
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(9): 22237–22255.
DOI: 10.3934/math.20231134
Received: 02 September 2022
Revised: 29 December 2022
Accepted: 09 January 2023
Published: 13 July 2023

Research article

Study on the oscillation of solution to second-order impulsive systems

Shyam Sundar Santra1, Palash Mondal2, Mohammad Esmael Samei3, Hammad Alotaibi4,
Mohamed Altanji5 and Thongchai Botmart6,*

1 Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal 741235, India
2 Assistant Teacher of Sankarpur High Madrasah (HS), Murshidabad 742159, India
3 Department of Mathematics, Faculty of Basic Science, Bu-Ali Sina University, Hamedan

65178-38695, Iran
4 Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099,

Taif 21944, Saudi Arabia
5 Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi

Arabia
6 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002,

Thailand

* Correspondence: Email: thongbo@kku.ac.th.

Abstract: In the present article, we set the if and only if conditions for the solutions of the class
of neutral impulsive delay second-order differential equations. We consider two cases when it is
non-increasing and non-decreasing for quotient of two positive odd integers. Our main tool is the
Lebesgue’s dominated convergence theorem. Examples illustrating the applicability of the results are
also given, and state an open problem.

Keywords: nonlinear; nonoscillation; delay argument; second-order differential equation;
Lebesgue’s dominated convergence theorem
Mathematics Subject Classification: 34C10, 34C15, 34K11

1. Introduction

In modern era, delay differential equations (DEs) have become almost the center of interest. Many
things in the world are directed by differential systems. We assume that the systems are independent
of past state and future state depends on present state neutral delays. DEs are natural extensions
of the delay DE which involve derivatives of the unknown at the delayed argument. Mathematical
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modeling with delay DEs is widely used for analysis and predictions in various areas of life science,
for example, population dynamics, epidemiology, immunology, neutral networks, chemistry, physics,
engineering, etc. The literature connected to impulsive delay differential system is vast.

Below, we are going to provide some background of oscillation theory of impulsive DEs. The
authors in [1] are concerned with the asymptotic behavior of a class of higher-order sublinear Emden-
Fowler delay differential equations

(q2(ι)%(n−1)(ι))
′
+ q1(ι)%ν(τ(ι)) = 0, for ι ≥ ι0, (1.1)

where 0 < ν < 1 is a ratio of odd natural numbers, q2 ∈ C1[ι0,∞), q2 > 0, q′2 ≥ 0, q1, τ ∈ C[ι0,∞),
τ(ι) < ι, limι→∞ τ(ι) = ∞, q1(ι) ≥ 0 and q2(ι) is not identically zero for large ι (for instanse,
consider [2–5]). Shen et al. have taken the impulsive system (IS)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

%
′(ι) + q(ι)%(ι − µ1) = 0, ι ≠ ιk,

%(ι+k ) − %(ι−k ) = Ik(%(ιk)), k ∈ N,
(1.2)

where q, Ik ∈ C(R,R), and they established the sufficient conditions for the oscillatory and asymptotic
behavior of (1.2) [6]. Graef et al. in [7] considered the IS

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(%(ι) − q2(ι)%(ι − µ2))
′
+ q1(ι)∣%(ι − µ1)∣ι sgn %(ι − µ1) = 0, ι ≥ ι0,

%(ι+k ) = ηk%(ιk), k ∈ N,
(1.3)

and considering q2(ι) ∈ PC([ι0,∞),R+) (q2(ι) piece wisely continuous in [ι0,∞)) set up results on
sufficient conditions for oscillation (1.3). Shen et al. have established new sufficient conditions for
oscillation of the IS

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(%(ι) − q3(ι)%(ι − µ3))′ + q2(ι)%(ι − µ2) − q1(ι)%(ι − µ1) = 0, µ2 ≥ µ1 > 0,

%(ι+k ) = ηk(%(ιk)), k ∈ N,
(1.4)

and established some new conditions for the oscillation of (1.4) when q3(ι) ∈ PC([ι0,∞),R+) and
ηi ≤

Ji(%)
%

≤ 1 [8]. Karpuz et al. [9] studied on advanced case, that is, taking a non homogeneous
system and established the results for sufficient conditions for oscillation of (1.4). Tripathy et al. [10]
have taken the following equations to establish the oscillatory and non-oscillatory character of a second
order neutral impulsive differential system (IDS)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(%(ι) − η2%(ι − µ2))′′ + η1%(ι − µ1) = 0, ι ≠ ιk,

∆(%(ιk) − η2%(ιk − µ2))′ + η1%(ιk − µ1) = 0,
(1.5)

here k ∈ N, all coefficients and delays are constants. In [11] new result established for second-order
neutral delay DS

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(q3(ι)(%(ι) + q2(ι)%(ι − µ2))′)
′
+ q1(ι)℘(%(ι − µ1)) = 0, ι ≠ ιk,

