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Abstract: This article investigates the finite-time decentralized event-triggered feedback control
problem for generalized neural networks (GNNs) with mixed interval time-varying delays and cyber-
attacks. A decentralized event-triggered method reduces the network transmission load and decides
whether sensor measurements should be sent out. The cyber-attacks that occur at random are described
employing Bernoulli distributed variables. By the Lyapunov-Krasovskii stability theory, we apply an
integral inequality with an exponential function to estimate the derivative of the Lyapunov-Krasovskii
functionals (LKFs). We present new sufficient conditions in the form of linear matrix inequalities.
The main objective of this research is to investigate the stochastic finite-time boundedness of GNNs
with mixed interval time-varying delays and cyber-attacks by providing a decentralized event-triggered
method and feedback controller. Finally, a numerical example is constructed to demonstrate the
effectiveness and advantages of the provided control scheme.
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1. Introduction

Neural networks (NNs) are widely used in various fields, such as pattern recognition,
combinatorial optimization, image processing, associate memory, signal processing, and fixed-point
computations [1–4], due to their enormous capacity for information processing. The literatures [5–12]
classifies neural networks into two categories. The first category consists of static neural networks
(SNNs), which rely on the external states of neurons (neural states of neurons). The second category
consists of local field neural networks (LFNNs), which depend on the internal states of neurons (local
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field states). In recent years, Zhang and Han [13] introduced a novel approach by combining SNNs
and LFNNs to create a unified system of neural networks called generalized neural networks (GNNs).
NNs may encounter a delay during execution caused by either the communication time of neurons or
the finite switching speed of the neuron amplifiers. These time delays can have a detrimental effect on
the performance of NNs, resulting in either instability, divergence, or oscillation. Consequently, there
has been an increased focus on investigating the stability of GNNs under time delay [12–18]. Delayed
GNNs are classified into various types: distributed delay, mixed delays, constant delay, interval
time-varying delay and time-varying delay.

Event-triggered schemes are control strategies that minimize the amount of data transmitted or
processed in computers and control systems. These schemes only transmit data when specific events
occur, such as system state changes, errors, or specific time intervals. The event-triggered mechanism
is a promising technique in networked control systems that aims to reduce communication costs and
computational burden, while ensuring good control performance. This technique is necessary since the
energy of sensors and network bandwidth is limited and needs to be used efficiently to accomplish other
communication tasks. The event-triggered method only transmits signals when they meet the triggering
threshold, conserving energy and improving communication bandwidth, as shown by the beneficial
outcomes of event-triggered schemes. This success has led to its widespread usage in NNs [19–26].
For instance, Liu et al. [20] investigated a dissipativity-based synchronization method for Markovian
jump NNs under the event-triggered framework. Later, Zha et al. [22] presented the problem of H∞
control for NNs with time-varying delay and cyber-attacks under the event-triggered framework.

Cyber-attacks in networked control systems are malicious and unauthorized activities that target
the communication network or control algorithms. These attacks aim to either disrupt normal system
operations, steal data, or cause physical damage. Such attacks can result in significant losses, making
the security and resilience of networked control systems against cyber-attacks a crucial area of research
and practice. Over the past few years, several researchers [22, 25, 27–30] have placed a considerable
emphasis on the problem of cyber-attacks in networked control systems. For example, Liu et al. [30]
investigated the state estimation method for T-S fuzzy neural networks under stochastic cyber-attacks
and an event-triggered scheme. Recently, a technique of the networked control for neural networks
vulnerable to two different types of stochastic cyber-attacks has been proposed by Feng et al. [25].
This approach utilizes a decentralized event-triggered H∞ control.

Stability analysis is a crucial concept in control theory, which usually concentrates on a system’s
asymptotic behavior over an infinite time interval. However, achieving faster convergence with a
greater robustness is often favored in practical engineering applications. For instance, an industrial
weight scale needs to attain its steady-state value within a specified threshold for a finite time. The
system quickly achieves its equilibrium point using a magnetic force. The preceding situation is
known as finite-time stability. The concept of finite-time stability was first introduced by Dorato
in 1961 [31]. In 2001, Amato [32] presented finite-time boundedness by extending finite-time
stability with external disturbance. While there has been considerable research on achieving
finite-time stability for delayed NNs [9, 11, 12, 17, 26, 33, 34], the exploration of finite-time
decentralized event-triggered feedback control for GNNs with cyber-attacks remains an unaddressed
issue. This research gap serves as the primary motivation for the present study.

To address this research gap, this article introduces an innovative decentralized event-triggered
method and feedback controller for GNNs with mixed interval time-varying delays and cyber-attacks.
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The primary contributions of this article can be summarized as follows:

(1) We propose a novel decentralized event-triggered method and feedback controller for GNNs
with mixed interval time-varying delays and cyber-attacks. This approach ensures finite-time
boundedness while estimating the derivative of the Lyapunov-Krasovskii functionals using an
integral inequality with an exponential function. By utilizing this method, we address the
challenges associated with system stability and effectiveness in the presence of time-varying
delays and cyber-attacks.

(2) The event-triggered approach introduced in this work leads to a reduction in network resource
utilization. This reduction alleviates the transmission burden on the network by enabling each
sensor to autonomously determine the optimal time for signal transmission. By minimizing
unnecessary transmissions, the proposed approach enhances the overall efficiency and scalability
of the system.

(3) We describe random cyber-attacks by utilizing Bernoulli-distributed variables and represent them
through a nonlinear function that satisfies a specific condition. This modeling approach allows
us to capture the realistic nature of cyber-attacks and effectively incorporate them into the control
strategy.

(4) We provide an illustrative example accompanied by simulations to demonstrate the feasibility
and effectiveness of the proposed control strategy. The results showcase the improved
effectiveness achieved in terms of system stability, finite-time boundedness, and resilience
against cyber-attacks.

The remainder of this article is structured as follows. In Section 2, we introduce GNNs and provide
preliminaries. Section 3 uses a state feedback controller to examine the stochastic finite-time bounded
conditions for delayed GNNs with cyber-attacks. Section 4 presents a numerical example to illustrate
the effectiveness of the proposed methods. In Section 5, we conclude and discuss our article.

Notations: This article utilizes the following notations: I denotes the identity matrix; ∥·∥
represents the Euclidean vector norm of a matrix; Rn indicates the n-dimensional Euclidean space;
Prob{X} represents the probability of event X to occur; diag{· · · } refers a block-diagonal matrix; the
notation PT and P−1 stand for the transpose and inverse of matrix P, respectively; the expression
P < 0 (or P ≤ 0) signifies that the real symmetric matrix P is negative definite (or negative
semi-definite); λmin(P) (or λmax(P)) denotes the minimum (or maximum) eigenvalue of real symmetric
matrix P; the term L2[0,∞) denotes a function space consisting of quadratically integrable functions
over the interval [0,∞); the notation Sym{P} represents the sum of P and its transpose, i.e., P + PT ;
the symbol ∗ indicates the elements below the main diagonal in a symmetric matrix.

2. Problem formulation and preliminaries

In this article, we introduce a problem involving GNNs with mixed interval time-varying delays.
The problem statement is described as follows:ẋ(t) = Āx(t) + B0 f (Wx(t)) + B1 f (Wx(t − τ(t))) + B2

∫ t−η1(t)

t−η2(t)
h(Wx(u))du + Bwω(t) + Buu(t),

z(t) = x(t),
(2.1)

where x(t) ∈ Rn represents the state vector at time t; n is the number of neurals; z(t) ∈ Rn represents
the output of the system; Ā = diag{a1, a2, ..., an} indicates a diagonal matrix; W, B0, B1 and B2 refer
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connection weight matrices; the matrices Bw and Bu are real constant matrices with known values;
ω(t) refers the external disturbance input; u(t) ∈ Rm denotes the control input; and
f (Wx(t)) = [ f1(Wx1(t)), ..., fn(Wxn(t))]T and h(Wx(t)) = [h1(Wx1(t)), ..., hn(Wxn(t))]T indicate the
activation functions. The time delays in the system are represented by ηi(t)(i = 1, 2) and τ(t), which
correspond to interval distributed time-varying delays and interval time-varying delays, respectively.

The functions τ(t) and ηi(t)(i = 1, 2) are continuous and satisfy the following conditions:

0 ≤ τm ≤ τ(t) ≤ τM and 0 ≤ η1 ≤ η1(t) ≤ η2(t) ≤ η2, t ∈ [0,T ],

where τm, τM, η1, η2 ∈ R refer known real constants.

