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1. Introduction

The surface concept has been researched by many mathematicians, philosophers and scientists
for thousands of years over the course of history. In the process, the theory of surfaces has been
greatly consolidated through the development of differential geometry. As well as Gauss, Riemann
and Poincaré being the pioneers in this research area, Monge also made some significant contributions
to the study of surfaces. Based on Monge’s approach, surfaces are represented as graphs of functions
of two variables. This approach has deeply influenced the progress of the theory of surfaces and
their application areas in the 19th and 20th centuries and is still popular. Guggenheimer (1963)
and Hoschek (1971) examined the ruled surfaces from different perspectives with some significant
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contributions to differential geometry. A ruled surface is a surface that can be generated by moving a
straight line along a curve in space [1,2]. Ruled surfaces are preferred to study since they have relatively
simple structures and allow us to interpret more complex surfaces. The classification of ruled surfaces,
properties related to the base curve, geodesics, shape operators of surfaces and the study of developable
and non-developable ruled surfaces are among the major areas of research on ruled surfaces. The
survey of ruled surfaces in Minkowski space shows similar characteristics in Euclidean space, but there
are exciting differences due to the structure of Minkowski space. Since the characterization of ruled
surfaces depends on the base curve and the direction, the geometry of ruled surfaces in Minkowski
space is more complex than that in Euclidean space. As it is known, the ruled surfaces can be classified
as developable and non-developable ones. The developable ruled surfaces are ruled surfaces whose
tangent planes are the same along the main lines. A classic result in differential geometry states that
the elements of developable ruled surfaces can be expressed as cylinders, cones and tangent surfaces.
This is valid for both Euclidean and Minkowski spaces. Naturally, degenerate tangent planes are
excluded from this rule. Generally, the first fundamental form must be non-degenerate for a surface in
Minkowski space. A spacelike surface is obtained if the first fundamental form is positively defined. If
the first fundamental form is indefinite, a timelike surface is constructed. The surfaces that fit into the
curvature situations where the Gaussian curvature and the mean curvature are constant, or one of them
is constant, have been studied in different studies [3–6]. Rich data on ruled surfaces can be found in
detail in [7–15]. Recently, Li et al. investigated partner-ruled surfaces formed from polynomial curves
with the Flc frame [16], and Soukaina also studied the developability of partner-ruled surfaces using
the Darboux frame simultaneously [17].

In this study, partner-ruled surfaces generated by the vectors of the Frenet frame of non-null space
curves in Minkowski 3-space are introduced. Then, conditions are simultaneously provided for each
partner-ruled surface to be developable or minimal (or maximal for spacelike surfaces), depending on
the curvatures of the base curve. These conditions are also associated with the characterizations of
parametric curves such as asymptotic, geodesic or curvature lines. At the end of the study, examples
related to partner-ruled surfaces are provided, and the graphics of the surfaces are presented using the
MATLAB R2023a program.

2. Preliminaries

The Minkowski 3-space R3
1 is given by the Lorentzian inner product

〈x, y〉 = −x1y1 + x2y2 + x3y3,

where x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3. The norm of arbitrary vector x ∈ R3
1 is ‖x‖ =

√
|〈x, x〉|.

Also, the vector product of any vectors x = (x1, x2, x3) and y = (y1, y2, y3) in R3
1 is defined by

x × y = −

∣∣∣∣∣∣∣∣∣
e1 e2 −e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣ = (x3y2 − x2y3, x1y3 − x3y1, x1y2 − x2y1) ,

where e1 × e2 = e3, e2 × e3 = −e1, e3 × e1 = −e2. The character of an arbitrary vector x ∈ R3
1 is

defined as follows:
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(i) if 〈x, x〉 > 0 or x = 0 then x is a spacelike vector,
(ii) if 〈x, x〉 < 0, then x is a timelike vector,

(iii) if 〈x, x〉 = 0, x , 0, then x is a lightlike (or null) vector.

Let α : I → R be a regular unit speed non-null curve parametrized by arc-length s in Minkowski 3-
space. If the vectors T , N and B denote the tangent, principal normal and binormal unit vectors at any
point α(s) of the non-null curve α, respectively. Then the Frenet formulas are given

T
N
B


s

=


0 κ 0

−ε1ε2κ 0 τ

0 −ε2ε3τ 0




T
N
B

 , (2.1)

where 〈T,T 〉 = ε1, 〈N,N〉 = ε2 and 〈B, B〉 = ε3. Also, N × T = ε3B, B × N = ε1T , T × B = ε2N
and ε1ε2ε3 = −1. Here κ (s) and τ (s) are the curvature and the torsion of the curve α, respectively, s
is the arc-length of the non-null curve [18, 19]. Let {T,N, B} be the moving frame of α satisfying the
following conditions:

(i) ε1 = −1, ε2 = 1, ε3 = 1 for the timelike curve,
(ii) ε1 = 1, ε2 = −1, ε3 = 1 for the spacelike curve with timelike normal,

(iii) ε1 = 1, ε2 = 1, ε3 = −1 for the spacelike curve with timelike binormal.

