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Abstract: This paper investigates the existence of positive solutions for a nonhomogeneous nonlinear
integral equation of the form

up−1(x) =

∫
Ω

u(y)
|x − y|n−α

dy +

∫
Ω

f (y)
|x − y|n−α

dy, x ∈ Ω̄

where 2n
n+α
≤ p < 2, 1 < α < n, n > 2, Ω is a bounded domain in Rn. We show that under suitable

assumptions on f , the integral equation admits a positive solution in L
2n

n+α (Ω). Our method combines
the Ekeland variational principle, a blow-up argument and a rescaling argument which allows us to
overcome the difficulties arising from the lack of Brezis-Lieb lemma in L

2n
n+α (Ω).

Keywords: integral equation; Hardy-Littlewood-Sobolev inequality; blowing-up and rescaling
argument; Ekeland variational principle
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1. Introduction

This paper concerns the existence of positive solutions for the following integral equation:

up−1(x) =

∫
Ω

u(y)
|x − y|n−α

dy +

∫
Ω

f (y)
|x − y|n−α

dy, x ∈ Ω̄ (1.1)

where u ∈ Lp (Ω) , f ∈ Lp (Ω), n > 2, 2n
n+α

= pα ≤ p < 2, 1 < α < n and Ω is a bounded domain in Rn.
When we set f (x) = 0, Eq (1.1) simplifies to the subsequent integral equation:

up−1(x) =

∫
Ω

u(y)
|x − y|n−α

dy, x ∈ Ω̄. (1.2)

Indeed, the existence of solutions for problem (1.2) is connected to the classic sharp Hardy-Littlewood-
Sobolev (HLS) inequality:
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Theorem A. Let α ∈ (0, n). The classical sharp HLS inequality ( [15, 16, 19–21]) states that

|

∫
Rn

∫
Rn

f (x)|x − y|−(n−α)g(y)dxdy| ≤ N(p, α, n)‖ f ‖Lp(Rn)‖g‖Lt(Rn) (1.3)

for all f ∈ Lp (Rn) , g ∈ Lt (Rn) , 1 < p, t < ∞, 0 < α < n and 1/p + 1/t + (n − α)/n = 2. If
p = t = 2n/(n + α), then

|

∫
Rn

∫
Rn

f (x)|x − y|−(n−α)g(y)dxdy| ≤ Nα‖ f ‖L 2n
n+α (Rn)

‖g‖
L

2n
n+α (Rn)

holds for all f , g ∈ L
2n

n+α (Rn) where

Nα := N
(

2n
n + α

, α, n
)

= π(n−α)/2 Γ(α/2)
Γ(n/2 + α/2)

{
Γ(n/2)
Γ(n)

}−α/n
.

And the equality holds if and only if

f (x) = c1g(x) = c2

(
1

c3 + |x − x0|
2

) n+a
2

where c2 is any constant, c1, c3 are positive constants and x0 ∈ R
n. Clearly, inequality (1.3) is applicable

to bounded domains as well. Motivated by this, Dou and Zhu in [11] recently explored the Euler-
Lagrange equation for inequality (1.3) in a bounded domain, as per the following equation:

up−1 =

∫
Ω

u(y)
|x − y|n−α

dy, x ∈ Ω̄ (1.4)

where Ω is a bounded domain in Rn. Additionally, Dou and Zhu examined the subsequent general
equation:

up−1(x) =

∫
Ω

u(y)
|x − y|n−α

dy + λ

∫
u(y)

|x − y|n−α−1 dy, u ≥ 0, x ∈ Ω̄. (1.5)

Using the compact embedding theorem along with a blowing-up and rescaling argument (as mentioned
in Lemma 4.3 of [11]), they established the following theorem.
Theorem B. Assume α ∈ (1, n) and Ω is a smooth bounded domain.
(1) For 2n

n+α
< p < 2 (subcritical case), there is a positive solution u ∈ C1(Ω̄) to Eq (1.5) for any given

λ ∈ R;
(2) For p = 2n

n+α
(critical case) and λ > 0, there is a positive solution u ∈ C(Ω̄) to Eq (1.5).

Dou and Zhu in [11] established the existence results for weak solutions to (1.5) when λ > 0 and
p = pα. They considered the functional

Qλ(Ω) := sup
u∈Lpα (Ω)\{0}

∫
Ω

∫
Ω

u(x)
(
|x − y|−(n−α) + λ|x − y|−(n−α−1)

)
u(y)dxdy

‖u‖2Lpα (Ω)

.