∆ (q3(ιk)(%(ιk) + q2(ιk)%(ιk − µ2))′) + q4(ιk)℘(%(ιk − µ1)) = 0,
(1.6)
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where k ∈ N. Santra et al. [12] observed the characteristic of solutions for first-order neutral delay IS
of the form ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(%(ι) − q2(ι)%(ι − µ2))′ + q1(ι)℘(%(ι − µ1)) = 0,

%(ι+k ) = Jk(%(ιk)),

%(ι+k − µ3) = Jk(%(ι+k − µ3)),

(1.7)

here k ∈ N, taking varying values of the neutral coefficient q2. Also, Santra et al. in [13] established
the necessary and sufficient results for oscillation of the solutions of the below systems with impulses
applying Lebesgue’s Dominated convergent theorem,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(q́(ι)(w′(ι))α)′ +∑m
i=1 qi(ι)℘i(%(σ(ι))) = 0,

∆ (q́(ιk)(w′(ι))α) +∑m
i=1 qi(ιk)℘i(%(σ(ιk))) = 0,

(1.8)

where w(ι) = %(ι) + q́(ι)%(σ́(ι)), with

∆%(η) = lim
s→η+

%(s) − lim
s→η−

%(s),

and −1 ≤ q́(ι) ≤ 0. In 2020, Li et al. studied the dynamic behavior of a computer worm system under
a discontinuous control strategy and some conditions for globally asymptotically stable solutions of
the discontinuous system were obtained by using the Bendixson–Dulac theorem, Green’s formula and
the Lyapunov function [14]. Also, they investigated the global dynamics of a controlled discontinuous
diffusive SIR epidemic system under Neumann boundary conditions [15].

The authors observed oscillatory and non-oscillatory both conditions for the solutions of the non
linear neutral DE of the form

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(q3(ι)(%(ι) + q2(ι)%(ι − µ2))′)
′
+ q1(ι)℘(%(ι − µ1)) = h̷(ι),

∆ (q3(ιk)(%(ιk) + q2(ιk)%(ιk − µ2))′) + q1(ιk)℘(%(ιk − µ1)) = h̷(ιk), k ∈ N.
(1.9)

At last we observed some modern results in [16] where Tripathy and Santra improved oscillatory
results of non-linear neutral IS of the form

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(q́(ι)(w′(ι))α)′ +∑m
i=1 qi(ι) %βi(σi(ι)) = 0, ι ≥ ι0, ι ≠ ιk,

∆ (q́(ιk)(w′(ιk))α) +∑m
i=1 qi(ι) %βi(σi(ιk)) = 0, k ∈ N,

where w(ι) = %(ι) + q̄(ι)%(σ́(ι)) with −1 ≤ q̄(ι) ≤ 0 [17].
Motivated by the above works, in this paper, we consider the IS

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(q́(ι)(%′(ι))α)
′
+∑m

i=1 qi(ι)℘i(%(σi(ι))) = 0, ι ≥ ι0,

∆(q́(ιk)(%′(ιk))
α) +∑m

i=1 qi(ιk)℘i(%(σi(ιk))) = 0, ι ≠ ιk

(1.10)

where ℘i, qi, q́, σi are continuous and α be the quotient of two positive odd integers which satisfy the
given following postulate as
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(B1) σi ∈ C([0,∞),R), σi(ι) < ι, limι→∞ σi(ι) =∞;
(B2) q́ ∈ C1([0,∞),R), qi ∈ C([0,∞),R); q́(ι) > 0, qi(ι) ≥ 0, for each ι ≥ 0 & i = 1, 2, . . . ,m,

∑ qi(ι) ≠ 0 in any [τ,∞);
(B3) %i ∈ C(R,R) is non-decreasing and ℘i(%)% > 0 for % ≠ 0 (i = 1, 2, . . . ,m);
(B4) limι→∞ R̊(ι) =∞ where

R̊(ι) = ∫
ι

0
(q́(η))−1/α dη; (1.11)

(B5) α be the quotient of two positive odd integers and the sequence ιk satisfies ι1 < ι2 <⋯ < ιk →∞,

as k →∞.

The main objective of this paper is to find out both necessary and sufficient conditions for the
oscillation of all solutions to IS (1.10). In this direction, we refer [18–32] to the readers for more
details on this study. All functional inequalities assumed here should be held eventually i.e., for all
large ι that also satisfy whereas the domain is not clearly given.

In Section 2, we recall some essential definition and necessary lemmas. Section 3 contains our
main results in this work, while an example is presented to support the validity of our obtained results
in Section 4. In Section 5, conclusion are presented.

2. Primary consequences

First we start and prove the following key lemma.