In Minkowski 3-space R3
1, a ruled surface M is a regular surface that is parameterized as:

ϕ : I × R→ R3
1

(s, v)→ ϕ (s, v) = α (s) + vr (s) ,

where α (s) and r (s) are known as base and director curves of a ruled surface, respectively. By
restricting ourselves to the non-null cases, classification of the character of a ruled surface ϕ (s, v)
can be formed according to whether the base curve α and the director curve r are timelike or spacelike
curves [8, 9];

(i) if the curve α is timelike and the curve r is spacelike, the ruled surface ϕ (s, v) indicates a timelike
surface,

(ii) if the curve α is spacelike and the curve r is spacelike, the ruled surface ϕ (s, v) indicates a
spacelike surface,

(iii) if the curve α is spacelike and the curve r is timelike, the ruled surface ϕ (s, v) indicates a timelike
surface.

Let ϕ (s, v) be a ruled surface in R3
1, then the various quantities associated with the ruled surface are

given as follows:

(i) The unit normal vector field: U =
ϕs×ϕv
‖ϕs×ϕv‖

, where ϕs =
∂ϕ

∂s and ϕv =
∂ϕ

∂v .
(ii) First fundamental form: I = Eds2 + 2Fdsdv + Gdv2, where the coefficients of I are

E = 〈ϕs, ϕs〉 , F = 〈ϕs, ϕv〉 , G = 〈ϕv, ϕv〉 . (2.2)

(iii) Second fundamental form: II = eds2 + 2 f dsdv + gdv2, where the coefficients of II are

e = 〈ϕss,U〉 , f = 〈ϕsv,U〉 , g = 〈ϕvv,U〉 . (2.3)
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Moreover, the Gaussian curvature and the mean curvature of the surface ϕ (s, v) are defined by

K = ε
eg − f 2

EG − F2 and H = ε
Eg − 2E f + Ge

2
(
EG − F2) , (2.4)

respectively, and ε = 1 (= −1) for timelike (spacelike) surfaces. Also, the surfaces with vanishing
Gaussian curvature are called developable and any surfaces with vanishing mean curvature are called
minimal (or maximal for spacelike surfaces) [8, 9, 19].

3. Simultaneous characterizations of partner-ruled surfaces

Two ruling lines generate the partner-ruled surfaces if they simultaneously move along their
respective curves. On the other hand, it is a usual approach to examine the Frenet vectors and their
relationships in the field of differential geometry since the Frenet vectors provide a framework for
deep insight into the geometry of curves. In these regards, by considering the tangent, principal
normal and binormal vectors of the Frenet frame along a differentiable unit speed non-null space curve
parametrized by arc-length as ruling lines of partner-ruled surfaces, we study the following surfaces
couples in Minkowski 3-space. These surfaces can be classified according to the causal characters of
the non-null base curve, as shown in Table 1.

Table 1. Surface classification based on causal features of non zero basis curve.

Base curve α T N-partner-ruled
surface

T B-partner-ruled
surface

NB-partner-ruled
surface

Timelike Timelike Timelike Spacelike
Spacelike with timelike normal Timelike Spacelike Timelike
Spacelike with timelike binormal Spacelike Timelike Timelike

Definition 3.1. Let α : I → R be a differentiable unit speed non-null space curve parametrized by
arc-length s in R3

1 with Frenet elements {T,N, B, κ, τ} such that τ (s) , ∓κ (s) and τ (s) , ∓vκ (s) for all
s ∈ I. The two ruled surfaces represented by{

ϕT
N (s, v) = T (s) + vN (s) ,
ϕN

T (s, v) = N (s) + vT (s),
(3.1)

are called T N-partner-ruled surfaces with respect to the Frenet frame of the space curve in R3
1.

Theorem 3.1. Let ϕT
N and ϕN

T be a pair of the T N-partner-ruled surfaces in R3
1, then the T N-partner-

ruled surfaces are simultaneously developable and minimal (maximal) surfaces if and only if the curve
α is a non-null planar curve.

Proof. By differentiating the first equation in equation set Eq (3.1) in terms of s and v, respectively and
applying the Frenet formulas given by Eq (2.1), we obtain(

ϕT
N

)
s

= ε3vκT + κN + vτB,
(
ϕT

N

)
v

= N. (3.2)
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By the cross product of the vectors
(
ϕT

N

)
s

and
(
ϕT

N

)
v

described in Eq (3.2), we determine the normal
vector field of the surface ϕT

N as follows:

UT
N =

(
ϕT

N

)
s
×

(
ϕT

N

)
v∥∥∥∥(ϕT

N

)
s
×

(
ϕT

N

)
v

∥∥∥∥ =
ε1τT − κB√∣∣∣ε1τ2 + ε3κ2

∣∣∣ . (3.3)

Here the condition τ , ∓κ guarantees ε1τ
2 + ε3κ

2 , 0. By taking the scalar product of both vectors in
Eq (3.2) using Eq (2.2), we derive the components of the first fundamental form of the ruled surface
ϕT

N as follows:
ET

N = ε2κ
2 + v2

(
ε1κ

2 + ε2τ
2
)
, FT

N = ε2κ, GT
N = ε2. (3.4)

By differentiating Eq (3.2) in terms of s and v, we get(
ϕT

N

)
ss

= ε3

(
κ2 + vκ′

)
T +

(
ε3vκ2 + ε1vτ2 + κ′

)
N +

(
κτ + vτ′

)
B,(

ϕT
N

)
sv

= ε3κT + τB,
(
ϕT

N

)
vv

= 0.

