. Assume φ(t) is continuous and nonnegative on [−τ, 0]. Suppose α(t) is continuous and
positive on [−τ,∞), then there exists a unique nonnegative solution to Problem (1.9)–(1.16) on interval
[−τ,∞).
Proof.Combined with (1.9) and (1.10), the solution is given explicitly in the form of

u(r, t) =
α

α + R(t)p
(
R(t)

) R(t)sinhr
r sinh R(t)

ū
(
1 −

γ

R(t)

)
H

(
R(t)

)
=

αū
α + g

(
R(t)

) R(t) sinh r
r sinh R(t)

(
1 −

γ

R(t)

)
H

(
R(t)

)
.

(3.1)

Similarly, the solution of (1.11) and (1.12) is given explicitly in the form of

v(r, t) =
α

α + R(t)p
(
R(t)

) R(t)sinhr
r sinh R(t)

v̄
(
1 −

γ

R(t)

)
H

(
R(t)

)
=

αv̄
α + g

(
R(t)

) R(t) sinh r
r sinh R(t)

(
1 −

γ

R(t)

)
H

(
R(t)

)
.

(3.2)

Substituting (3.1) and (3.2) into (1.13), we deduce

dR
dt
=µūR(t)

[
αR3(t − τ)p

(
R(t − τ)

)(
α + g

(
R(t − τ)

))
R3(t)

(
1 −

γ

R(t − τ)

)
H

(
R(t − τ)

)
−
νv̄
µū

αp
(
R(t)

)
α + g

(
R(t)

)(1 − γ

R(t)

)
H

(
R(t)

)
−

ũ
3ū

]
.

(3.3)

If we denote x(t) = R3(t), then we have

dx
dt
=3µūx(t − τ)l

(
x

1
3 (t − τ)

)(
1 −

γ

x
1
3 (t − τ)

)
H

(
x

1
3 (t − τ)

)
−

[
3νv̄l(x

1
3 (t))

(
1 −

γ

x
1
3 (t)

)
H

(
x

1
3 (t)

)
+ µũ

]
x(t)

= : G
(
x(t − τ)

)
− F

(
x(t)

)
.

(3.4)

Then, the initial condition of x(t) has the following form:

x0(t) = [φ(t)]3, − τ ≤ t ≤ 0. (3.5)

The ODE uniqueness of the solution of the initial value problem implies that the Problem (3.4), (3.5)
has a unique solution x(t) exists on [0,∞). Further, we use the prolongement method on intervals
[nτ, (n + 1)τ], n ∈ N. Therefore, we obtain the solution of (3.4) exists on [−τ,∞). Next, we need to
show that the solution is nonnegative. Where

G
(
x(t − τ)

)
= 3µūx(t − τ)l

(
x

1
3 (t − τ)

)(
1 −

γ

x
1
3 (t − τ)

)
H

(
x

1
3 (t − τ)

)
,

F(x(t)) =
[
3νv̄l(x

1
3 (t))(1 −

γ

x
1
3 (t)

)H(x
1
3 (t)) + µũ

]
x(t).

AIMS Mathematics Volume 8, Issue 9, 22354–22370.
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By a simple calculations, we derive

F′(x(t)) =3νv̄l
(
x

1
3 (t)

)(
1 −

γ

x
1
3 (t)

)
H

(
x

1
3 (t)

)
+ µũ

+ x(t)
[
3νv̄l′(x

1
3 (t))

1
3
(
x(t)

)− 2
3
(
1 −

γ

x
1
3 (t)

)
H

(
x

1
3 (t)

)
+ 3νv̄l

(
x

1
3 (t)

)( γ

3x
4
3 (t)

)
H

(
x

1
3 (t)

)
+ 3νv̄l

(
x

1
3 (t)

)(
1 −

γ

x
1
3 (t)

)
H′

(
x

1
3 (t)

)1
3
(
x−

2
3 (t)

)]
.

From Lemma 2.1, we know that F′(x(t)) > 0 for all x(t) > 0. Because φ(t) is continuous on intervals
[−τ, 0], x(t) is continuous on intervals [−τ, 0]. Then, we derive that there exists a unique solution
of (3.4) on [0,∞) (see [27]). From the Lemma 2.1, we have G(x(t − τ)) ≥ 0 for all x(t − τ) > 0. By
Theorem 1.1 in [28], we obtain the solution to Problem (3.4) and (3.5) is nonnegative on [0,∞), which
completes our proof. □

4. The steady state solution and their stability

In this section, we will discuss the steady state solution and their stability with the α(t) division
constant and bounded.