Additionally, we assume that the neuron activation function and communication network delays
satisfy the following assumptions.
Assumption (A1). Each of the activation functions, fi(t) and hi(t), where i = 1, 2, ..., n, is assumed to
be continuous and bounded, satisfies the following conditions: there exist constants F−i , F+i , H−i , and
H+i such that

F−i ≤
fi(Wα1) − fi(Wα2)

Wα1 −Wα2
≤ F+i , H−i ≤

hi(Wα1) − hi(Wα2)
Wα1 −Wα2

≤ H+i , ∀α1, α2 ∈ R, α1 , α2.

Assumption (A2). Let τtik
denote the communication network delay at the sampled instant ti

k in the ith
sensor. It is assumed that 0 < τtik

< τ̄i, where τ̄ = maxi∈1,2,...,n τ̄
i.

The diagram of the decentralized event-triggered control for GNNs with cyber-attacks is shown in
Figure 1. This structure involves multiple sensors and controllers exchanging information over a
communication network, which may experience time delays and potential cyber-attacks. To minimize
network transmissions, event generators are employed at each sensor. When a new signal is sampled,
it is promptly sent to the corresponding event generator. Additionally, the signal includes the
disturbance input vector ω(t), representing either external factors or disturbances that influence the
controlled system. The controlled output z(t) represents the desired or targeted system output. Only
signals that violate the event-triggered condition are transmitted over the network, thereby reducing
communication bandwidth requirements. The primary objective of this decentralized event-triggered
structure is to ensure the stability of the neural network while minimizing the impact of cyber-attacks.
Furthermore, a three-line table summarizing the algorithm of the proposed method is provided below
in Table 1.
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Figure 1. The diagram of decentralized event-triggered for GNNs with cyber-attacks.

Table 1. A three-line table summarizing the algorithm of the proposed method.

Step Description
1 Initialize network parameters, event-triggering thresholds and cyber-attack detection

mechanisms
2 Sample input signals, check event-triggering conditions and detect potential

cyber-attacks
3 Update network states, transmit relevant information among nodes and implement

countermeasures against cyber-attacks

The following expression gives the predefined event-triggered criterion for the ith sensor:

eT
i (t)Ωiei(t) < σixT

i (ti
kh + jih)Ωixi(ti

kh + jih), (2.2)

where a weighting matrix is denoted by Ωi > 0, σi ∈ [0, 1), i ∈ {1, 2, .., n}, h is the sampling period
of sensor, jih is the sampling instant for the ith sensor, and ei(t) is the difference between the latest
transmitted signal xi(ti

kh) and the current sampled signal x(ti
kh + jih) at time t.

Remark 2.1. In the event generator of the ith sensor, the most recently triggered instant is ti
kh, and the

current sampling instant is ti
kh + jih. It is important to note that the set {ti

1, t
i
2, ..., } ⊆ {h, 2h, ..., jih, ...}

for i ∈ {1, 2, ..., n}.

The zero holder order (ZOH) holding interval [ti
kh, t

i
k+1h) can be divided into several subsets denoted

by ∪ jiM
ji=0Υ ji . Each subset ∪ jiM

ji=0Υ ji is given by Υ ji = [ti
kh + jih + βtik+ ji , ti

kh + jih + h + βtik+ ji+1) for
ji = 0, 1, ..., ji

M, ji
U = ti

k+1 − ti
k − 1.

Following a similar approach to [35], we establish a sequence of buffers on the actuator side, each
with a unique timestamp to hold the controller outputs. This enables the actuators to update the
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controlled inputs by selecting the corresponding controller output from the buffers. Thus, the input
update time set for the actuators is defined as tk+1h = tkh + jh, where jh = argminii∈{1,2,...,n}{ j

ih} can be
obtained from (2.2).

Define β(t) = t− tkh− jh. It is evident that 0 ≤ βtk ≤ β(t) ≤ β̄, where β̄ = h+ βtk+ j+1. Based on (2.2),
the condition for n channels can be derived as follows:

eT (t)Ωe(t) < σxT (t − β(t))Ωx(t − β(t)), (2.3)

where e(t) = x(tkh) − x(tk+1h + jh), Ω = diag{Ω1, ...,Ωn} and σ = diag{σ1, ..., σn}.
The following is a description of the proposed method for designing the controller model, which

takes into account both the decentralized event-triggered scheme and cyber-attacks:

u(t) = ρ(tk)K x(tkh) + (1 − ρ(tk))Kg(x(t − d(t))), (2.4)

where ρ(tk) ∈ {0, 1}, Prob{ρ(tk) = 1} = ρ̄, Prob{ρ(tk) = 0} = 1 − ρ̄, the controller gain is denoted by K ,
and the function of cyber-attacks is represented by g(x(t − d(t))), where g(x(t)) = [g1(x1(t)), g2(x2(t)),
..., gn(xn(t))]T , d(t) ∈ (0, d̄] and d̄ is a positive constant.

Remark 2.2. The dynamic event-triggered system (ETS) utilizes periodic sampling and a waiting
period of h seconds to evaluate the event-triggering condition, allowing for ample decision-making
time and preventing the occurrence of Zeno behavior. Zeno behavior refers to the destabilizing effect
of rapid and continuous event triggering. The introduction of this temporal constraint ensures a
balanced operation, averting undesirable system behavior and instability by triggering events at
appropriate intervals.

Remark 2.3. This article considers the probability distribution of cyber-attacks, which is assumed to
follow the Bernoulli distribution. The received sensor measurements are represented by ρ(tk), with
ρ(tk) = 1 indicating actual sensor measurements and ρ(tk) = 0 indicating that the sensor measurements
accessible through the communication network have been attacked.

Combining (2.1) and (2.4), we can derive that

ẋ(t) =Āx(t) + B0 f (Wx(t)) + B1 f (Wx(t − τ(t))) + B2

∫ t−η1(t)

t−η2(t)
h(Wx(u))du + Bwω(t) (2.5)

+ ρ(tk)BuK x(tkh) + (1 − ρ(tk))BuKg(x(t − d(t))), t ∈ [tkh + βtk , tk+1h + βtk+1].

Taking the definition of β(t) and the features of ρ(tk) into account, we can express (2.5) as the
following:

ẋ(t) =Āx(t) + ρ̄BuK[x(t − β(t)) + e(t)] + (1 − ρ̄)BuKg(x(t − d(t))) + B0 f (Wx(t))

+ B1 f (Wx(t − τ(t))) + B2

∫ t−η1(t)

t−η2(t)
h(Wx(s))ds + Bwω(t) (2.6)

+ (ρ(tk) − ρ̄)BuK[x(t − β(t)) + e(t) − g(x(t − d(t)))], t ∈ [tkh + βtk , tk+1h + βtk+1].

We present the following assumptions and lemmas instrumental to deriving our main results.
Assumption (A3). For each gi(t), i = 1, 2, ..., n represents a cyber-attack function that is bounded.
There exist constants G−i and G+i such that

G−i ≤
gi(α1) − gi(α2)
α1 − α2

≤ G+i , ∀α1, α2 ∈ R, α1 , α2.
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Remark 2.4. Assumption (A3) allows for the analysis of the system’s response to cyber-attacks, even
in the absence of detailed information about the attack signals. It facilitates the design of resilient
control strategies that can handle various attack scenarios and maintain system stability, despite
bounded cyber-attacks.

Assumption (A4). The external disturbance ω(t) satisfies∫ T

0
ωT (t)ω(t)dt ≤ dw, dw ≥ 0, T is a time constant.