By taking the scalar product of the last equation derived in the previous step with the normal vector
field given in Eq (3.3) using Eq (2.3), we can determine the components of the second fundamental
form of the ruled surface ϕT

N as follows:

eT
N =

vε3 (τκ′ − κτ′)√∣∣∣ε1τ2 + ε3κ2
∣∣∣ , f T

N = 0, gT
N = 0. (3.5)

The Gaussian curvature and the mean curvature of the ruled surface are found by substituting Eqs (3.4)
and (3.5) into Eq (2.4) and evaluating the resulting expression. These give us the following expressions
for the Gaussian curvature and the mean curvature of the ruled surface ϕT

N:

KT
N = 0, HT

N = ε
ε3 (κτ′ − τκ′)

2v
(
ε1κ2 + ε3τ2) √∣∣∣ε1τ2 + ε3κ2

∣∣∣ . (3.6)

�

On the other hand, by differentiating the second equation in equation set Eq (3.1) with respect to s
and v, respectively, and applying the Frenet frame derivative formulas, we get(

ϕN
T

)
s

= ε3κT + vκN + τB,
(
ϕN

T

)
v

= T. (3.7)

By determining the cross-product of the partial derivatives of the surface described in Eq (3.7), we
determine the normal vector field of the surface ϕN

T as follows:

UN
T =

(
ϕN

T

)
s
×

(
ϕN

T

)
v∥∥∥∥(ϕN

T

)
s
×

(
ϕN

T

)
v

∥∥∥∥ =
−ε2τN + vε3κB√∣∣∣ε2τ2 + ε3v2κ2

∣∣∣ . (3.8)
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Here the condition τ , ∓vκ requires ε2τ
2 + ε3v2κ2 , 0. By applying the scalar product for both vectors

in Eq (3.8), we have the components of the first fundamental form of the ruled surface ϕN
T as follows:

EN
T =

(
v2ε2 + ε1

)
κ2 + ε3τ

2, FN
T = −ε2κ, GN

T = ε1. (3.9)

By differentiating Eq (3.7) with respect to s and v, we have(
ϕN

T

)
ss

= ε3

(
vκ2 + κ′

)
T +

(
ε3κ

2 + ε1τ
2 + vκ′

)
N +

(
vκτ + τ′

)
B,(

ϕN
T

)
sv

= κN,
(
ϕN

T

)
vv

= 0.

We find the components of the second fundamental form of the ruled surface ϕN
T by taking the scalar

product of the last equation obtained in the previous step with the normal vector field given in Eq (3.8).
This yields the following expression for the components of the second fundamental form:

eN
T =
−τ

(
ε3κ

2 + ε1τ
2 + vκ′

)
+ vκ (vκτ + τ′)√∣∣∣ε2τ2 + ε3v2κ2

∣∣∣ , f N
T =

−κτ√∣∣∣ε2τ2 + ε3v2κ2
∣∣∣ , gN

T = 0. (3.10)

Thus, by substituting Eqs (3.9) and (3.10) into Eq (2.4), the Gaussian curvature KN
T and the mean

curvature HN
T of the ruled surface ϕN

T are given by

KN
T = ε

κ2τ2(
ε2τ2 + ε3v2κ2) ∣∣∣ε2τ2 + ε3v2κ2

∣∣∣ ,

HN
T = ε

2ε2κ
2τ − τ3 − ε1

((
−v2 + ε3

)
κ2τ + vτκ′ − vκτ′

)
2
(
ε2τ2 + ε3v2κ2) √∣∣∣ε2τ2 + ε3v2κ2

∣∣∣ .

(3.11)

Therefore, based on Eqs (3.6) and (3.11), we can conclude that the T N-partner-ruled surfaces satisfy
the conditions stated in the hypothesis and they are simultaneously developable and minimal (maximal)
surfaces.

Theorem 3.2. Let ϕT
N and ϕN

T be a pair of the T N-partner-ruled surfaces in R3
1, then the s-parameter

curves of the T N-partner-ruled surfaces are simultaneously

(i) not geodesics,
(ii) asymptotics if τ = 0 and κ , 0.

Proof. Let ϕT
N and ϕN

T be a pair of the T N-partner-ruled surfaces in R3
1.