4.1. When α(t) is a constant

By discussing the existence of stationary solution by classifying the parameters, we have the
following result.

Theorem 4.1. Assume that x∗ is the unique solution to J(x) = 0. Then there exists a unique positive
constant 3 f (x∗) such that the following results are vaild:
(i) If µū > νv̄ + µũ, there exists two different stationary solutions (us1(r), vs1(r),Rs1) and
(us2(r), vs2(r),Rs2) to Problem (1.9)–(1.16), where Rs1 < Rs2.
(ii) If µū = νv̄ + µũ, there exists a unique stationary solution (us(r), vs(r),Rs) to Problems (1.9)–(1.16).
(iii) If µū < νv̄ + µũ, there are no stationary solutions to Problems (1.9)–(1.16).
Proof. The stationary solution of the Problem (1.9)–(1.16), denoted by (us(r), vs(r),Rs), must satisfy
the following equation:

1
r2

∂

∂r

(
r2∂us(r)

∂r

)
= us(r), 0 < r < Rs, (4.1)

∂us(r)
∂r
+ α

(
us(r) − ū(1 −

γ

Rs
)H(Rs)

)
= 0, r = Rs, (4.2)

1
r2

∂

∂r

(
r2∂vs(r)

∂r

)
= vs(r), 0 < r < Rs, (4.3)

∂vs(r)
∂r
+ α

(
vs(r) − v̄(1 −

γ

Rs
)H(Rs)

)
= 0, r = Rs, (4.4)∫ Rs

0
µus(r)r2dr −

∫ Rs

0
νvs(r)r2dr −

∫ Rs

0
µũr2dr = 0. (4.5)

AIMS Mathematics Volume 8, Issue 9, 22354–22370.



22361

Combined with (4.1) and (4.2), the solution is given explicitly in the form of

us(r) =
αū

α + g(Rs)
Rs sinh r
r sinh Rs

(1 −
γ

Rs
)H(Rs). (4.6)

Similarly, the solution of (4.3) and (4.4) is given explicitly in the form of

vs(r) =
αv̄

α + g(Rs)
Rs sinh r
r sinh Rs

(1 −
γ

Rs
)H(Rs). (4.7)

Thus, we obtain that the Rs satisfies[
p(Rs) −

νv̄
µū

p(Rs)
] α

α + g(Rs)
(1 −

γ

Rs
)H(Rs) =

ũ
3ū
. (4.8)

Let
f (x) =

(
1 −

νv̄
µū

)
l(x)(1 −

γ

x
)H(x).

After a direct differential computation, we derive

f ′(x) =
(
1 −

νv̄
µū

)
H(x)

α

[α + g(x)]2x2 J(x) +
(
1 −

νv̄
µū

)
l(x)(1 −

γ

x
)H′(x),

where
J(x) = α[(x2 − γx)p′(x) + γp(x)] + (2γx − x2)p2(x).

Next, we will discuss the classification according to the value range of x. If x ≥ 2γ, then H(x) = 1 ⇒
H′(x) = 0. By a direct differential computation, we obtain

f ′(x) =
(
1 −

νv̄
µū

) α

[α + g(x)]2x2 J(x).

On the one hand, 0 ≤ H′(x) ≤ 2
γ

for all x ≥ 0. On the other hand, J(x) is strictly monotonely
increasing for all x > γ (The proof of monotonicity of J(x) can be found on [23]) and limx→2γ J(x) =
αγ[2γp′(2γ) + p(2γ)] = αγ[xp(x)]′|x=2γ = αγg′(x)|x=2γ > 0. Therefore, if γ < x ≤ 2γ, we have f ′(x) >
0 In the same way, we have limx→γ+ J(x) = αγp(γ) + γ2 p2(γ) > 0. Thanks to Range{g(x)} ∈ (0, 1) and
g(x) is strictly monotonely increasing for all x > 0, which implies that there exists a constant M0 > 0
such that M0 p(M0) = g(M0) > 1