Definition 2.1. [32] Given positive constants c1, c2 and T with 0 < c1 < c2 and X is a symmetric
positive definite matrix. The GNNs (2.1) is finite-time bounded with respect to (c1, c2, X,T ), if ∀t ∈
[0,T ]

sup−τM≤s≤0{x
T (s)Xx(s), ẋT (s)Xẋ(s)} ≤ c1 =⇒ xT (t)Xx(t) < c2. (2.7)

Lemma 2.2. (Jensen’s inequality [36]) For a symmetric positive-definite matrix, M ∈ Rm×m, and any
given scalars d1 and d2, the following inequality holds:

(d2 − d1)
∫ d2

d1

xT (u)Mx(u)du ≥
(∫ d2

d1

x(u)du
)T

M
(∫ d2

d1

x(u)du
)
. (2.8)

Lemma 2.3. [35] Assume β(t) ∈ [0, β̄], for any matrices R ∈ R and L that satisfies
[

R L
LT R

]
≥ 0, the

inequality holds as follows:

−β̄

∫ t

t−β̄
ẋT (u)Rẋ(u)du ≤


x(t)

x(t − β(t))
x(t − β̄)


T 

−R ∗ ∗

RT − LT −2R + L + LT ∗

LT RT − LT −R




x(t)
x(t − β(t))
x(t − β̄)

 . (2.9)

Lemma 2.4. [37] For any positive scalars a, b > a and α, and any symmetric matrix M = MT > 0
with dimension n × n, the following inequality holds:∫ b

a
eα(t−u) ẋT (u)Mẋ(u)du ≥

1
Φ0
ΣT

0 MΣ0 +
1
Φ1
ΣT

1 MΣ1, (2.10)

where

Σ0 = x(b) − x(a), Σ1 = ε1x(a) + ε2x(b) −
∫ b

a
x(u)du,

ε1 =
(b − a)e−α(t−b)

e−α(t−b) − e−α(t−a) −
1
α
, ε2 =

1
α
−

(b − a)e−α(t−a)

e−α(t−b) − e−α(t−a) ,

Φ0 =

∫ b

a
e−α(t−u)du =

1
α

(
e−α(t−b) − e−α(t−a)

)
,

Φ1 =

∫ b

a
e−α(t−u)l2

1(u)du =
e−2α(t−a) − (2 + α2(b − a)2)e−α(2t−a−b) + e−2α(t−b)

α3 (
e−α(t−b) − e−α(t−a)) ,

l1(u) = u −
(∫ b

a
e−α(t−u)du

)−1 (∫ b

a
e−α(t−u)udu

)
.
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Remark 2.5. When α = 0, then the specific values of Φ0, Φ1, Σ0, and Σ1 are given by Φ0 = b − a,

Φ1 =
(b−a)3

12 , Σ0 = x(b) − x(a), and Σ1 =
b−a

2

[
x(a) + x(b) − 2

b−a

∫ b

a
x(u)du

]
. This implies that Lemma 2.4

reduces to the well-known Wirtinger’s inequality.

Lemma 2.5. [38] For a full column rank matrix L ∈ Rn×m, the singular decomposition is L = U1ΣUT
2 ,

where U1 and U2 are orthogonal matrices, and Σ ∈ Rn×m is a rectangular diagonal matrix with positive

real numbers. Let M be a matrix of the form M = U1

[
R1 0
0 R2

]
UT

1 , then there exists X ∈ Rm×m such

that ML = LX.

Lemma 2.6. (Schur complement [39]) If matrices X, Y, and Z have appropriate dimensions and satisfy
X = XT and Y = YT > 0, then the inequality X + ZT Y−1Z < 0 holds if and only if[

X ZT

Z −Y

]
< 0 or

[
−Y Z
ZT X

]
< 0. (2.11)

3. Analysis of stochastic finite-time boundedness

In this section, we introduce new sufficient conditions for delayed GNNs that build on the main
theorems. To start, we define the parameters as follows: τMm = τM − τm, τMm , 0,

θ1a =
1
α

(1 − e−ατm), θ1b =
e−2ατm − (2 + α2τ2

m)e−ατm + 1
α3(1 − e−ατm)

,

θ2a =
1
α

(1 − e−ατM ), θ2b =
e−2ατM − (2 + α2τ2

M)e−ατM + 1
α3(1 − e−ατM )

,

θ3a =
1
α

(e−ατm − e−ατ(t)),

θ3b =
1

α3(e−ατm − e−ατ(t))

[
e−2ατ(t) − (2 + α2(τ(t) − τm)2)e−α(τ(t)+τm) + e−2ατm

]
,

θ4a =
1
α

(e−ατ(t) − e−ατM ),

θ4b =
1

α3(e−ατ(t) − e−ατM )

[
e−2ατM − (2 + α2(τM − τ(t))2)e−α(τ(t)+τM) + e−2ατ(t)

]
,

ϵ11 =
τm

1 − e−ατm
−

1
α
, ϵ12 =

1
α
−
τme−ατm

1 − e−ατm
,

ϵ21 =
τM

1 − e−ατM
−

1
α
, ϵ22 =

1
α
−
τMe−ατM

1 − e−ατM
,

ϵ31 =
(τ(t) − τm)e−ατm

e−ατm − e−ατ(t)
−

1
α
, ϵ32 =

1
α
−

(τ(t) − τm)e−ατ(t)

e−ατm − e−ατ(t)
,

ϵ41 =
(τM − τ(t))e−ατ(t)

e−ατ(t) − e−ατM
−

1
α
, ϵ42 =

1
α
−

(τM − τ(t))e−ατM

e−ατ(t) − e−ατM
,

Γ1 =
[
eT

1 − eT
2

]T
, Γ2 = [ϵ11eT

2 + ϵ12eT
1 − τmeT

13]T ,

Γ3 =[eT
1 − eT

4 ]T , Γ4 = [ϵ21eT
4 + ϵ22eT

1 − τMeT
14]T ,

Γ5 =[eT
2 − eT

3 ]T , Γ6 = [ϵ31eT
3 + ϵ32eT

2 − τMmeT
15]T ,
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Γ7 =[eT
3 − eT

4 ]T , Γ8 = [ϵ41eT
4 + ϵ42eT

3 − τMmeT
16]T ,

Γ9 =[eT
9 − eT

1 WT FT
M]T , Γ10 = [FPWe1 − e9],

Γ11 =[eT
10 − eT

3 WT FT
M]T , Γ12 = [FPWe3 − e10],

Γ13 =[eT
9 − eT

10 − eT
1 WT FT

M + eT
3 WT FT

M]T ,

Γ14 =[FPWe1 − FPWe3 − e9 + e10],
Γ15 =[eT

11 − eT
7 GT

M]T , Γ16 = [GPe7 − e11],
Γ17 =[eT

12 − eT
1 WT HT

M]T , Γ18 = [HPWe1 − e12],
FM =diag{F−1 , ..., F

−
n }, FP = diag{F+1 , ..., F

+
n },

GM =diag{G−1 , ...,G
−
n }, GP = diag{G+1 , ...,G

+
n },

HM =diag{H−1 , ...,H
−
n }, HP = diag{H+1 , ...,H

+
n },

γ1 =
eατm − 1
α
, γ2 =

eατM − 1
α

, γ3 =
eαβ̄ − 1
α
, γ4 =

eαβ̄ − 1
α
, γ5 =

eατm − ατm − 1
α2 ,

γ6 =
eατM − ατM − 1

α2 , γ7 =
eατM − eατm − ατMm

α2 , γ8 =
eαβ̄ − αβ̄ − 1

α2 ,

γ9 =
eαd̄ − αd̄ − 1

α2 , γ10 =
eαη2 − eαη1 − αη21

α2 , η21 = η2 − η1,

and we define vectors as follows:

ξ(t) =
[
xT (t), xT (t − τm), xT (t − τ(t)), xT (t − τM), xT (t − β(t)), xT (t − β̄), xT (t − d(t)),

xT (t − d̄), f T (Wx(t)), f T (Wx(t − τ(t))), gT (x(t − d(t))), hT (Wx(t)),
1
τm

∫ t

t−τm
xT (u)du,

1
τM

∫ t

t−τM

xT (u)du,
1

τ(t) − τm

∫ t−τm

t−τ(t)
xT (u)du,

1
τM − τ(t)

∫ t−τ(t)

t−τM

xT (u)du,
∫ t−η1(t)

t−η2(t)
hT (Wx(u))du, eT (t), ωT (t)

]T

,

ei =
[
0n×(i−1)n In 0n×(19−i)n

]
, i = 1, 2, ..., 19.

First, we obtain new sufficient conditions of the finite-time decentralized event-triggered feedback
control problem for GNNs with mixed interval time-varying delays and cyber-attacks as follows.

Theorem 3.1. Assume that Assumptions (A1)-(A4) are satisfied. Then, for given scalars
β̄, d̄, ρ̄, σ, dw, τm, τM, η1, η2,T, c1, c2 and α, the delayed GNNs with cyber-attacks (2.6) under the state
feedback controller is stochastic finite-time bounded regarding (c1, c2,T, X, dw), if there exist
symmetric positive definite matrices P, Qi,R j(i = 1, 2, 3, 4, j = 1, 2, 3, 4, 5), M, S and positive
diagonal matrices G1,G2,G3,G4,G5, such that the following conditions hold:

Π ∗ ∗

Γa −Λ ∗

Γb 0 −Λ

 < 0, (3.1)

AIMS Mathematics Volume 8, Issue 9, 22274–22300.