(i) The cross products of second partial derivatives of ϕT
N and ϕN

T with the normal vector fields of the
T N-partner-ruled surfaces are found as:

(
ϕT

N

)
ss
× UT

N =

κ
(
v
(
−ε2κ

2 + τ2
)

+ ε1κ
′
)

√∣∣∣ε1τ2 + ε3κ2
∣∣∣ T +

ε3 (κ (κ + τ) + v (κ′ + τ′))√∣∣∣ε1τ2 + ε3κ2
∣∣∣ N +

τ
(
v
(
ε1κ

2 + ε3τ
2
)
− ε2κ

′
)

√∣∣∣ε1τ2 + ε3κ2
∣∣∣ B
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and

(
ϕN

T

)
ss
× UN

T =

vε2κ
(
ε3κ

2 + ε1τ
2 + vκ′

)
+ ε3τ (vκτ + τ′)√∣∣∣ε2τ2 + ε3v2κ2

∣∣∣ T +
ε2vκ

(
vκ2 + κ′

)
√∣∣∣ε2τ2 + ε3v2κ2

∣∣∣N +
ε2τ

(
vκ2 + κ′

)
√∣∣∣ε2τ2 + ε3v2κ2

∣∣∣B
 .

Since
(
ϕT

N

)
ss
×UT

N , 0 and
(
ϕN

T

)
ss
×UN

T , 0, s-parameter curves of the T N-partner-ruled surfaces
simultaneously are not geodesic.

(ii) The scalar products of second partial derivatives of ϕT
N and ϕN

T with the normal vector fields of the
T N-partner-ruled surfaces are given by〈(

ϕT
N

)
ss
,UT

N

〉
=
ε3v (τκ′ − κτ′)√∣∣∣ε1τ2 + ε3κ2

∣∣∣
and 〈(

ϕN
T

)
ss
,UN

T

〉
=
−τ

(
ε3κ

2 + ε1τ
2 + vκ′

)
+ vκ (vκτ + τ′)√∣∣∣ε2τ2 + ε3v2κ2

∣∣∣ .

From here, if τ = 0 and κ , 0, then
〈(
ϕT

N

)
ss
,UT

N

〉
= 0 and

〈(
ϕN

T

)
ss
,UN

T

〉
= 0. So, we can say that

s-parameter curves of the T N-partner-ruled surfaces are simultaneously asymptotic if τ = 0 and
κ , 0.

�

Theorem 3.3. Let ϕT
N and ϕN

T be a pair of the T N-partner-ruled surfaces in R3
1, then the v-parameter

curves of the T N-partner-ruled surfaces are simultaneously

(i) geodesics,
(ii) asymptotic curves.

Proof. Let ϕT
N and ϕN

T be a pair of the T N-partner-ruled surfaces in R3
1.

(i) Since
(
ϕT

N

)
vv
× UT

N = 0 and
(
ϕN

T

)
vv
× UN

T = 0, the v-parameter curves of the T N-partner-ruled
surfaces simultaneously are geodesics.

(ii) Since
〈(
ϕT

N

)
vv
,UT

N

〉
= 0 and

〈(
ϕN

T

)
vv
,UN

T

〉
= 0, the v-parameter curves of the T N-partner-ruled

surfaces simultaneously asymptotic curves.

�

Theorem 3.4. Let ϕT
N and ϕN

T be a pair of the T N-partner-ruled surfaces in R3
1, then the s and v-

parameter curves of the T N-partner-ruled surfaces are simultaneously lines of curvature if and only if
κ = 0 and τ , 0.

Proof. Let ϕT
N and ϕN

T be a pair of the T N-partner-ruled surfaces in R3
1, From Eqs (3.4), (3.5), (3.9)

and (3.10), we have
FT

N = f T
N = FN

T = f N
T = 0,

for κ = 0 and τ , 0, thus, the proof is completed. �
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Definition 3.2. Let α : I → R be a differentiable unit speed non-null space curve parametrized by
arc-length s in R3

1 with Frenet elements {T,N, B, κ, τ} such that κ (s) , −ε1vτ (s) and τ (s) , −ε1v for
all s ∈ I. The two ruled surfaces represented by

ϕT
B (s, v) = T (s) + vB (s) ,
ϕB

T (s, v) = B (s) + vT (s)
(3.12)

are called T B-partner-ruled surfaces with respect to the Frenet frame of the curve α in R3
1.

Theorem 3.5. Let the surfaces ϕT
B and ϕB

T be a T B-partner-ruled surfaces in R3
1, then the T B-partner-

ruled surfaces are simultaneously

(i) developable surfaces,
(ii) not minimal (maximal) surfaces.