2 . Setting M1 = max{M0 + 1, 3γ, 2γ(α + 1)}, we have[
αγ + (2γ − M1)M1 p(M1)

]
p(M1)

<
(
αγ +

1
2

(2γ − M1)
)
p(M1)

≤
(
αγ +

1
2
(
2γ − 2γ(α + 1)

))
p(M1) = 0,

then J(M1) = α
[
(M2

1 − γM1)
]
p′(M1) +

[
αγ + (2γ − M1)M1 p(M1)

]
p(M1) < 0. When x > γ, we have

J′(x) < 0. The mean value theorem implies that we have a unique constant x∗ ∈ (γ,M1) such that
J(x∗) = 0; when x > x∗, we have J(x) < 0; when x ∈ (γ, x∗), we have J(x) > 0.
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Thus

f ′(x) =
(
1 −

νv̄
µū

) α

[α + xp(x)]2 J(x) +
(
1 −

νv̄
µū

)
l(x)(1 −

γ

x
)H′(x),

f ′(x) > 0 for x ∈ (γ, x∗); f ′(x) = 0 for x = x∗; f ′(x) < 0 for x > x∗. Then f (x∗) = max
x∈[γ,M1]

f (x) ∈ (0, 1
3 ).

According to the analysis, we have the following conclusions:
(i) If µū > νv̄ + µũ, we can get that there exist two different stationary solutions (us1(r), vs1(r),Rs1) and
(us2(r), vs2(r),Rs2) to Problems (1.9)–(1.16), where Rs1 < Rs2.
(ii) If µū = νv̄+µũ, we can get that there exists a unique stationary solution (us(r), vs(r),Rs) to Problems
(1.9)–(1.16).
(iii) If µū < νv̄ + µũ, we know that there are no stationary solutions to Problems (1.9)–(1.16).

This completes the proof. □
After discussing the existence of stationary solutions, we then study the asymptotic behavior of

stationary solutions.
For convenience, let |φ| = max

−τ≤t≤0
φ(t) and minφ = min

−τ≤t≤0
φ(t). Together with Theorem 4.1 and the

case where α(t) is a constant, it implies the following result.

Theorem 4.2. For any nonnegative initial value function φ that is continuous, when −τ ≤ t, there is a
nonnegative solution to Problems (3.3) and (1.16), and the dynamics of those solutions are as follows:
(I) If µū > νv̄ + µũ, when |φ| < Rs1, we can obtain lim

t→∞
R(t) = 0, when minφ > Rs1, we have lim

t→∞
R(t) =

Rs2.
(II) If µū = νv̄ + µũ, when |φ| < Rs, then lim

t→∞
R(t) = 0, when minφ > Rs, we have lim

t→∞
R(t) = Rs.

(III) If µū < νv̄ + µũ, then lim
t→∞

R(t) = 0.
Proof. Let

Q(x, y) = x
[

α

α + g(y)
y3 p(y)

x3

(
1 −

γ

y
)
H(y) −

νv̄
µū

αp(x)
α + g(x)

(
1 −

γ

x
)
H(x) −

1
3

ũ
ū

]
µū, (4.9)

then we have
∂Q
∂y
=
µūα
x2

[
γyl(y)H(y) + H′(y)y3l(y)

(
1 −

γ

y
)
+

(
y3l(y)

)′(1 − γ
y
)
H(y)

]
. (4.10)

By the Lemma 2.1, we can get ∂Q
∂y > 0. Thus, we know that Q is a function of monotonically increasing

values about the variable y. According to (4.9), we get

Q(x, x) = x
[

α

α + g(x)
x3 p(x)

x3

(
1 −

γ

x
)
H(x) −

νv̄
µū

αp(x)
α + g(x)

(
1 −

γ

x
)
H(x) −

1
3

ũ
ū

]
µū

= µūx
[
f (x) −

1
3

ũ
ū
]
.

(4.11)

Therefore, we can obtain that
(a) If µū > νv̄ + µũ, we can easily get Q(x, x) < 0 for all x < Rs1, Q(x, x) > 0 for all Rs1 < x < Rs2 and
Q(x, x) < 0 for all x > Rs2.
(b) If µū = νv̄ + µũ, we can easily get Q(x, x) < 0 for all x , Rs.
(c) If µū < νv̄ + µũ, we can easily get Q(x, x) < 0 for all x > 0.
Combined with (a)-(c) and Lemma 2.2, we know that the Theorem 4.2 is true. The proof is complete.