Lemma 2.1. Consider postulates (B1)–(B4), and that % is converges to zero for the Eq (1.10). So there
exist ι1 ≥ ι0 and δ > 0, so we have

0 < %(ι) ≤ δ R̊(ι), (2.1)

(R̊(ι) − R̊(ι1))[∫
∞

ι

m

∑
i=1

qi(ι)℘i (%(σi(ι))) dι +∑
ιk≥ι

m

∑
i=1

qi(ιk)℘i(%(σi(ιk)))]
1/α

≤ %(ι) , ∀ ι ≥ ι1. (2.2)

Proof. Suppose % is converge to zero. From (B1) There exists ι∗ so that %(ι) > 0 and %(σi(ι)) > 0, for
all ι ≥ ι

∗ and i = 1, 2, . . . ,m. Then by (1.10) we get

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(q́(ι) (%′(ι))α)
′
= −

m

∑
i=1

qi(ι)℘i (%(σi(ι))) ≤ 0,

∆ (q́(ιk) (%′(ιk))
α) = −

m

∑
i=1

qi(ιk)℘i (%(σi(ιk))) ≤ 0.
(2.3)

So, q́(ι)(%′(ι))α is non-increasing for ι ≥ ι
∗. Then q́(ι)(%′(ι))α > 0. For contradiction let us consider

q́(ι) (%′(ι))α ≤ 0,

at a certain time ι ≥ ι
∗. Applying ∑ qi ≠ 0 in [τ,∞), and that ℘(%) > 0 for % > 0, by (2.3), there exist

ι2 ≥ ι
∗ we get

q́(ι) (%′(ι))α ≤ q́(ι2) (%′(ι2))
α
< 0, ∀ ι ≥ ι2.

AIMS Mathematics Volume 8, Issue 9, 22237–22255.



22241

From (B5), we get

%
′(ι) ≤ ( q́(ι2)

q́(ι) )
1/α
%
′(ι2), ∀ι ≥ ι2 .

Taking integration from ι2 to ι, we get

%(ι) ≤ %(ι2) + (q́(ι2))1/α
%
′(ι2) (R̊(ι) − R̊(ι2)) . (2.4)

Applying (B4), in the right part goes to −∞; so limι→∞ %(ι) = −∞. That contradict to %(ι) > 0.
Consequently

q́(ι) (%′(ι))α > 0, ∀ ι ≥ ι
∗
.

By q́(ι)(%′(ι))α is non-increasing, so we get

%
′(ι) ≤ ( q́(ι1)

q́(ι) )
1/α
%
′(ι1), ∀ ι ≥ ι1 .

Now we integrate the above inequality ι1 to ι and applying % is continuous we have

%(ι) ≤ %(ι1) + (q́(ι1))1/α
%
′(ι1) (R̊(ι) − R̊(ι1)) .

As limι→∞ R̊(ι) =∞, then ∃ δ > 0 so that (2.1) satisfies. As

q́(ι) (%′(ι))α > 0,

and non-increasing, so the limit of
lim
ι→∞

q́(ι)(%′(ι))α,

non negatively exists. Taking integration (1.10) from ι to τ, we have

q́(τ) (%′(τ))α − q́(ι) (%′(ι))α + ∫
∞

ι

m

∑
i=1

qi(η)℘i (%(σi(η))) dη

+∑
ιk≥ι

m

∑
i=1

qi(ιk)℘i(%(σi(ιk))) = 0.

Calculating the limit when τ→∞,

q́(τ) (%′(τ))α ≥ ∫
∞

ι

m

∑
i=1

qi(ζ)℘i (%(σi(η))) dη +∑
ι≤ιk

m

∑
i=1

qi(ιk)℘i(%(σi(ιk))). (2.5)

Therefore

%
′(ι) ≥ [ 1

q́(ι)[∫
∞

ι

m

∑
i=1

qi(ζ)℘i (%(σi(η))) dη +∑
ι≤ιk

m

∑
i=1

qi(ιk)℘i(%(σi(ιk)))]]
1/α
.

As %(ι1) > 0, integrating this inequality derives

%(ι) ≥ ∫
ζ

ι1

[ 1
q́(ζ) ∫

∞

η

m

∑
i=1

qi(η)℘i(%(σi(η))) dη +∑
ι≤ιk

m

∑
i=1

qi(ιk)℘i(%(σi(ιk)))]
1/α

dζ.
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As the integrand is positive, increasing the lower limit from η to ι, and after that using the definition of
R̊(ι), we have

%(ι) ≥ (R̊(ι) − R̊(ι1)) [∫
∞

ι

m

∑
i=1

qi(ζ)℘i (%(σi(ζ))) dζ +∑
ι≤ιk

m

∑
i=1

qi(ιk)℘i(%(σi(ιk)))]
1/α
,

this yields (2.2). �

3. Main results

Now for next result we consider the a constant γ, which satisfy (B5) with γ < α, so that

℘i(z)
zγ

, (3.1)

is non-increasing for z > 0 (i = 1, 2, . . . ,m).

Example 3.1. An instant ℘i(z) = ∣z∣β sgn(z), with 0 < β < γ holds this condition.

Theorem 3.2. Letting (B1)–(B5) and (3.1), each solution of (1.10) is oscillatory iff

[∫
∞

0

m

∑
i=1

qi(η)℘i(δR̊(σi(η))) dη

+
∞

∑
i=1

m

∑
i=1

qi(ιk)℘i(δR̊(σi(ιk)))] =∞, ∀ δ > 0 .