Proof. By differentiating the first equation of Eq (3.12) with respect to s and v, respectively, and using
Eq (2.1), one can obtain (

ϕT
B

)
s

= (κ + ε1vτ) N,
(
ϕT

B

)
v

= B. (3.13)

Then, by considering the cross product of the partial derivatives of the surface ϕT
B given by Eq (3.13),

the normal vector field of the surface ϕT
B is found as follows:

UT
B =

(
ϕT

B

)
s
×

(
ϕT

B

)
v∥∥∥∥(ϕT

B

)
s
×

(
ϕT

B

)
v

∥∥∥∥ =
(−ε1κ − vτ)
|ε1κ + vτ|

T = ±T. (3.14)

Here κ , −ε1vτ satisfies ε1κ + vτ , 0. By applying the scalar product for both vectors in Eq (3.13), we
have the components of the first fundamental form of the ruled surface ϕT

B as follows:

ET
B = ε2(κ + ε1vτ)2, FT

B = 0, GT
B = ε3. (3.15)

By differentiating Eq (3.13) in terms of s and v, we have(
ϕT

B

)
ss

=
(
ε3κ

2 − ε2vκτ
)

T +
(
κ′ + ε1vτ′

)
N +

(
κτ + ε1vτ2

)
B,(

ϕT
B

)
sv

= ε1τN,
(
ϕT

B

)
vv

= 0,

and taking the scalar product of the last equation with the normal vector field found as Eq (3.14), we
have the component of the second fundamental form of the ruled surface ϕT

B as follows:

eT
B =
−ε1κ (vτ + ε1κ) (ε3κ − vε2τ)

|ε1κ + vτ|
, f T

B = 0, gT
B = 0. (3.16)

Thus, by substituting Eqs (3.15) and (3.16) into Eq (2.4), the Gaussian curvature and the mean
curvature of the ruled surface ϕT

B are given by

KT
B = 0, HT

B = ε.
κ (ε3κ − ε2vτ)

2ε2 |ε1κ + vτ| (κ + ε1vτ)
. (3.17)
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On the other hand, by differentiating the second equation of Eq (3.12) with respect to s and v,
respectively, and using the Frenet frame derivative formulae, we obtain:(

ϕB
T

)
s

= (vκ + ε1τ) N,
(
ϕB

T

)
v

= T. (3.18)

Then, by considering the cross product of the partial derivatives of the surface ϕB
T given by Eq (3.18),

the normal vector field of the surface ϕB
T is found as:

UB
T =

(
ϕB

T

)
s
×

(
ϕB

T

)
v∥∥∥∥(ϕB

T

)
s
×

(
ϕB

T

)
v

∥∥∥∥ =
ε3 (vκ + ε1τ)
|vκ + ε1τ|

B = ∓ε3B. (3.19)

Here τ , −ε1vκ guarantees vκ + ε1τ , 0. By applying the scalar product for both vectors in Eq (3.18),
we have the components of the first fundamental form of the ruled surface ϕB

T as follows:

EB
T = ε2(vκ + ε1τ)2, FB

T = 0, GB
T = ε1. (3.20)

By differentiating Eq (3.18) with respect to s and v, we get(
ϕB

T

)
ss

=
(
ε3vκ2 − ε2κτ

)
T +

(
vκ′ + ε1τ

′) N +
(
vκτ + ε1τ

2
)

B,(
ϕB

T

)
sv

= κN,
(
ϕB

T

)
vv

= 0,

and from the scalar product of the last equations with the normal vector field given by Eq (3.19), we
have the component of the second fundamental form of the ruled surface ϕB

T as follows:

eB
T =

τ(vκ + ε1τ)2

|vκ + ε1τ|
, f B

T = 0, gB
T = 0. (3.21)

So, by substituting Eqs (3.20) and (3.21) into Eq (2.4), the Gaussian curvature KB
T and the mean

curvature HB
T of the ruled surface ϕB

T are given by

KB
T = 0, HB

T = −ε
τ

2ε2 |vκ + ε1τ|
. (3.22)

Consequently, from Eqs (3.17) and (3.22), it can easily be said that the T B-partner-ruled surfaces
simultaneously can be developable but not minimal (maximal) surfaces. �

In the same way, as for T N-partner ruled surfaces, we can prove the following three theorems:

Theorem 3.6. Let ϕT
B and ϕB

T be a pair of the T B-partner-ruled surfaces in R3
1, then s-parameter curves

of the T B-partner-ruled surfaces are simultaneously

(i) not geodesics,
(ii) not asymptotic curves.

Theorem 3.7. Let ϕT
B and ϕB

T be a pair of the T B-partner-ruled surfaces in R3
1, then the v-parameter

curves of the BT-partner-ruled surfaces are simultaneously

(i) geodesics,
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(ii) asymptotic curves.

Theorem 3.8. Let ϕT
B and ϕB

T be a pair of the T B-partner-ruled surfaces in R3
1, then the s and v-

parameter curves of T B-partner-ruled surfaces are simultaneously lines of curvature.