□
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4.2. When α(t) is bound

There exist two constants m, M (0 ≤ m < M) so that m ≤ α(t) ≤ M.

4.2.1. When α(t) has a upper bound

According to (3.3), we have

dR
dt
≤µūR(t)

[ MR3(t − τ)p
(
R(t − τ)

)(
M + g

(
R(t − τ)

))
R3(t)

(
1 −

γ

R(t − τ)

)
H

(
R(t − τ)

)
−
νv̄
µū

Mp
(
R(t)

)
M + g

(
R(t)

)(1 − γ

R(t)

)
H

(
R(t)

)
−

ũ
3ū

]
.

(4.12)

Furthermore, we consider the following initial value problem

dR̃
dt
=µūR̃(t)

[ MR̃3(t − τ)p
(
R̃(t − τ)

)(
M + g

(
R̃(t − τ)

))
R̃3(t)

(
1 −

γ

R̃(t − τ)

)
H

(
R̃(t − τ)

)
−
νv̄
µū

Mp
(
R̃(t)

)
M + g

(
R̃(t)

)(1 − γ

R̃(t)

)
H

(
R̃(t)

)
−

ũ
3ū

]
, t > 0,

(4.13)

R̃0(t) = φ(t), − τ ≤ t ≤ 0. (4.14)

Define

G1(x, y) =µūx
[ My3 p

(
y
)(

M + g
(
y)

))
x3

(
1 −

γ

y

)
H

(
y
)

−
νv̄
µū

Mp
(
x
)

M + g
(
x
)(1 − γ

x

)
H

(
x
)
−

ũ
3ū

]
, t > 0.

In the same way that α(t) is a constant, there exists a unique constant X∗ satisfies the following
equation:

J1(x) = α[(x2 − γx)p′(x) + γp(x)] + (2γx − x2)p2(x).

Let f1(x) =
(
1 − νv̄

µū

)
l(x)(1 − γ

x )H(x), then the following analysis and results is similar that α(t) is a
constant.

Lemma 4.3. Assume that X∗ be the unique solution to J1(x) = 0. Then there exists a unique positive
constant 3 f1(X∗) such that the following results hold true:
(i) If µū > νv̄ + µũ, there exist two different stationary solutions (uM

s1(r), vM
s1(r),RM

s1) and
(uM

s2(r), vM
s2(r),RM

s2) to Problem (1.9)–(1.16), where RM
s1 < RM

s2.
(ii) If µū = νv̄ + µũ, there exists a unique stationary solutions (uM

s (r), vM
s (r),RM

s ) to Problem (1.9)–
(1.16).
(iii) If µū < νv̄ + µũ, there are no stationary solutions to Problems (1.9)–(1.16).

Lemma 4.4. For any nonnegative initial value function φ that is continuous, when −τ ≤ t, there
is a nonnegative solution to Problems (4.13) and (4.14), and the dynamics of those solutions are as
follows:
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(I) If µū > νv̄ + µũ, when |φ| < RM
s1, we can obtain lim

t→∞
RM(t) = 0, when minφ > RM

s1, we have

lim
t→∞

RM(t) = RM
s2.

(II) If µū = νv̄ + µũ, when |φ| < RM
s , then lim

t→∞
RM(t) = 0, when minφ > RM

s , we have lim
t→∞

RM(t) = RM
s .

(III) If µū < νv̄ + µũ, then lim
t→∞

RM(t) = 0.
Combined proof of Theorem 4.2, Lemma 4.3 and Lemma 4.4, we can proof of Theorem 4.5.
When α(t) has an upper bounded, we combined the Theorem 4.2 with the comparative principle of

the ODE, we have the result shown bellow.

Theorem 4.5. For any nonnegative initial value function φ that is continuous, when −τ ≤ t, there is a
nonnegative solution to Problems (4.13) and (4.14). Moreover, if α(t) has a upper bound, the dynamics
of those solutions are as follows:
(I) If µū > νv̄ + µũ, when |φ| < RM

s1, we can obtain lim
t→∞

R(t) = 0 and when minφ > RM
s1, we have

lim sup
t→∞

R(t) ≤ RM
s2.