22283

eαT
[
Πλc1 + dwλ13(1 − e−αT )

]
< λ1c2, (3.2)

where

Π =

6∑
i=1

Πi,

Π1 =2eT
1 PĀe1 + 2eT

1 ρ̄PBuK[e5 + e18] + 2(1 − ρ̄)eT
1 PBuKe11 + 2eT

1 PB0e9

+ 2eT
1 PB1e10 + 2eT

1 PB2e17 + 2eT
1 PBwe19 − αeT

1 Pe1,

Π2 =eT
1 (Q1 + Q2 + Q3 + Q4)e1 − eατmeT

2 Q1e2 − eατM eT
4 Q2e4 − eαβ̄eT

6 Q3e6 − eαd̄eT
8 Q4e8,

Π3 = −
τm

θ1a
ΓT

1 R1Γ1 −
τm

θ1b
ΓT

2 R1Γ2 −
τM

θ2a
ΓT

3 R2Γ3 −
τM

θ2b
ΓT

4 R2Γ4 −
τMm

θ3a
ΓT

5 R3Γ5

−
τMm

θ3b
ΓT

6 R3Γ6 −
τMm

θ4a
ΓT

7 R3Γ7 −
τMm

θ4b
ΓT

8 R3Γ8

+ eαβ̄
[
− eT

1 R4e1 + 2eT
1 (R4 − L1)e5 + 2eT

1 L1e6 + eT
5 (−2R4 + L1 + LT

1 )e5

+ 2eT
5 (R4 − L1)e6 + eT

6 R4e6

]
+ eαd̄

[
− eT

1 R5e1 + 2eT
1 (R5 − L2)e7 + 2eT

1 L2e8 + eT
7 (−2R5 + L2 + LT

2 )e7

+ 2eT
7 (R5 − L2)e8 + eT

8 R5e8

]
,

Π4 =η
2
21eT

12Me12 − eαη2eT
17Me17,

Π5 =2ΓT
9 G1Γ10 + 2ΓT

11G2Γ12 + 2ΓT
13G3Γ14 + 2ΓT

15G4Γ16 + 2ΓT
17G5Γ18,

Π6 = − αeT
19S e19 − eT

18Ωe18 + σeT
5Ωe5,

Πλ =λ2 + γ1λ3 + γ2λ4 + γ3λ5 + γ4λ6 + τmγ5λ7 + τMγ6λ8 + τMmγ7λ9 + β̄γ8λ10 + d̄γ9λ11

+ η21γ10λ12,

λ1 =λmin(P), λ2 = λmax(P), λ3 = λmax(Q1), λ4 = λmax(Q2), λ5 = λmax(Q3), λ6 = λmax(Q4),

λ7 =λmax(R1), λ8 = λmax(R2), λ9 = λmax(R3), λ10 = λmax(R4), λ11 = λmax(R5), λ12 = λmax(M),

λ13 =λmax(S ),
Λ =diag{PR−1

1 P, PR−1
2 P, PR−1

3 P, PR−1
4 P, PR−1

5 P},

Γa =
[
τmΓ

T
a1 τMΓ

T
a1 τMmΓ

T
a1 β̄Γ

T
a1 d̄ΓT

a1

]T
,

Γb =
[
τmΓ

T
b1 τMΓ

T
b1 τMmΓ

T
b1 β̄Γ

T
b1 d̄ΓT

b1

]T
,

Γa1 =
[
Γa11 Γa12

]
,

Γa11 =
[
PA 01×3 ρ̄PBuK 01×3 PB0 PB1

]
,

Γa12 =
[
(1 − ρ̄)PBuK 01×5 PB2 ρ̄PBuK PBw

]
,

Γb1 =
[
01×4 δPBuK 01×5 δPBuK 01×6 δPBuK 0

]
, δ =

√
ρ̄(1 − ρ̄).

Proof. We formulate the LKFs as follows:

V(xt, t) =
3∑

i=1

Vi(xt, t), (3.3)
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where

V1(xt, t) =x(t)T Px(t),

V2(xt, t) =
∫ t

t−τm
eα(t−u)xT (u)Q1x(u) du +

∫ t

t−τM

eα(t−u)xT (u)Q2x(u) du

+

∫ t

t−β̄
eα(t−u)xT (u)Q3x(u) du +

∫ t

t−d̄
eα(t−u)xT (u)Q4x(u) du,

V3(xt, t) =τm

∫ t

t−τm

∫ t

u
eα(t−s) ẋT (s)R1 ẋ(s) ds du + τM

∫ t

t−τM

∫ t

u
eα(t−s) ẋT (s)R2 ẋ(s) ds du

+ τMm

∫ t−τm

t−τM

∫ t

u
eα(t−s) ẋT (s)R3 ẋ(s) ds du + β̄

∫ t

t−β̄

∫ t

u
eα(t−s) ẋT (s)R4 ẋ(s) ds du

+ d̄
∫ t

t−d̄

∫ t

u
eα(t−s) ẋT (s)R5 ẋ(s)ds du

+ (η2 − η1)
∫ t−η1

t−η2

∫ t

u
eα(t−s)hT (Wx(s))Mh(Wx(s))dsdu.

Taking the mathematical expectation of the derivative of (3.3) over the trajectory of the GNNs (2.6),
we obtain

E{V̇1(xt, t)} =2xT (t)Pẋ(t) − αxT (t)Px(t) + αV1(xt, t)
=ξT (t)Π1ξ(t) + αV1(xt, t), (3.4)

E{V̇2(xt, t)} =xT (t)
{
Q1 + Q2 + Q3 + Q4

}
x(t) − eατm xT (t − τm)Q1x(t − τm)

− eατM xT (t − τM)Q2x(t − τM) − eαβ̄xT (t − β̄)Q3x(t − β̄)

− eαd̄ xT (t − d̄)Q4x(t − d̄) + αV2(xt, t)
=ξT (t)Π2ξ(t) + αV2(xt, t), (3.5)

E{V̇3(xt, t)} =E{ẋT (t)R̂ẋ(t)} − τm

∫ t

t−τm
eα(t−u) ẋT (u)R1 ẋ(u) du

− τM

∫ t

t−τM

eα(t−u) ẋT (u)R2 ẋ(u) du − τMm

∫ t−τm

t−τM

eα(t−u) ẋT (u)R3 ẋ(u) du

− β̄

∫ t

t−β̄
eα(t−u) ẋT (u)R4 ẋ(u) du − d̄

∫ t

t−d̄
eα(t−u) ẋT (u)R4 ẋ(u) du + αV3(xt, t), (3.6)

where R̂ = τ2
mR1 + τ

2
MR2 + τ

2
MmR3 + β̄

2R4 + d̄2R5,

E{V̇4(xt, t)} =(η2 − η1)2hT (Wx(t))Mh(Wx(t)) − (η2 − η1)
∫ t−η1

t−η2

eα(t−u)hT (Wx(u))Mh(Wx(u))du

+ αV4(xt, t)
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≤(η2 − η1)2hT (Wx(t))Mh(Wx(t)) − (η2(t) − η1(t))eαη2

∫ t−η1(t)

t−η2(t)
hT (Wx(u))Mh(Wx(u))du

+ αV4(xt, t). (3.7)

Applying Lemma 2.4 to the integral, we obtain

−τm

∫ t

t−τm
eα(t−u) ẋT (u)R1 ẋ(u) du ≤ξT (t)

{
−
τm

θ1a
(e1 − e2)T R1(e1 − e2) −

τm

θ1b
(ϵ11e2 + ϵ12e1 − τme13)T

× R1(ϵ11e2 + ϵ12e1 − τme13)
}
ξ(t)

=ξT (t)
{
−
τm

θ1a
ΓT

1 R1Γ1 −
τm

θ1b
ΓT

2 R1Γ2

}
ξ(t), (3.8)

−τM

∫ t

t−τM

eα(t−u) ẋT (u)R2 ẋ(u) du ≤ξT (t)
{
−
τM

θ2a
(e1 − e4)T R2(e1 − e4) −

τM

θ2b
(ϵ21e4 + ϵ22e1 − τMe14)T

× R2(ϵ21e4 + ϵ22e1 − τMe14)
}
ξ(t)