Proof. We prove the sufficient part by contradiction. For the purpose of sufficient part prove, at the
beginning let % is eventually positive solution. As, Lemma 2.1 satisfies, and so that there exists ι1 ≥ ι0,
we have

%(ι) ≥ (R̊(ι) − R̊(ι1))w1/α(ι) ≥ 0, ∀ ι ≥ ι1 , (3.2)

where

w(ι) = ∫
∞

ι

m

∑
i=1

qi(η)℘i (%(σi(η))) dη +∑
ιk≥ι

m

∑
i=1

qi(ιk)℘i(%(σi(ιk))) ≥ 0.

As limι→∞ R̊(ι) =∞, then there exists ι2 ≥ ι1, so that R̊(ι) − R̊(ι1) ≥ 1
2
R̊(ι), for ι ≥ ι2. Then

%(ι) ≥ 1
2 R̊(ι)w1/α(ι) . (3.3)

Therefore

w′(ι) = −
m

∑
i=1

qi(ι)℘i (%(σi(ι))) ,

∆w(ιk) = −
m

∑
i=1

qi(ιk ℘i (%(σi(ιk))) ≤ 0.
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Therefore from the above we see that w ≥ 0 and decreasing. As % is positive, from (B3), ℘i(%(σi(ι)))
is also positive, and by (B2), it gives us

m

∑
i=1

qi(ι)℘i(%(σi(ι))) ≠ 0,

in any [τ,∞); thus w′
≠ 0 and w never be a constant in any interval [τ,∞). Thus w(ι) be also positive

for ι ≥ ι1. Calculating derivative,

(w1−γ/α(ι))
′
= (1 −

γ
α)w−γ/α(ι)w′(ι) . (3.4)

Integrating (3.4) from ι2 to ι, and applying w > 0, we get

w1−γ/α(ι2) ≥ (1 −
γ
α) [ − ∫

ι

ι2

w−γ/α(η)w′(η) dη − ∑
ι2≤ιk

w−γ/α(ιk)∆w(ιk)]

= (1 −
γ
α) [∫

ι

ι2

w−γ/α(η) (
m

∑
i=1

qi(η)℘i(%(σi(η)))) dη

+∑
ιk≤ι

w−γ/α(ιk)
m

∑
i=1

qi(ιk)℘i(%(σi(ιk)))] . (3.5)

Next we search a lower bound for the right part of (3.5), which is not dependent of the solution %.
From (B3), (2.1), (3.1) and (3.3), we get

℘i(%(ι)) = ℘i(%(ι))
%
γ(ι)
%α(ι)

≥
℘i (δ R̊(ι))
(δR̊(ι))γ

%
γ(ι)

≥
℘i (δR̊(ι))
(δR̊(ι))γ

( R̊(ι)w1/α(ι)
2 )

γ

=
℘i (δ R̊(ι))

(2δ)γ wγ/α(ι), ∀ ι ≥ ι2 .

As w is non-increasing, γ

α
> 0, and σi(η) < η, it ensure us that

℘i (%(σi(η))) ≥
℘i (δ R̊(σi(η)))

(2δ)γ wγ/α(σi(η))

≥
℘i (δ R̊(σi(η)))

(2δ)γ wγ/α(η) . (3.6)

Returning to (3.5), we get

w1−γ/α(ι2) ≥
1 − γ

α

(2δ)γ[∫
ι

ι2

m

∑
i=1

qi(η)℘i (δR̊(σi(η))) dη
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+∑
ιk≤ι

m

∑
i=1

qi(ιk)℘i (δR̊(σi(ιk))) ] . (3.7)

As 1 − γ

α
is positive, from (3.2) the right part goes to infinity as ι →∞. It is a contradiction (3.7) and

completes the sufficient part of the eventually positive solutions. Now we find solution for negative %,
for that we set the variables %́ = −% and

℘́i(%́) = −℘i(%́).

Thus (1.10) converted to positive solution of %́ and ℘́i in exchange with ℘i. Write after ℘́i satisfies (B3)
and (3.1) then using the method for the solution %́ from the above. In the subsequent part we prove the
necessary condition by contrapositive thought. Whenever (3.2) does not satisfy we search an eventually
positive solution which diverge to zero. Then for positive δ and for each positive ε there exists ι1 ≥ ι0
if (3.2) does not satisfy so that

∫
∞

η

m

∑
i=1

qi(η)℘i (δ R̊(σi(η))) dη +∑
ιk≥S

m

∑
i=1

qi(ιk)℘i (δ R̊(σi(ιk))) ≤ ε, (3.8)

for all η ≥ ι1. Here ι1 rely on δ. Now here we are assume there exist set of continuous function

Υ= {% ∈ C([0,∞)) ∶ ( ε2)
1/α

(R̊(ι) − R̊(ι1)) ≤ %(ι) ≤ ε
1/α(R̊(ι) − R̊(ι1)), ι ≥ ι1} .