(II) If µū = νv̄+µũ, when |φ| < RM
s , then lim

t→∞
R(t) = 0 and when minφ > RM

s , we have lim sup
t→∞

R(t) ≤ RM
s .

(III) If µū < νv̄ + µũ, then lim
t→∞

R(t) = 0.

Proof. According to (4.12) and the comparison principle [11], we only need to prove that ∂G1
∂y > 0. In

fact,
∂G1

∂y
=
µū
x2

[(
y3l1(y)

)′(1 − γ
y

)H(y) + yγl1(y)H(y) + H′(y)y3l1(y)(1 −
γ

y
)
]
, (4.15)

where l1(y) = M
M+g(y) . From Lemma 2.1, it is obvious that ∂G1

∂y > 0. Meanwhile, the comparison
principle [11] indicates that

R(t) ≤ RM(t). (4.16)

By Lemma 4.3, noticing R(t) ≥ 0 and taking upper limits for both R(t) and RM(t) as t → ∞, one can
get Theorem 4.5. This completes the proof. □

Similarly, we consider the following initial value problem

dR̄
dt
=µūR̄(t)

[ mR̄3(t − τ)p
(
R̄(t − τ)

)(
m + g

(
R̄(t − τ)

))
R̄3(t)

(
1 −

γ

R̄(t − τ)

)
H

(
R̄(t − τ)

)
−
νv̄
µū

mp
(
R̄(t)

)
m + g

(
R̄(t)

)(1 − γ

R̄(t)

)
H

(
R̄(t)

)
−

ũ
3ū

]
, t > 0,

(4.17)

R̄0(t) = φ(t), − τ ≤ t ≤ 0. (4.18)

Define

G2(x, y) =µūx
[ my3 p

(
y
)(

m + g
(
y)

))
x3

(
1 −

γ

y

)
H

(
y
)

−
νv̄
µū

mp
(
x
)

m + g
(
x
)(1 − γ

x

)
H

(
x
)
−

ũ
3ū

]
, t > 0,

In the same way that α(t) is a constant, there exists a unique constant X∗ satisfies the following
equation:

J2(x) = α[(x2 − γx)p′(x) + γp(x)] + (2γx − x2)p2(x).
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Let f2(x) =
(
1 − νv̄

µū

)
l2(x)(1 − γ

x )H(x), then the following analysis and results is similar that α(t) is a
constant.

4.2.2. When α(t) has a lower bound

Similarly, we have

Lemma 4.6. Assume that X∗ be the unique solution to J2(x) = 0. Then there exists a unique positive
constant 3 f2(X∗) such that the following results are valid:
(i) If µū > νv̄ + µũ, there exist two different stationary solutions (um

s1(r), vm
s1(r),Rm

s1) and
(um

s2(r), vm
s2(r),Rm

s2) to Problem (1.9)–(1.16), where Rm
s1 < Rm

s2.
(ii) If µū = νv̄+µũ, there exists a unique stationary solutions (um

s (r), vm
s (r),Rm

s ) to Problem (1.9)–(1.16).
(iii) If µū < νv̄ + µũ, there are no stationary solutions to Problems (1.9)–(1.16).

Lemma 4.7. For any nonnegative initial value function φ that is continuous, when −τ ≤ t, there
is a nonnegative solution to Problems (4.17) and (4.18), and the dynamics of those solutions are as
follows:
(I) If µū > νv̄ + µũ, when |φ| < Rm

s1, we can obtain lim
t→∞

Rm(t) = 0, when minφ > Rm
s1, we have

lim
t→∞

Rm(t) = Rm
s2.

(II) If µū = νv̄ + µũ, when |φ| < Rm
s , then lim

t→∞
Rm(t) = 0, when minφ > Rm

s , we have lim
t→∞

Rm(t) = Rm
s .

(III) If µū < νv̄ + µũ, then lim
t→∞

Rm(t) = 0.
Combined proof of Theorem 4.2, Lemma 4.6 and Lemma 4.7, we can proof of Theorem 4.8.
Similarly, when α(t) has an lower bounded, we combined the Theorem 4.2 with the comparative

principle of the ODE, we have the result shown bellow.