=ξT (t)
{
−
τM

θ2a
ΓT

3 R2Γ3 −
τM

θ2b
ΓT

4 R2Γ4

}
ξ(t), (3.9)

−τMm

∫ t−τm

t−τM

eα(t−u) ẋT (u)R3 ẋ(u) du = − τMm

∫ t−τm

t−τ(t)
eα(t−u) ẋT (u)R3 ẋ(u) du

− τMm

∫ t−τ(t)

t−τM

eα(t−u) ẋT (u)R3 ẋ(u) du

≤ξT (t)
{
−
τMm

θ3a
(e2 − e3)T R3(e2 − e3) −

τMm

θ3b
(ϵ31e3 + ϵ32e2 − τMme15)T

× R3(ϵ31e3 + ϵ32e2 − τMme15)

−
τMm

θ4a
(e3 − e4)T R3(e3 − e4) −

τMm

θ4b
(ϵ41e4 + ϵ42e3 − τMme16)T

× R3(ϵ41e4 + ϵ42e3 − τMme16)
}
ξ(t)

=ξT (t)
{
−
τMm

θ3a
ΓT

5 R3Γ5 −
τMm

θ3b
ΓT

6 R3Γ6

−
τMm

θ4a
ΓT

7 R3Γ7 −
τMm

θ4b
ΓT

8 R3Γ8

}
ξ(t). (3.10)

Applying Lemma 2.2, we obtain

−(η2(t) − η1(t))eαη2

∫ t−η1(t)

t−η2(t)
hT (Wx(u))Mh(Wx(u))du ≤ −eαη2

(∫ t−η1(t)

t−η2(t)
hT (Wx(u))du

)T
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× M
( ∫ t−η1(t)

t−η2(t)
hT (Wx(u))du

)
= ξT (t)

{
− eT

17(eαη2 M)e17

}
ξ(t). (3.11)

Applying Lemma 2.3, we obtain

−β̄

∫ t

t−β̄
eα(t−u) ẋT (u)R4 ẋ(u) du ≤eαβ̄


x(t)

x(t − β(t))
x(t − β̄)


T 
−R4 ∗ ∗

RT
4 − LT

1 −2R4 + L1 + LT
1 ∗

LT
1 RT

4 − LT
1 −R4




x(t)
x(t − β(t))
x(t − β̄)


=eαβ̄ξT (t)

{
− eT

1 R4e1 + 2eT
1 (R4 − L1)e5 + 2eT

1 L1e6

+ eT
5 (−2R4 + L1 + LT

1 )e5

+ 2eT
5 (R4 − L1)e6 + eT

6 R4e6

}
ξ(t), (3.12)

−d̄
∫ t

t−d̄
eα(t−u) ẋT (u)R5 ẋ(u) du ≤eαd̄


x(t)

x(t − d(t))
x(t − d̄)


T 
−R5 ∗ ∗

RT
5 − LT

2 −2R5 + L2 + LT
2 ∗

LT
2 RT

5 − LT
2 −R5




x(t)
x(t − d(t))
x(t − d̄)


=eαd̄ξT (t)

{
− eT

1 R5e1 + 2eT
1 (R5 − L2)e7 + 2eT

1 L2e8

+ eT
7 (−2R5 + L2 + LT

2 )e7

+ 2eT
7 (R5 − L2)e8 + eT

8 R5e8

}
ξ(t). (3.13)

Noting that E{ẋT (t)R̂ẋ(t)} = AT R̂A + ρ̄(1 − ρ̄)BT R̂B, where A = Āx(t) + ρ̄BuK[x(t − β(t)) + e(t)] +
(1 − ρ̄)BuKg(x(t − d(t))) + B0 f (Wx(t)) + B1 f (Wx(t − τ(t))) + B2

∫ t−η1(t)

t−η2(t)
h(Wx(s))ds + Bwω(t), B =

BuK[x(t − β(t)) + e(t) − g(x(t − d(t)))].
One can deduce from Assumption (A1) that if β1i, β2i, β3i, β4i, β5i > 0 for i = 1, 2, ..., n, then

2[ fi(Wix(t)) − F−i Wix(t)]β1i[F+i Wix(t) − fi(Wix(t))] ≥ 0, (3.14)
2[ fi(Wix(t − τ(t))) − F−i Wix(t − τ(t))]β2i[F+i Wix(t − τ(t)) − fi(Wix(t − τ(t)))] ≥ 0, (3.15)
2[ fi(Wix(t)) − fi(Wix(t − τ(t))) − F−i (Wix(t) −Wix(t − τ(t)))]β3i[F+i (Wix(t) −Wix(t − τ(t)))
− fi(Wix(t)) + fi(Wix(t − τ(t)))] ≥ 0, (3.16)

2[gi(Wix(t − d(t))) −G−i Wix(t − d(t))]β4i[G+i Wix(t − d(t)) − gi(Wix(t − d(t)))] ≥ 0, (3.17)
2[hi(Wix(t)) − H−i Wix(t)]β5i[H+i Wix(t) − hi(Wix(t))] ≥ 0, (3.18)

which implies that

2ξT (t)ΓT
9 G1Γ10ξ(t) ≥ 0,

2ξT (t)ΓT
11G2Γ12ξ(t) ≥ 0,

2ξT (t)ΓT
13G3Γ14ξ(t) ≥ 0,

2ξT (t)ΓT
15G4Γ16ξ(t) ≥ 0,

2ξT (t)ΓT
17G5Γ18ξ(t) ≥ 0.
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Thus, we have

0 ≤ξT (t)
{

2ΓT
9 G1Γ10 + 2ΓT

11G2Γ12 + 2ΓT
13G3Γ14 + 2ΓT

15G4Γ16 + 2ΓT
17G5Γ18

}
ξ(t)

=ξT (t)Π5ξ(t), (3.19)

where G1 = diag{β11, ..., β1n}, G2 = diag{β21, ..., β2n}, G3 = diag{β31, ..., β3n}, G4 = diag{β41, ..., β4n} and
G5 = diag{β51, ..., β5n}.

Combining (3.4)–(3.19) with (2.3), we obtain

E{V̇(xt, t) − αV(xt, t)} − αωT (t)Sω(t) ≤ξT (t)
{
Π1 + Π2 + Π3 + Π4 + Π5

}
ξ(t)

− αωT (t)Sω(t) − eT (t)Ωe(t)

+ σxT (t − β(t))Ωx(t − β(t)) +AT R̂A

+ ρ̄(1 − ρ̄)BT R̂B

=ξT (t)Πξ(t) +AT R̂A + ρ̄(1 − ρ̄)BT R̂B. (3.20)

Applying the Schur complement [39], we can derive that (3.1) is equal to:

E{V̇(xt, t)−αV(xt, t)} − αωT (t)Sω(t) < 0. (3.21)

Then, multiplying (3.21) by e−αt, we can be written as

E

{
d
dt

(
e−αtV(xt, t)

) }
< αe−αtωT (t)Sω(t). (3.22)

Assumption (A2) and integrating (3.22) from 0 to t with t ∈ [0,T ], we obtain

E{V(xt, t)} < eαT
[
V(x0, 0) + α

∫ T

0
e−αuωT (u)Sω(u)du

]
< eαT

[
V(x0, 0) + dwλ13(1 − e−αT )

]
. (3.23)