Definition 3.3. Let α : I → R be a differentiable unit speed non-null space curve parametrized by
arc-length s in R3

1 with Frenet elements {T,N, B, κ, τ} such that κ (s) , ∓vτ (s) and κ (s) , ∓τ (s) for all
s ∈ I. The two ruled surfaces defined by{

ϕN
B (s, v) = N (s) + vB (s) ,
ϕB

N (s, v) = B (s) + vN (s)
(3.23)

are called NB-partner-ruled surfaces with respect to the Frenet frame of the curve α in R3
1.

Theorem 3.9. Let ϕN
B and ϕB

N be a pair of the NB-partner-ruled surfaces in R3
1, then the NB-partner-

ruled surfaces are simultaneously

(i) developable surfaces if and only if κ = 0 or τ = 0,
(ii) minimal (maximal) surfaces if and only if κ = 0.

Proof. By differentiating the first equation of Eq (3.23) with respect to s and v, respectively, and using
Frenet frame derivative formulae, one can obtain(

ϕN
B

)
s

= ε3κT + ε1vτN + τB,
(
ϕN

B

)
v

= B. (3.24)

Then, by considering the partial derivatives of the surface ϕN
B given by Eq (3.24) and the cross product

of both vectors, the normal vector field of the surface ϕN
B is found as:

UN
B =

(
ϕN

B

)
s
×

(
ϕN

B

)
v∥∥∥∥(ϕN

B

)
s
×

(
ϕN

B

)
v

∥∥∥∥ =
−vτT − ε1κN√∣∣∣ε1v2τ2 + ε2κ2

∣∣∣ . (3.25)

Here κ , ∓vτ satisfies ε1v2τ2 + ε2κ
2 , 0. By applying the scalar product for both vectors in Eq (3.24),

we have the components of the first fundamental form of the ruled surface ϕN
B as follows:

EN
B = ε1κ

2 +
(
ε3 + ε2v2

)
τ2, FN

B = ε3τ, GN
B = ε3. (3.26)

By differentiating Eq (3.24) in terms of s and v, we get(
ϕN

B

)
ss

=
(
−ε2vκτ + ε3κ

′) T +
(
ε3κ

2 + ε1τ
2 + ε1vτ′

)
N +

(
ε1vτ2 + τ′

)
B,(

ϕN
B

)
sv

= ε1τN,
(
ϕN

B

)
vv

= 0,

and from the scalar product of the last equations with the normal vector field given by Eq (3.25), we
have the component of the second fundamental form of the ruled surface ϕN

B as follows:

eN
B =

vτ (−ε3vκτ + ε2κ
′) + κ

(
κ2 − ε2

(
τ2 + vτ′

))
√∣∣∣ε1v2τ2 + ε2κ2

∣∣∣ , f N
B =

−ε2κτ√∣∣∣ε1v2τ2 + ε2κ2
∣∣∣ , gN

B = 0. (3.27)
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Thus, by substituting Eqs (3.26) and (3.27) into Eq (2.4), the Gaussian curvature KN
B and the mean

curvature HN
B of the ruled surface ϕN

B are given by

KN
B = ε

−κ2τ2

ε3

∣∣∣ε1v2τ2 + ε2κ2
∣∣∣ (ε1κ2 + ε2v2τ2) ,

HN
B = ε

ε2

(
v (κτ′ − τκ′) + κτ2

)
− ε2κτ

2
(
ε1v2 − 2

)
− κ3

2
√∣∣∣ε1v2τ2 + ε2κ2

∣∣∣ (ε1κ2 + ε2v2τ2) .

(3.28)

On the other hand, by differentiating the second equation of Eq (3.23) with respect to s and v,
respectively, and using the Frenet frame derivative formulae, we find(

ϕB
N

)
s

= vε3κT + ε1τN + vτB,
(
ϕB

N

)
v

= N. (3.29)

Then, by considering the partial derivatives of the surface ϕB
N given by Eq (3.29) and the cross product

of both vectors, the normal vector field of the surface ϕB
N is found as follows:

UB
N =

(
ϕB

N

)
s
×

(
ϕB

N

)
v∥∥∥∥(ϕB

N

)
s
×

(
ϕB

N

)
v

∥∥∥∥ =
ε1τT − κB√∣∣∣ε1τ2 + ε3κ2

∣∣∣ . (3.30)

Here κ , ∓τ satisfies ε1τ
2 + ε3κ

2 , 0. By applying the scalar product for both vectors in Eq (3.30), we
have the components of the first fundamental form of the ruled surface ϕB

N as follows:

EB
N = ε1v2κ2 +

(
ε3v2 + ε2

)
τ2, FB

N = −ε3τ, GB
N = ε2. (3.31)

By differentiating Eq (3.29) in terms of s and v, we have(
ϕB

N

)
ss

=
(
−ε2κτ + ε3vκ′

)
T +

(
ε3vκ2 + ε1vτ2 + ε1τ

′
)

N +
(
ε1τ

2 + vτ′
)

B,(
ϕB

N

)
sv

= ε3κT + τB,
(
ϕB

N

)
vv

= 0,

and taking the scalar product of the last equations with the normal vector field Eq (3.30), we have the
component of the second fundamental form of the ruled surface ϕB