Theorem 4.8. For any nonnegative initial value function φ that is continuous, when −τ ≤ t, there is
a nonnegative solution to Problems (4.17) and (4.18). Moreover, if α(t) α(t) has a lower bound, the
dynamics of those solutions are as follows:
(I) If µū > νv̄ + µũ, when |φ| < Rm

s1, we can obtain lim
t→∞

R(t) = 0 and when minφ > Rm
s1, we have

lim inf
t→∞

R(t) ≥ Rm
s2.

(II) If µū = νv̄+µũ, when |φ| < Rm
s , then lim

t→∞
R(t) = 0 and when minφ > Rm

s , we have lim inf
t→∞

R(t) ≥ Rm
s .

(III) If µū < νv̄ + µũ, then lim
t→∞

R(t) = 0.

Proof. According to (4.12) and the comparison principle [11], we only need to prove that ∂G2
∂y > 0. In

fact,
∂G2

∂y
=
µū
x2

[(
y3l2(y)

)′(1 − γ
y

)H(y) + yγl2(y)H(y) + H′(y)y3l2(y)(1 −
γ

y
)
]
, (4.19)

where l2(y) = m
m+g(y) . From Lemma 2.1, it is obvious that ∂G2

∂y > 0. Meanwhile, the comparison
principle [11] indicates that

R(t) ≥ Rm(t). (4.20)

By Lemma 4.7, noticing R(t) ≥ 0 and taking lower limits for both R(t) and Rm(t) as t → ∞, then the
Theorem 4.8 is true. The proof is complete. □

Therefore, the number of steady-state solutions varies in different value ranges. When the steady-
state solution exists, it has a corresponding homeostasis.
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5. Numerical computations

In this section, by using Matlab, we will present some numerical results to validate our theoretical
results, see Figures 1–3. First, we give the values γ = 2, α = 5, 8 and α = 8, γ = 2.5, 3 for the two
groups of parameters for the function f (x), then we can obtain Figure 1. It is obvious that the function
f (x) is increasing in α and decreasing in γ.

Figure 1. γ = 2, α = 5, 8 and α = 8, γ = 2.5, 3.

Figures 2 and 3 show that in some special cases, the steady-state solutions are larger than 2γ. In
this case, H(x) = 1, hence,

f (x) =
(
1 −

νv̄
µū

)
l(x)(1 −

γ

x
). (5.1)

If the parameters in (3.4) are taken as

ū = 5, v̄ = 5, ũ = 10, µ = 1, ν = 1, α = 8, γ = 2, τ = 3, x0 = 100, 1600, (5.2)

then we can solve the equation f ( 3
√

x) = ũ
3ū , we get Figure 2.
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Figure 2. x-f(x).

The dynamics of the solution to (3.4) allow us to obtain Figure 3.

Figure 3. t-R(t) and t-x(t).

6. Conclusions

In this paper, we study how the external nutrient and inhibitor concentrations affect a time-delayed
tumor growth under the Gibbs-Thomson relation.

This Problem (1.9)–(1.16) has a unique nonegative solution (Theorem 3.1).
(a) When α(t) is a constant, we further demonstrate the existence of the stationary solutions
(Theorem 4.1) and the asymptotic behavior of the stationary solutions (Theorem 4.2);
(b) When α(t) is bounded, we also demonstrate the asymptotic behavior of the stationary solutions and
their existence (Theorem 4.5 and Theorem 4.8).
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From the biological point of view, the results show that
(i) if µū > νv̄ + µũ, there exists two different stationary solutions, for small initial function satisfying
max
−τ≤t≤0

φ(t) < Rs1, the tumor will disappear; for large function satisfying min
−τ≤t≤0

φ(t) < Rs1, the tumor will

not disappear and will tend to the unique steady-state;
(ii) if µū = νv̄ + µũ, there exists a unique stationary solution, for small initial function satisfying
max
−τ≤t≤0

φ(t) < Rs, the tumor will disappear; for large function satisfying min
−τ≤t≤0

φ(t) < Rs, the tumor will

not disappear and will tend to the unique steady-state;
(iii) if µū < νv̄ + µũ, there is no stationary solution, the tumor will disappear.

The result implies that, under certain conditions, the tumor will probably become dormant or will
finally disappear. The conclusions are illustrated by numerical computations. We hope these results
may be useful for future tumor research.
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