Considering V(x0, 0), we can derive that

E{V(x0, 0)} =E
{

xT (0)Px(0) +
∫ 0

−τm

e−αuxT (u)Q1x(u) du +
∫ 0

−τM

e−αuxT (u)Q2x(u) du

+

∫ 0

−β̄

e−αuxT (u)Q3x(u) du +
∫ 0

−d̄
e−αuxT (u)Q4x(u) du

+ τm

∫ 0

−τm

∫ 0

u
e−αs ẋ(s)R1 ẋ(s) dsdu + τM

∫ 0

−τM

∫ 0

u
e−αs ẋ(s)R2 ẋ(s) dsdu

+ τMm

∫ −τm

−τM

∫ 0

u
e−αs ẋ(s)R3 ẋ(s) dsdu + β̄

∫ 0

−β̄

∫ 0

u
e−αs ẋ(s)R4 ẋ(s) dsdu

+ d̄
∫ 0

−d̄

∫ 0

u
e−αs ẋ(s)R5 ẋ(s) dsdu + η21

∫ −η1

−η2

∫ 0

u
e−αshT (Wx(t))Mh(Wx(t)) dsdu

}
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≤E

{
xT (0)Px(0) +

∫ 0

−τm

e−αuxT (u)Q1x(u) du +
∫ 0

−τM

e−αuxT (u)Q2x(u) du

+

∫ 0

−β̄

e−αuxT (u)Q3x(u) du +
∫ 0

−d̄
e−αuxT (u)Q4x(u) du

+ τm

∫ 0

−τm

∫ 0

u
e−αs ẋ(s)R1 ẋ(s) dsdu + τM

∫ 0

−τM

∫ 0

u
e−αs ẋ(s)R2 ẋ(s) dsdu

+ τMm

∫ −τm

−τM

∫ 0

u
e−αs ẋ(s)R3 ẋ(s) dsdu + β̄

∫ 0

−β̄

∫ 0

u
e−αs ẋ(s)R4 ẋ(s) dsdu

+ d̄
∫ 0

−d̄

∫ 0

u
e−αs ẋ(s)R5 ẋ(s) dsdu + η21

∫ −η1

−η2

∫ 0

u
e−αsxT (s)FwMFwx(s) dsdu

}
,

where Fw = diag
{
F+1 , F

+
2 , ..., F

+
n

}
W.

Setting P = X−
1
2 PX−

1
2 , Qi = X−

1
2 QiX−

1
2 , R j = X−

1
2 R jX−

1
2 , M = X−

1
2 FwMFwX−

1
2 , i = 1, 2, 3, 4, j =

1, 2, 3, 4, 5, we have

E{V(x0, 0)} ≤E
{

xT (0)X
1
2 PX

1
2 x(0) +

∫ 0

−τm

e−αuxT (u)X
1
2 Q1X

1
2 x(u) du

+

∫ 0

−τM

e−αuxT (u)X
1
2 Q2X

1
2 x(u) du +

∫ 0

−β̄

e−αuxT (u)X
1
2 Q3X

1
2 x(u) du

+

∫ 0

−d̄
e−αuxT (u)X

1
2 Q4X

1
2 x(u) du + τm

∫ 0

−τm

∫ 0

u
e−αs ẋ(s)X

1
2 R1X

1
2 ẋ(s) dsdu

+ τM

∫ 0

−τM

∫ 0

u
e−αs ẋ(s)X

1
2 R2X

1
2 ẋ(s) dsdu

+ τMm

∫ −τm

−τM

∫ 0

u
e−αs ẋ(s)X

1
2 R3X

1
2 ẋ(s) dsdu

+ β̄

∫ 0

−β̄

∫ 0

u
e−αs ẋ(s)X

1
2 R4X

1
2 ẋ(s) dsdu

+ d̄
∫ 0

−d̄

∫ 0

u
e−αs ẋ(s)X

1
2 R5X

1
2 ẋ(s) dsdu

+ η21

∫ −η1

−η2

∫ 0

u
e−αsxT (s)X

1
2 MX

1
2 x(s) dsdu

}
≤
{
λ2 + γ1λ3 + γ2λ4 + γ3λ5 + γ4λ6 + τmγ5λ7 + τMγ6λ8 + τMmγ7λ9 + β̄γ8λ10

+ d̄γ9λ11 + η21γ10λ12

}
c1

=Πλc1.

Furthermore, by referring Eq (3.3), we obtain the following:

E{V(xt, t)} ≥ E{xT (t)Px(t)} ≥ λmin(P)E{xT (t)Xx(t)} = λ1E{xT (t)Xx(t)}. (3.24)

AIMS Mathematics Volume 8, Issue 9, 22274–22300.



22289

Subsequently, by utilizing Eqs (3.23) to (3.24), we obtain the following:

E{xT (t)Xx(t)} ≤
eαT

λ1
[Πλc1 + dwλ13(1 − e−αT )].

Thus, if the relation in (3.2) holds true, then it implies that E{xT (t)Xx(t)} < c2,∀t ∈ [0,T ].
Consequently, it can be concluded that the delayed GNNs (2.6) with cyber-attacks are stochastically
finite-time bounded with respect to (c1, c2,T, X, dw). This completes the proof. □

Remark 3.1. The activation functions play a crucial role in determining the existence and uniqueness
of solutions in GNNs. Specifically, the activation functions in GNNs need to satisfy the Lipschitz
condition, which ensures that the functions possess certain properties that guarantee the existence and
uniqueness of solutions. The Lipschitz condition requires the functions to have a bounded derivative,
thereby controlling the rate of change of the functions. In this article, the activation function is
assumed to satisfy Assumptions (A1) and (A3). In this case, it is important to note that the activation
function does not necessarily need to be non-monotonic and differentiable. The constants F−i , F+i , H−i ,
H+i , G−i and G+i , where i = 1, 2, . . . , n, can take either positive, zero, or negative values. Assumptions
(A1) and (A3), as considered in Eqs (3.14)–(3.18) of this article, ensuring not only F−i ≤

fi(Wx(t))
Wx(t) ≤ F+i ,

F−i ≤
fi(Wx(t−τ(t)))

Wx(t−τ(t)) ≤ F+i , H−i ≤
hi(Wx(t))

Wx(t) ≤ H+i , H−i ≤
hi(Wx(t−τ(t)))

Wx(t−τ(t)) ≤ H+i , G−i ≤
gi(x(t))

x(t) ≤ G+i and
G−i ≤

gi(x(t−τ(t)))
x(t−τ(t)) ≤ G+i , but also F−i ≤

fi(Wx1)− fi(Wx2)
Wx1−Wx2

≤ F+i , H−i ≤
hi(Wx1)−hi(Wx2)

Wx1−Wx2
≤ H+i and

G−i ≤
gi(x1)−gi(x2)

x1−x2
≤ G+i . Therefore, this assumption is weaker and more general than the usual Lipschitz

condition. In conclusion, the activation functions in GNNs play a critical role in ensuring the
existence and uniqueness of solutions. While the assumption considered in this article relaxes the
requirement for non-monotonicity and differentiability, it provides a more general condition that still
guarantees the desired properties.

Based on the results of Theorem 3.1, we can now propose a controller design approach for the
delayed GNNs (2.6) as follows.
Assumption (A5) To handle the nonlinear terms in Theorem 3.1, we adopt a similar assumption to [38],

B is assumed to be full column rank, and the singular decomposition for B as B = L1

[
Bu0

0

]
L2, where

Bu0 is the first u0 columns of B, L1 and L2 are appropriate matrices with compatible dimensions.

Theorem 3.2. Assume that Assumptions (A1)–(A5) are satisfied. Then, for the given scalars
β̄, d̄, ρ̄, σ, dw, τm, τM, η1, η2,T, c1, c2 and α, the delayed GNNs with cyber attacks (2.6) under the state
feedback controller is stochastic finite-time bounded regarding (c1, c2,T, X, dw), if there exist
symmetric positive definite matrices P, Qi,R j(i = 1, 2, 3, 4, j = 1, 2, 3, 4, 5), M, S , and positive
diagonal matrices G1,G2,G3,G4,G5, such that the conditions hold as follows:

Πu ∗ ∗

Γau −Λu ∗

Γbu 0 −Λu

 < 0, (3.25)

eαT
[
Πλc1 + dwλ13(1 − e−αT )

]
< λ1c2, (3.26)
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where

Πu =Π1 +

6∑
i=2

Πi,

Π1 =2eT
1 PĀe1 + 2eT

1 ρ̄BuY[e5 + e18] + 2(1 − ρ̄)eT
1 BuYe11 + 2eT

1 PB0e9

+ 2eT
1 PB1e10 + 2eT

1 PB2e17 + 2eT
1 PBwe19 − αeT

1 Pe1,

Λu =diag{−2κ1P + κ21R1,−2κ2P + κ22R2,−2κ3P + κ23R3,−2κ4P + κ24R4,−2κ5P + κ25R5},

Γau =
[
τmΓ

T
a1 τMΓ

T
a1 τMmΓ

T
a1 β̄Γ

T
a1 d̄Γ

T
a1

]T
,

Γbu =
[
τmΓ

T
b1 τMΓ

T
b1 τMmΓ

T
b1 β̄Γ

T
b1 d̄Γ

T
b1

]T
,

Γa1 =
[
Γa11 Γa12

]
,

Γa11 =
[
PA 01×3 ρ̄BuY 01×3 PB0 PB1

]
,

Γa12 =
[
(1 − ρ̄)BuY 01×5 PB2 ρ̄BuY PBw

]
,

Γb1 =
[
01×4 δBuY 01×5 δBuY 01×6 BuY 0

]
, δ =

√
ρ̄(1 − ρ̄),

where P = L1diag{P1, P2}LT
1 , P1 ∈ R

m×m, P2 ∈ R
(n−m)×(n−m). The other matrices are given in

Theorem 3.1. The gain of the controller can be determined as follows:

K = P−1
k Y, Pk = (Bu0 L2)−1P1Bu0 L2, (3.27)

in which Bu0 and L2 are defined in Assumption (A5).