N as follows:

eB
N =

τ (−ε2κτ + ε3κ
′) − ε3κ

(
ε1τ

2 + vτ′
)

√∣∣∣ε1τ2 + ε3κ2
∣∣∣ , f B

N = 0, gB
N = 0. (3.32)

Thus, by substituting Eqs (3.31) and (3.32) into Eq (2.4), the Gaussian curvature KB
N and the mean

curvature HB
N of the ruled surface ϕB

N is given by

K = 0, HB
N = ε

ε1 (κτ′ − τκ′)

2v
(
ε1τ2 + ε3κ2) √∣∣∣ε1τ2 + ε3κ2

∣∣∣ . (3.33)

Consequently, from Eqs (3.28) and (3.33), it can easily be implied that the NB-partner-ruled surfaces
are simultaneously developable and minimal (maximal) surfaces under the conditions stated in the
hypothesis. �
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In the same way, as for T N-partner ruled surfaces, we can prove the following three theorems:

Theorem 3.10. Let ϕN
B and ϕB

N be a pair of the NB-partner-ruled surfaces in R3
1, then the s-parameter

curves of the NB-partner-ruled surfaces are simultaneously

(i) not geodesics,
(ii) asymptotics if and only if κ = 0 and τ , 0.

Theorem 3.11. Let ϕN
B and ϕB

N be a pair of the NB-partner-ruled surfaces in R3
1, then the v-parameter

curves of the NB-partner-ruled surfaces are simultaneously

(i) geodesics,
(ii) asymptotics curve.

Theorem 3.12. Let ϕN
B and ϕB

N be a pair of the NB-partner-ruled surfaces in R3
1, then the s and v-

parameter curves of the NB-partner-ruled surfaces are simultaneously are a line of curvature if and
only if τ = 0 and κ , 0.

4. Applications with the partner-ruled surfaces

In this section, three examples are given according to cases of the curve being timelike or spacelike,
and graphs of these examples are drawn.

Example 4.1. Let us consider a timelike curve parameterized as

α (s) =

(
−5
9

sinh (3s) ,
−5
9

cosh (3s) ,
4
3

s
)
.

Then, the Frenet vectors of α are given by

T (s) =

(
−

5
3

cosh (3s) ,−
5
3

sinh (3s) ,
4
3

)
,

N(s) = (− sinh (3s) ,− cosh (3s) , 0) ,

B(s) =

(
−4
3

cosh (3s) ,
−4
3

sinh (3s) ,
5
3

)
.

Thus, the partner-ruled surfaces with the parametric forms ϕT
N =

(
−5

3 cosh (3s) − v sinh (3s) ,−v cosh (3s) − 5
3 sinh (3s) , 4

3

)
,

ϕN
T =

(
−5

3v cosh (3s) − sinh (3s) ,− cosh (3s) − 5
3v sinh (3s) , 4v

3

)
, ϕT

B =
(
−1

3 (5 + 4v) cosh (3s) ,−1
3 (5 + 4v) sinh (3s) , 1

3 (4 + 5v)
)
,

ϕB
T =

(
−1

3 (4 + 5v) cosh (3s) ,−1
3 (4 + 5v) sinh (3s) , 1

3 (5 + 4v)
)
, ϕN

B =
(
−4

3v cosh (3s) − sinh (3s) ,− cosh (3s) − 4
3v sinh (3s) , 5v

3

)
,

ϕB
N =

(
−4

3 cosh (3s) − v sinh (3s) ,−v cosh (3s) − 4
3 sinh (3s) , 5

3

)
are drawn in Figure 1, respectively.
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(a) T N-partner-ruled
surfaces ( ϕT

N (red) and ϕN
T

(green)).

(b) T B-partner-ruled
surfaces ( ϕT

B (red) and ϕB
T

(cyan)).

(c) NB-partner-ruled
surfaces ( ϕN

B (red) and ϕB
N

(yellow)).

Figure 1. The partner-ruled surfaces generated by the timelike curve α for s = [−π/8, π/8]
and v = [−5, 5].

Example 4.2. Let us consider a spacelike curve with timelike normal parameterized as

α (s) =
1
√

2
(cosh (s) , sinh (s) , s) .

Then, the Frenet vectors of the spacelike curve with timelike normal α are given by

T (s) =
1
√

2
(sinh (s) , cosh (s) , 1) ,

N(s) = (cosh (s) , sinh (s) , 0) ,

B(s) =
1
√

2
(sinh (s) , cosh (s) ,−1) .