Next, we define an operator O on Υ by

(O%)(ι) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ι ≤ ι1,

∫
ι

ι1

[ 1
q́(ζ)[

ε

2 + ∫
∞

ζ

m

∑
i=1

qi(η)℘i(%(σi(η))) dη

+∑
ιk≥S

m

∑
i=1

qi(ιk)℘i (% (δ R̊(σi(ιk)))) ]]
1/α

dζ, ι > ι1 .

Here we see that when % is continuous, O% is also continuous on [0,∞). If O% = %, i.e., % is a fixed
point of O(%) is a solution of (1.10). Initially we calculate (O%)(ι) from below. Since % ∈ Υ, we get

0 ≤ ε
1/α (R̊(ι) − R̊(ι1)) ≤ %(ι).

By (B3), we get 0 ≤ ℘i(%(σi(η))) and by (B2) we get

(O%)(ι) ≥ 0 + ∫
ι

ι1

[ 1
q́(ζ) [ ε2 + 0 + 0] ]

1/α
dζ

= ( ε2)
1/α

(R̊(ι) − R̊(ι1)) .

Then we calculate (O%)(ι) from above. For % in Υ, from (B2) and (B3), we get

℘i(%(σi(η))) ≤ ℘i (δ R̊(σi(η))) .
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From (3.8),

(O%)(ι) ≤ ∫
ι

ι1

[ 1
q́(η)[

ε

2 + ∫
∞

η

m

∑
i=1

qi(ζ)℘i (δ R̊(σi(ζ))) dζ

+∑
ιk≥S

m

∑
i=1

qi(ιk)℘i (δ R̊(σi(ιk))) ]]
1/α

dη

≤ ε
1/α (R̊(ι) − R̊(ι1)) .

Thus, O maps Υ to Υ. Later on we will look for O in Υ. We are going to explain a sequence of function
Υ by the iterative formula

z0(ι) = 0̄, ι ≥ ι0,

z1(ι) = (Oz0) (ι) = { 0̄, ι < ι1,

ε
1/α (R̊(ι) − R̊(ι1)) , ι ≥ ι1,

zn+1(ι) = (Ozn) (ι), n ≥ 1, ι ≥ ι1 .

Now when we fixed ι, we can get z1(ι) ≥ z0(ι). Applying that ℘ is non-decreasing and also using
induction formula of mathematics, we can formulate that zn+1(ι) ≥ zn(ι). Thus, {zn} convergent
sequence which converges to z∗ pointwise. Here we find the fixed point z∗ for the operator O in
Υ applying dominated convergence theorem of Lebesgue. From consideration (3.8) shows that the
solution is eventually positive i.e., does not converge to zero. Hence the proof of the theorem is
complete. �

For subsequent theorem, let us consider there exists a continuously differentiable function σ0

satisfying
0 < σ0(ι) ≤ σi(ι), ∃γ > 0 ∶ γ ≤ σ

′
0(ι) (ι ≥ ι0, i = 1, 2, . . . ,m). (3.9)

Also, we suppose a constant γ, satisfy first part of (B5), and α < γ, such that

℘i(z)
zγ

, (3.10)

is non-decreasing for z > 0 (i = 1, 2, . . . ,m). The Example 3.1, ℘i(z) = ∣z∣β sgn(z) with γ < β holds
this condition.

Theorem 3.3. Under assumptions (B1)–(B4), (3.9), (3.10), and q́(ι) is non-decreasing, every solution
of (1.10) is converges to zero iff

∫
∞

ι1

[ 1
q́(ζ)[∫

∞

ζ

m

∑
i=1

qi(η) dη +∑
ιk≥ι

m

∑
i=1

qi(ιk)]]
1/α

dζ =∞ . (3.11)

Proof. Our aim to prove sufficient part by contradiction method. First we consider that the solution %
does not converges to zero. Applying similar logic same as in Lemma 2.1, we get ι1 ≥ ι0 and %(σi(ι))
is positive and

q́(ι) (%′(ι))α > 0,
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and non-increasing. Since q́(ι) > 0 so %(ι) is increasing for ι ≥ ι1. From (B3), %(ι) ≥ %(ι1) and (3.10),
we have

℘i(%(ι)) ≥
℘i (%(ι))
%γ(ι) %

γ(ι) ≥ ℘i (%(ι1))
%γ(ι1)

%
γ(ι) . (3.12)

From (B1) we can find ι2 ≥ ι1 and also σi(ι) ≥ ι1 when ι ≥ ι2. Therefore

℘i (%(σi(ι))) ≥
℘i(%(ι1))
%γ(ι1)

%
γ(σi(ι)), ∀ ι ≥ ι2 . (3.13)

Using this inequality, (2.5), we have σi(ι) ≥ σ0(ι) which shows that σ is increasing, and % is also so,
thus

q́(ι) (%′(ι))α ≥ %
γ(σ0(ι))
%γ(ι1)

[∫
∞

ι

m

∑
i=1

qi(η)℘i(%(ι1)) dη +∑
ιk≥ι

m

∑
i=1

qi(ιk)℘i(%(ι1))],

for ι ≥ ι2. From q́(ι) (%′(ι))α being non-increasing and σ0(ι) ≤ ι, we get

q́(σ0(ι)) (%′(σ0(ι)))
α
≥ q́(ι) (%′(ι))α .