Proof. Let P and Bu be defined as follows based on Assumption (A5):

P = L1

[
P1 0
0 P2

]
LT

1 and Bu = L1

[
Bu0

0

]
L2.

By applying Lemma 2.5, we can find a new variable Pk that satisfies PBu = BuPk, from

L1

[
P1 0
0 P2

]
LT

1 L1

[
Bu0

0

]
L2 = L1

[
Bu0

0

]
L2Pk,

we get
Pk = (Bu0 L2)−1P1Bu0 L2.

From PBu = BuPk, then we substitute PBuK = BuPkK and define Y = PkK , it follows from (3.1) that
Πu ∗ ∗

Γau −Λ ∗

Γbu 0 −Λ

 < 0. (3.28)

In terms of the following inequality:

(R j − κ
−1
j P)R−1

j (R j − κ
−1
j P) ≥ 0, ( j = 1, 2, 3, 4, 5).
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One has that

−PR−1
j P ≤ −2κ jP + κ2jR j.

By replacing −PR−1
j P with −2κ jP + κ2jR j in (3.28), it becomes evident that (3.25) is obtained. Thus,

the proof is complete. □

The delayed GNNs (2.6) take on the following forms under the decentralized event-triggered
scheme without cyber-attacks:

ẋ(t) =Āx(t) + BuK[x(t − β(t)) + e(t)] + B0 f (Wx(t)) + B1 f (Wx(t − τ(t)))

+ B2

∫ t−η1(t)

t−η2(t)
h(Wx(s))ds + Bwω(t), ∀t ∈ [tkh + βtk , tk+1h + βtk+1]. (3.29)

Following the same approach as the proof for Theorem 3.2, we can derive the following corollary.
Furthermore, we also define the vectors as follows:

ξ(t) =
[
xT (t), xT (t − τm), xT (t − τ(t)), xT (t − τM), xT (t − β(t)), xT (t − β̄), f T (Wx(t)),

f T (Wx(t − τ(t))), hT (Wx(t)),
1
τm

∫ t

t−τm
xT (u)du,

1
τM

∫ t

t−τM

xT (u)du,
1

τ(t) − τm

∫ t−τm

t−τ(t)
xT (u)du,

1
τM − τ(t)

∫ t−τ(t)

t−τM

xT (u)du,
∫ t−η1(t)

t−η2(t)
hT (Wx(u))du, eT (t), ωT (t)

]T

,

ei =
[
0n×(i−1)n In 0n×(16−i)n

]
, i = 1, 2, ..., 16.

Corollary 3.3. Assume that Assumptions (A1), (A2), (A4) and (A5) are satisfied. Then, for the given
scalars β̄, ρ̄, σ, dw, τm, τM, η1, η2,T, c1, c2 and α, the delayed GNNs without cyber attacks (3.29) under
the state feedback controller are stochastic finite-time bounded regarding (c1, c2,T, X, dw), if there exist
symmetric positive definite matrices P, Qi,R j(i = 1, 2, 3, j = 1, 2, 3, 4), M, S , and positive diagonal
matrices G1,G2,G3,G5, such that the conditions hold as follows:Π̂u ∗

Γ̂au −Λ̂u

 < 0, (3.30)

eαT
[
Π̂λc1 + dwλ13(1 − e−αT )

]
< λ1c2, (3.31)

where

Π̂u =

6∑
i=1

Π̂ui,

Π̂u1 =2eT
1 PĀe1 + 2eT

1 BuY[e5 + e15] + 2eT
1 PB0e7 + 2eT

1 PB1e8 + 2eT
1 PB2e14 + 2eT

1 PBwe16 − αeT
1 Pe1,

Π̂u2 =eT
1 (Q1 + Q2 + Q3)e1 − eατmeT

2 Q1e2 − eατM eT
4 Q2e4 − eαβ̄eT

6 Q3e6,
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Π̂u3 = −
τm

θ1a
ΓT

1 R1Γ1 −
τm

θ1b
Γ̂T

2 R1Γ̂2 −
τM

θ2a
ΓT

3 R2Γ3 −
τM

θ2b
Γ̂T

4 R2Γ̂4 −
τMm

θ3a
ΓT

5 R3Γ5 −
τMm

θ3b
Γ̂T

6 R3Γ̂6

−
τMm

θ4a
ΓT

7 R3Γ7 −
τMm

θ4b
Γ̂T

8 R3Γ̂8 + eαβ̄
[
− eT

1 R4e1 + 2eT
1 (R4 − L1)e5 + 2eT

1 L1e6

+ eT
5 (−2R4 + L1 + LT

1 )e5 + 2eT
5 (R4 − L1)e6 + eT

6 R4e6

]
,

Π̂u4 =η
2
21eT

9 Me9 − eαη2eT
14Me14,

Π̂u5 =2Γ̂T
9 G1Γ̂10 + Γ̂

T
11G2Γ̂12 + Γ̂

T
13G3Γ̂14 + Γ̂

T
17G5Γ̂18,

Π̂u6 = − αeT
16S e16 − eT

15Ωe15 + σeT
5Ωe5,

Π̂λ =λ2 + γ1λ3 + γ2λ4 + γ3λ5 + τmγ5λ7 + τMγ6λ8 + τMmγ7λ9 + β̄γ8λ10 + η21γ10λ12,

Λ̂u =diag{−2κ1P + κ21R1,−2κ2P + κ22R2,−2κ3P + κ23R3,−2κ4P + κ24R4},

Γ̂au =
[
τmΓ̂

T
a1 τMΓ̂

T
a1 τMmΓ̂

T
a1 β̄Γ̂

T
a1

]T
, Γ̂a1 =

[
Γ̂a11 Γ̂a12

]
,

Γ̂a11 =
[
PA 01×3 BuY 01×3 PB0 PB1

]
, Γ̂a12 =

[
01×3 PB2 BuY PBw

]
,

Γ̂2 =[ϵ11eT
2 + ϵ12eT

1 − τmeT
10]T , Γ̂4 = [ϵ21eT

4 + ϵ22eT
1 − τMeT

11]T ,

Γ̂6 =[ϵ31eT
3 + ϵ32eT

2 − τMmeT
12]T , Γ̂8 = [ϵ41eT

4 + ϵ42eT
3 − τMmeT

13]T ,

Γ̂9 =[eT
7 − eT

1 WT FT
M]T , Γ̂10 = [FPWe1 − e7], Γ̂11 = [eT

8 − eT
3 WT FT

M]T ,

Γ̂12 =[FPWe3 − e8], Γ̂13 = [eT
7 − eT

8 − eT
1 WT FT

M + eT
3 WT FT

M]T ,

Γ̂14 =[FPWe1 − FPWe3 − e7 + e8], Γ̂17 = [eT
9 − eT

1 WT HT
M]T , Γ̂18 = [HPWe1 − e9],

where P = L1diag{P1, P2}LT
1 , P1 ∈ R

m×m, P2 ∈ R
(n−m)×(n−m). The other matrices are given in

Theorem 3.1. The gain of the controller can be determined as follows:

K = P−1
k Y, Pk = (Bu0 L2)−1P1Bu0 L2, (3.32)

in which Bu0 and L2 are defined in Assumption (A5).

Remark 3.2. The problem of NNs with a time-varying delay and cyber-attacks under the
event-triggered framework using H∞ control was investigated by Zha et al. in [22]. In [30], Liu et al.
presented a state estimation method for T-S fuzzy neural networks under stochastic cyber-attacks and
an event-triggered scheme. However, previous works mainly focused on the asymptotic stability of
NNs and did not address finite-time stability for GNNs. Asymptotic stability refers to the long-term
behavior of a system, whereas finite-time stability is concerned with short-term behavior. Thus, this
article aims to tackle the finite-time bounded problem of GNNs with decentralized event-triggered
communication and cyber-attacks. The proposed decentralized event-triggered scheme enhances
system effectiveness and minimizes network transmissions, resulting in a more efficient and secure
system.