Thus, the graphs of the partner-ruled surfaces with the parametric forms ϕT
N =

(
v cosh (s) +

sinh(s)
√

2
, cosh(s)
√

2
+ v sinh (s) , 1

√
2

)
,

ϕN
T =

(
cosh (s) +

v sinh(s)
√

2
, v cosh(s)

√
2

+ sinh (s) , v
√

2

)
, ϕT

B =
(

(1+v) sinh(s)
√

2
, (1+v) cosh(s)

√
2

,−−1+v
√

2

)
,

ϕB
T =

(
(1+v) sinh(s)

√
2

, (1+v) cosh(s)
√

2
, −1+v
√

2

)
, ϕN

B =
(
cosh (s) +

v sinh(s)
√

2
, v cosh(s)

√
2

+ sinh (s) ,− v
√

2

)
,

ϕB
N =

(
v cosh (s) +

sinh(s)
√

2
, cosh(s)
√

2
+ v sinh (s) ,− 1

√
2

)
are given in Figure 2, respectively.
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(a) T N-partner-ruled
surfaces ( ϕT

N (red) and ϕN
T

(green)).

(b) T B-partner-ruled
surfaces ( ϕT

B (red) and ϕB
T

(cyan)).

(c) NB-partner-ruled
surfaces ( ϕN

B (red) and ϕB
N

(yellow)).

Figure 2. The partner-ruled surfaces generated by the spacelike with timeline normal curve
with s = [−1, 1] and v = [−10, 10] .

Example 4.3. Let us consider a spacelike curve with timelike binormal parameterized as

α (s) = (s, s sin (ln (s)) , s cos (ln (s))) .

Then, the Frenet vectors of the spacelike curve with timelike binormal α are given by

T (s) = (1, cos (ln (s)) + sin (ln (s)) , cos (ln (s)) − sin (ln (s))) ,

N(s) =
1
√

2
(0, cos (ln (s)) − sin (ln (s)) ,− cos (ln (s)) − sin (ln (s))) ,

B(s) =
1
√

2

(
2
√

2, cos (ln (s)) + sin (ln (s)) , cos (ln (s)) − sin (ln (s))
)
.

Thus, the parametric forms of the partner-ruled surfaces are given as follows:

ϕT
N =


1, cos (ln (s)) + sin (ln (s)) +

v (cos (ln (s)) − sin (ln (s)))
√

2

cos (ln (s)) − sin (ln (s)) −
v (cos (ln (s)) + sin (ln (s)))

√
2

,

ϕN
T =


u, u (cos (ln (s)) + sin (ln (s))) +

cos (ln (s)) − sin (ln (s))
√

2
+

u (cos (ln (s)) − sin (ln (s))) −
cos (ln (s)) + s sin (ln (s))

√
2

,


ϕT
B =


1 +
√

2v,
1
2

(
2 +
√

2v
)

(cos (ln (s)) + sin (ln (s)))

1
2

(
2 +
√

2v
)

(cos (ln (s)) − sin (ln (s)))

,
ϕB

T =


√

2 + v,
1
2

(√
2 + 2v

)
(cos (ln (s)) + sin (ln (s)))

1
2

(√
2 + 2v

)
(cos (ln (s)) − sin (ln (s)))

,
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ϕN
B =


√

2v,
(1 + v) cos (ln (s)) + (−1 + v) sin (ln (s))

√
2

(−1 + v) cos (ln (s)) − (1 + v) sin (ln (s))
√

2

,

ϕB
N =


√

2,
(1 + v) cos (ln (s)) + (1 − v) sin (ln (s))

√
2

(1 − v) cos (ln (s)) − (1 + v) sin (ln (s))
√

2


and their graphics are drawn in Figure 3, respectively.

(a) T N-partner-ruled
surfaces ( ϕT

N (red) and ϕN
T

(green)).

(b) T B-partner-ruled
surfaces ( ϕT

B (red) and ϕB
T

(cyan)).

(c) NB-partner-ruled
surfaces ( ϕN

B (red) and ϕB
N

(yellow)).

Figure 3. The partner-ruled surfaces generated by the spacelike with timelike binormal curve
with s = [1, 10] and v = [−10, 10] .

5. Conclusions

In this paper, the invariants of the partner-ruled surfaces formed by tangent, normal and binormal
vector fields of non-null space curves simultaneously have been presented in Minkowski 3-space.
As it is recalled, two ruling lines generate the partner-ruled surfaces if they simultaneously move
along their respective curves. The simultaneous characterizations of such couples of surfaces can
provide insights into the surface theory in Minkowski space. This comprehensive knowledge may
lead to the development of surfaces of the dynamics of cosmic objects. With this motivation, some
characterizations of the parameter curves have been examined. Examples of these surfaces have
been given, and their graphics have been drawn. In future research, we will delve into the practical
applications of our main discoveries by integrating concepts from singularity theory, submanifold
theory, and other relevant results in [20–37]. These integrations offer promising avenues for future
investigation within this article.

AIMS Mathematics Volume 8, Issue 9, 22256–22273.



22271

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was funded by National Natural Science Foundation of China (Grant No. 12101168),
Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ22A010014).

We gratefully acknowledge the constructive comments from the editor and the anonymous referees.

Conflict of interest

The authors declare no conflict of interest.

References

1. H. Guggenheimer, Differential geometry, New York: McGraw-Hill, 1963.
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