We apply this in the left part of the above inequality. Additionally, dividing by q́(σ0(ι)) > 0, uplift
right and left part to 1

α
index, and divided by %β/γ(σ0(ι)) > 0, we get

%
′ (σ0(ι))

%γ/α(σ0(ι))
≥ [ 1

q́(σ0(ι))%γ(ι1)
[∫

∞

ι

m

∑
i=1

qi(η)℘i(%(ι1)) dη

+∑
ιk≥ι

m

∑
i=1

qi(ιk)℘i(%(ι1))]]
1/α

,

for ι ≥ ι2. Multiply by σ′0(ι)/β ≥ 1 left part, and taking integration from ι1 to ι,

1
β
∫

ι

ι1

%
′(σ0(η))σ′0(η)
%γ/α(σ0(η))

dη ≥
1

%γ/α(ι1)
[∫

ι

ι1

[ 1
q́(σ0(η))

∫
∞

η

m

∑
i=1

qi(ζ)℘i(%(ι1)) dζ

+∑
s≤ιk

m

∑
i=1

qi(ιk)℘i(%(ι1))]]
1/α

dη. (3.14)

As α < γ, taking integration left part of above inequality, we finally reach

1
β(1 − γ/α)[%

1−γ/α(σ0(η))]
ι

s=ι2

≤
1

γ(γ/α − 1)%
1−γ/α(σ0(ι2)) .

Our main task is to show that (3.11) right part going to infinity as ι tends to infinity for that here apply

min
1≤i≤m

℘i(%(ι1)) > 0,

and q́(σ0(s)) ≤ q́(s), (3.14) right part. For eventually negative solutions, we use the same change of
variables as in Theorem 3.2, and proceed as above. To prove the necessary part we assume that (3.11)
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does not hold, and obtain an eventually positive solution that does not converge to zero. If (3.11) does
not hold, then for each ε > 0 there exists ι1 ≥ ι0 such that

∫
∞

ι1

[ 1
q́(η) ∫

∞

η

m

∑
i=1

qi(ζ) dζ +∑
ιk≥ι

m

∑
i=1

qi(ιk)]
1/α

dη <
ε

2 (℘i(ε))1/α
, ∀ ι ≥ ι1 . (3.15)

Construct the continuous functions

Υ = {% ∈ C([0,∞)) ∶ ε2 ≤ %(ι) ≤ ε when ι ≥ ι1}. (3.16)

Now we define the operator O,

(O%)(ι) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ι ≤ ι1,

ε

2 + [∫
ι

ι1

1
q́(ζ)[∫

∞

ζ

m

∑
i=1

qi(η)℘i(%(σi(η))) dη

+∑
ιk≥S

m

∑
i=1

qi(ιk)℘i(%(σi(ιk)))]]
1/α

dζ, ι > ι1 .

Note that if % is continuous, for ι = ι1, O(%) is a continuous function. Also as % is a fixed point i.e.,
O% = % it give us that % is a solution of (1.10). Our main criteria to calculate (O%)(ι) from both
equations for first part let % ∈ Υ. By 0 < ε

2
≤ %, we have

(O%)(ι) ≥ ε

2 + 0 + 0,

on [ι1,∞). For the next part let % ∈ Υ. Then % ≤ ε and from (3.15), we have

(O%)(ι) ≤ ε

2 + (℘i(ε))1/α ∫
ι

ι1

[ 1
q́(η) ∫

∞

η

m

∑
i=1

qi(ζ) dζ +∑
ιk≥S

m

∑
i=1

qi(ιk)]
1/α

dη

≤
ε

2 +
ε

2 = ε.

Hence O is a rules from Υ to Υ. For finding a fixed point of O we can construct a sequence of function
by recursive rules

z0(ι) = 0̄, ι ≥ ι0,

z1(ι) = (Oz0)(ι) = 1, ι ≥ ι1,

zn+1(ι) = (Ozn)(ι), ι ≥ ι1, n ≥ 1 .

Now when we fixed ι, thus z1(ι) ≥ z0(ι). Applying ℘ is non-decreasing and also induction formula of
mathematics, we can establish zn+1(ι) ≥ zn(ι) so that {zn} convergent sequence which converges to z
in Υ pointwise. Hence, z be a positive solution of (1.10). This completes the proof. �

4. Conclusions and future scope

In this section, we are going to conclude the paper by providing two examples to show the
effectiveness and feasibility of the main results.
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Example 4.1. Consider the IS

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(e−ι (%′(ι))
11/3)

′

+ 1
ι+1

(%(ι − 2))1/3 + 1
ι+2

(%(ι − 1))5/3
= 0,

(e−k (%′(k))
11/3)

′

+ 1
ι+4

(%(k − 2))1/3 + 1
ι+5

(%(k − 1))5/3
= 0 .