4. Numerical examples

A simulation example is presented in this section to showcase the effectiveness and superiority of
the theoretical method on the finite-time decentralized event-triggered feedback control problem. The
parameters of the system (2.1) are given as follows:
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Ā =


−0.5 0 0

0 −0.1 0
0 0 −0.1

, B0 =


0.2 0.2 0.3
−0.2 0.3 0.1
−0.3 −0.15 −0.2

, B1 =


0.1 0.2 0
−0.1 0.2 0.1
−0.2 0 −0.3

,
B2 =


0.15 0.3 0.15
−0.15 0.25 0.15
−0.3 0.1 −0.2

, Bw =


0.5 0 0
0 0.5 0
0 0 0.5

, Bu =


0.1 0 0
0 0.2 0
0 0 0.1

,
W = diag{1, 1, 1}, Fm = diag{0, 0, 0}, FP = diag{0.03, 0.06, 0.03}, Gm = Fm,

Gp = diag{0.03, 0.06, 0.03}, Hm = Fm, Hp = diag{0.04, 0.04, 0.04},

f (x) =


tanh(0.03x1(t))
tanh(0.06x2(t))
tanh(0.03x3(t))

 and h(x) =


tanh(0.04x1(t))
tanh(0.04x2(t))
tanh(0.04x3(t))

 .

The function of cyber-attacks is given by g(x) =


tanh(0.03x1(t))
tanh(0.06x2(t))
tanh(0.03x3(t))

 . Furthermore, the selected initial

condition for generating the simulation results is given by x(0) =
[
−1.1 −0.5 0.8

]T
.

Two cases will be analyzed for delayed GNNs. The first case considers both the event-triggered
scheme and the cyber-attacks in delayed GNNs (2.6). The second case, on the other hand, looks at the
event-triggered scheme used in delayed GNNs without cyber-attacks (3.29).

Case I: In this case, we investigate the effects of both the event-triggered method and cyber-attacks on
delayed GNNs (2.6). Assuming that the following parameter values are used: c1 = 2.1,T = 50, α =
0.3, dw = 0.5, β̄ = 0.5, d̄ = 0.5, ρ̄ = 0.1, σ = 0.1, κi = 1 (for i = 1, 2, 3, ..., 5), τm = 0.25, τM = 0.9,
τ(t) = 0.7| sin(t)| + 0.25, η1 = 0.1, η2 = 0.7, η1(t) = 0.4 + 0.3 sin(t), η2(t) = 0.5 + 0.2 sin(t), and an
external disturbance given by 0.5e−0.5t sin(t). We solve the LMIs in Theorem 3.2 to obtain a feasible
solution that guarantees finite-time boundedness with respect to (c1, c2,T, X, dw).

Applying (3.25), (3.26) and (3.27), we derive the corresponding minimum allowable lower bounds
(MALBs) of c2 = 5.1788 and control gain as follows:

K =


−0.0235 −0.0116 0.0236
−0.0092 −0.9716 −0.0048
0.0142 −0.0007 −0.2283

 .

We show the effectiveness of our results in Case I. Figure 2 illustrates the state responses of x(t) for
the delayed GNNs (2.6) without u(t). The responses of the state variable x(t) and the time history of
xT (t)Xx(t) in Case I of the delayed GNNs with cyber-attacks (2.6) are depicted in Figures 3 and 4,
respectively. Furthermore, the computed MALBs of c2 for different c1 are presented in Table 2. From
the table, we can see that the MALBs of c2 from our results increase as c1 increases. Based on the
simulation results presented above, it has been determined that the event-triggered state feedback
control scheme for delayed GNNs (2.6) is stochastically finite-time bounded within a specified time
interval. This conclusion remains valid even in the presence of cyber-attacks and gains fluctuations.
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Figure 2. State responses of x(t) for the GNNs (2.6) without u(t).
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Figure 3. State responses of x(t) for the GNNs with cyber-attacks (2.6) in Case I.
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Figure 4. Time history of xT (t)Xx(t) for the GNNs with cyber-attacks (2.6) in Case I.
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Table 2. MALBs of c2 for different c1.

c1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1
c2 3.1058 3.3361 3.5674 3.7970 4.0288 4.2617 4.4885 4.7190 4.9508 5.1788

Case II: This case focuses on delayed GNNs (3.29) under the event-triggered scheme without
considering cyber-attacks. Assuming that the following parameter values are used:
c1 = 2.1,T = 50, α = 0.3, dw = 0.5, β̄ = 0.5, d̄ = 0.5, ρ̄ = 0.1, σ = 0.1, κi = 1 (for i = 1, 2, 3, ..., 5),
τm = 0.25, τM = 0.9, τ(t) = 0.7| sin(t)| + 0.25, η1 = 0.1, η2 = 0.7, η1(t) = 0.4 + 0.3 sin(t),
η2(t) = 0.5 + 0.2 sin(t), and an external disturbance given by 0.5e−0.5t sin(t). We solve the LMIs in
Corollary 3.3 to obtain a feasible solution that guarantees finite-time boundedness with respect to
(c1, c2,T, X, dw).

Applying (3.30), (3.31) and (3.32), we derive the corresponding MALBs of c2 = 3.2378 and control
gain as follows

K =


−0.2941 −0.1437 −0.0008
0.1203 −1.4131 −0.2661
0.1263 −0.0001 −1.2606

 .

We present the effectiveness of our findings in Case II. The response of the state variable x(t) and the
time history of xT (t)Xx(t) in Case II of the delayed GNNs without cyber-attacks (3.29) are illustrated
in Figures 5 and 6, respectively. Additionally, we provide the computed MALBs of c2 for different
c1 in Table 3. The table reveals that as c1 increases, the MALB of c2 also increases according to our
findings. The simulation results above confirm that the event-triggered state feedback control scheme
for delayed GNNs without cyber-attacks (3.29) is stochastically finite-time bounded within a specified
time interval.
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Figure 5. State responses of x(t) for the GNNs without cyber-attacks (3.29) in Case II.
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Figure 6. Time history of xT (t)Xx(t) for the GNNs without cyber-attacks (3.29) in Case II.

Table 3. MALBs of c2 for different c1.

c1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1
c2 1.9536 2.0963 2.2390 2.3817 2.5344 2.6670 2.8097 2.9524 3.0951 3.2378

Remark 4.1. Figure 5 illustrates the state responses of the GNNs, represented by the variable x(t), in
the absence of cyber-attacks. The graph displays three distinct curves, each corresponding to a
specific experimental condition. The first curve represents the state response of the GNNs under
normal operating conditions. The second curve represents the state response of the GNNs when
subjected to external disturbances. The third curve demonstrates the state response of the GNNs when
variations are introduced into the system. By examining these three curves, we can gain a
comprehensive understanding of the GNNs’ behavior under different experimental conditions without
the presence of cyber-attacks.

5. Conclusions

This article proposes the decentralized event-triggered method and feedback controller to ensure
the finite-time boundedness of GNNs with mixed interval time-varying delays and stochastic
cyber-attacks. By the Lyapunov-Krasovskii stability theory, we apply the integral inequality with the
exponential function to estimate the derivative of the LKFs. We also present new sufficient conditions
in the form of linear matrix inequalities. The event-triggered approach reduces the network’s resource
utilization and transmission burden, while the random cyber-attacks are described applying Bernoulli
distributed variables. A numerical example is provided to demonstrate the effectiveness and
advantages of the proposed control scheme. Additionally, this research can be expanded in the future
to include various dynamic systems, such as uncertain NNs [40], complex networks [41], neutral
high-order Hopfield NNs [42], neutral-type NNs [43], quaternion-valued neural networks [44],
spiking NNs [45], memristive NNs [46], stochastic memristive NNs [47] and synchronization of
Lur’e Systems [48]. By focusing on these research directions, the proposed method can be further
enhanced to achieve improved performance such as passivity [8], dissipativity [9], H∞ [5, 22, 25, 26],
and extended dissipative performances [12, 15, 16], even in the presence of cyber-attacks. These
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advancements will greatly contribute to the development of more robust and high-performing control
systems specifically designed for networked applications.
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