(4.1)

Comparing with said systems we get α = 11
3

, q́(ι) = e−ι, σ1(ι) = ι − 2, σ2(ι) = ι − 1, from (1.11)

R̊(ι) = ∫
ι

0
(q́(η))−1/α dη = ∫

ι

0
e−

3η/11 dη =
−11

3 (e
−3ι/11

− 1) , (4.2)

℘1(%) = %
1/3 and ℘2(%) = %

5/3
. For β = 7

3
, we have

0 < max {γ1,γ2} = max {1
3 ,

5
3} =

5
3 <

7
3 = β <

11
3 = α,

and

℘1(%)
%β

=
%

1/3

%7/3
= %

−2
,

℘2(%)
%β

=
%

5/3

%7/3
= %

−2/3
,

which both are non increasing. To verify (3.2), by employing (4.2), we have

[∫
∞

0

m

∑
i=1

qi(η)℘i (δ R̊(σi(η))) dη

+
∞

∑
k=1

m

∑
i=1

qi(ιk)℘i (δ R̊(σi(ιk))) ]

≥ ∫
∞

0

m

∑
i=1

qi(η)℘i (δ R̊(σi(η))) dη

≥ ∫
∞

0
q1(η)℘1 (δ R̊(σ1(η))) dη

= ∫
∞

0

1
η + 1 (δ 11

3 (1 − e
−3(η−2)/11))

1/3

dη =∞, ∀ δ > 0, (4.3)

as integrand goes to +∞ since η to positive infinity.

One can see these results in Tables 1 and 2. We can see graphical representation of the
inequality (4.3) for η ∈ [0, 0.6] and η ∈ [0, 1.75] in Figure 1 (a) and (b), respectively, for η = 1.5
and δ ∈ {0.5, 2.5} in Figure 2. Algorithmes 1 and 2 can be used for this purpose.
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Table 1. Numerical results of the integral inequality (4.3) of IS for η ∈ {0.6, 1.75} in
Example 4.1.

η ∈ [0, 0.6]η ∈ [0, 0.6]η ∈ [0, 0.6] η ∈ [0, 1.75]η ∈ [0, 1.75]η ∈ [0, 1.75]
n η R̊ IS (4.3) η R̊ IS (4.3)

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0545 0.2015 0.0784 0.1591 0.5962 0.2188

3 0.1091 0.4060 0.1531 0.3182 1.2188 0.4122

4 0.1636 0.6136 0.2247 0.4773 1.8690 0.5861

5 0.2182 0.8243 0.2933 0.6364 2.5481 0.7444

6 0.2727 1.0381 0.3592 0.7955 3.2572 0.8901

7 0.3273 1.2552 0.4226 0.9545 3.9978 1.0254

8 0.3818 1.4755 0.4839 1.1136 4.7713 1.1519

9 0.4364 1.6991 0.5430 1.2727 5.5790 1.2709

10 0.4909 1.9261 0.6002 1.4318 6.4226 1.3835

11 0.5455 2.1564 0.6556 1.5909 7.3036 1.4905

12 0.6000 2.3902 0.7094 1.7500 8.2236 1.5926

Table 2. Numerical results of the integral inequality (4.3) of IS for η ∈ [0, 1.5] and δ ∈
{0.5, 2.5} in Example 4.1.

δ = 0.5δ = 0.5δ = 0.5 δ = 2.5δ = 2.5δ = 2.5

η R̊ IS (4.3) R̊ IS (4.3)

0.0000 0.0000 0.0000 0.0000 0.0000

0.1364 0.5094 0.1312 0.5094 0.2244

0.2727 1.0381 0.2490 1.0381 0.4259

0.4091 1.5869 0.3562 1.5869 0.6090

0.5455 2.1564 0.4546 2.1564 0.7773

0.6818 2.7475 0.5458 2.7475 0.9333

0.8182 3.3611 0.6310 3.3611 1.0790

0.9545 3.9978 0.7110 3.9978 1.2157

1.0909 4.6587 0.7865 4.6587 1.3449

1.2273 5.3447 0.8581 5.3447 1.4674

1.3636 6.0566 0.9263 6.0566 1.5840

1.5000 6.7955 0.9915 6.7955 1.6955
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η

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

R̊

0

1

2

3

4

5

6

7

8

9

η ∈ [0,0.6]

η ∈ [0,1.75]

(a) η ∈ [0, 0.6]
η

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

∫
∞

0

1

η + 1

(

δ
11

3

(

1− e

−3(η−2)
11

)

)
1
3

dη

η ∈ [0,0.6]

η ∈ [0,1.75]

(b) η ∈ [0, 1.75]

Figure 1. 2D plot numerical results of R̊ and the integral inequality of IS (4.3) for η ∈

{0.6, 1.75} in Example 4.1.

η
0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

∫
∞

0

1

η + 1

(

δ
11

3

(

1− e

−3(η−2)
11

)

)
1
3

dη

δ=0.5

δ=2.5

Figure 2. Graphical representation of of the integral inequality of IS (4.3) for η = 1.5 and
δ ∈ {0.5, 2.5} in Example 4.1.

Therefore, all the postulates of Theorem 3.2 hold true. Hence, by Theorem 3.2 all solution of (4.1)
is oscillatory.

Example 4.2. Let us assume nonlinear IS
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

((%′(ι))
1/3)

′

+ ι(%(ι − 2))7/3 + (ι + 1)(%(ι − 1))11/3
= 0

((%′(3k))
1/3)

′

+ (ι + 3)%(3k − 2)7/3 + (ι + 4) (%(3k − 1))
11/3
= 0 .

(4.4)

Now comparing with given system we have α = 1
3
, q́(ι) = 1, σ1(ι) = ι−2, σ2(ι) = ι−1, from (1.11)

R̊(ι) = ∫
ι

0
(q́(η))−1/α dη = ∫

ι

0
dη = ι, (4.5)
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℘1(%) = %
7/3 and ℘2(%) = %

11/3. For γ = 5
3
, thus

min {γ1,γ2} = {7
3 ,

11
3 } = 7

3 >
5
3 = γ >

1
3 = α,

also

℘1(%)
%γ

=
%

7/3

%5/3
= %

2/3
,

℘2(%)
%γ

=
%

11/3

%5/3
= %

2
,

two functions are increasing functions. To verify (3.11) we get

∫
∞

ι0

[ 1
q́(ζ) ∫

∞

S

m

∑
i=1

qi(η) dη +∑
ιk≥S

m

∑
i=1

qi(ιk)]
1/α

dζ

≥ ∫
∞

ι0

[ 1
q́(ζ) ∫

∞

ζ

m

∑
i=1

qi(η) dη]
1/α

dζ

≥ ∫
∞

ι0

[ 1
q́(ζ) ∫

∞

ζ

q1(η) dη]
1/α

dζ

≥ ∫
∞

2
[∫

∞

ζ

η dη]
3

dζ =∞.

Therefore, all postulate of Theorem 3.3 hold true. Hence, by Theorem 3.3, all solution of (4.4) is
oscillatory or converges to zero.

5. Conclusions

After concluding the paper and introducing [16, 17, 22, 23, 25, 29, 30, 33–35], we have an open
question that “Can we find the necessary and sufficient conditions for the oscillatory solution of the
second order neutral impulsive delay differential system with several delays and arguments”?
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Appendix

Algorithm 1: MATLAB lines for calculation all variables in Example 4.1 when η changes and the δ is constant.

1 clear;
2 format long;
3 syms v e;
4 q=[0.6 1.75];
5 [xq yq]=size(q);
6 upalpha=11/3; ∆=3/2;
7 acutemathrmq=exp(-v);
8 mathrmq 1=1/(v+1); mathrmq 2=1/(v+2);
9 wp 1=vˆ(1/3); wp 2=vˆ(5/3);

10 sigma 1=v-2; sigma 2=v-1;
11 column=1;
12 for s=1:yq
13 eta=q(s);
14 h=eta/11;
15 t=0;
16 n=1;
17 while t≤eta+0.05
18 paramsmatrix(n, column)=n;
19 paramsmatrix(n, column+1)=t;
20 I1=int((acutemathrmq)ˆ(-1/upalpha), v);
21 paramsmatrix(n, column+2)=int(subs(I1,{v},{e}), 0,t);
22 I2=∆*subs(I1,{v},sigma 1);
23 I3=mathrmq 1 * subs(wp 1,{v},I2);
24 I4=int(subs(I3,{v},{e}), e, 0, t);
25 paramsmatrix(n, column+3)=I4;
26 t=t+h;
27 n=n+1;
28 end;
29 column=column+4;
30 end;
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Algorithm 2: MATLAB lines for calculation all variables in Example 4.1 whenever η is constant and when the δ changes.

1 clear;
2 format long;
3 syms v e;
4 ∆=[0.5 2.5];
5 [x∆ y∆]=size(∆);
6 upalpha=11/3;
7 eta=3/2;
8 acutemathrmq=exp(-v);
9 mathrmq 1=1/(v+1); mathrmq 2=1/(v+2);

10 wp 1=vˆ(1/3); wp 2=vˆ(5/3);
11 sigma 1=v-2; sigma 2=v-1;
12 column=1;
13 for s=1:y∆

14 h=eta/11;
15 t=0;
16 n=1;
17 while t≤eta+0.05
18 paramsmatrix(n, column)=n;
19 paramsmatrix(n, column+1)=t;
20 I1=int((acutemathrmq)ˆ(-1/upalpha), v);
21 paramsmatrix(n, column+2)=int(subs(I1,{v},{e}), 0,t);
22 I2=∆(s)*subs(I1,{v},sigma 1);
23 I3=mathrmq 1 * subs(wp 1,{v},I2);
24 I4=int(subs(I3,{v},{e}), e, 0, t);
25 paramsmatrix(n, column+3)=I4;
26 t=t+h;
27 n=n+1;
28 end;
29 column=column+4;
30 end;
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