Due to homogeneity, we know that the corresponding Euler-Lagrange equation for nonnegative
extremal functions up to a constant multiplier is the integral equation (1.5) for p = pα. It should
be noted that Eq (1.5) differs from Eq (1.1) due to the nonhomogeneous nature of Eq (1.1). Therefore,
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we cannot directly obtain the existence results for weak solutions to (1.1) using the approach of setting
up extremal problems as done in [11]. Integral equations or systems of integral equations on the
whole space, bounded domains or upper half space have been extensively studied previously as shown
in [6–10, 12–14, 17, 18, 23–25] and the references therein.

In relation to the nonhomogeneous critical semilinear elliptic equation associated with Eq (1.1),{
−∆u = |u|2

∗−2u + f (x) x ∈ Ω

u ∈ H1
0(Ω),

(1.6)

where 2∗ = 2n
n−2 is the critical Sobolev exponent, n > 2, Ω is a bounded domain in Rn with smooth

boundary. Tarantello [22] demonstrated that problem (1.6) possesses at least two solutions. The
fundamental idea is to partition the Nehari manifold Λ =

{
u ∈ W1,2

0 (Ω); 〈I′(u), u〉 = 0
}

into three disjoint
subsets, namely Λ+,Λ− and Λ0 and to employ the Ekeland variational principle to obtain one solution
in Λ+ and another solution in Λ−. The existence results for an elliptic problem of (p, q)-Laplacian
type, involving a critical term, a power-type nonlinearity at the critical level with a subcritical term,
nonnegative weights and a positive parameter λ have been discussed in the literature, specifically in
references [2, 3], for the entire space RN .

There exists a notable distinction between integral and differential equations. For instance, consider

u(x) =
1

c(n, α)

∫
Ω

f (u(y))
|x − y|n−α

dy, x ∈ Ω̄

where Ω is a bounded domain and c(n, α) is a constant, dependent only on n, α. Given f = u
n−2
n+2 and

α = 2, it can be observed that u must fulfill −∆u = c(n)u
n+2
n−2 , u > 0 in Ω,

u(x) =
∫

Ω

u
n+2
n−2 (y)
|x−y|n−2 dy on ∂Ω,

but not conversely, as seen in [11]. Furthermore, the difference between W1,2(Ω) and Lp(Ω)(1 < p < 2)
arises challenges when attempting to treat integral equations in the same manner as differential
equations. For instance, the Brezis-Lieb lemma [4] cannot be applied in Lp(Ω)(1 < p < 2) because
almost-everywhere convergence of sequences cannot be inferred from weak convergence of sequences
in Lp(Ω)(1 < p < 2). This fact complicates our attempts to prove the existence of the solution
to Eq (1.1) using the variational method to handle Eq (1.6).

Inspired by the work described above, our study differs from previous works on integral equations
which primarily focused on the homogeneous case in that we instead handle the nonhomogeneous
case. Therefore, we consider the existence of positive solutions for Eq (1.1) for pα ≤ p < 2. A
function u ∈ Lp(Ω) is said to be a solution of (1.1) if u satisfies∫

Ω

|u|p−1w −
∫

Ω

∫
Ω

u(x)w(y)
|x − y|n−α

dxdy −
∫

Ω

∫
Ω

w(x) f (y)
|x − y|n−α

dxdy = 0 for all w ∈ Lp(Ω).

Consider functionals I : Lp(Ω)→ R:

I(u) =
1
p

∫
Ω

|u|p −
1
2

∫
Ω

∫
Ω

u(x)u(y)
|x − y|n−α

dxdy −
∫

Ω

∫
Ω

u(x) f (y)
|x − y|n−α

dxdy.
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Let

ũ(x) =

{
u(x), x ∈ Ω,

0, x ∈ Rn\Ω,
w̃(x) =

{
w(x), x ∈ Ω,

0, x ∈ Rn\Ω.

For u,w ∈ Lp(Ω), due to HLS inequality and Hölder inequality, we have∫
Rn

∫
Rn

ũ(x)|x − y|−(n−α)w̃(y)dxdy

≤ Nα‖ũ‖Lpα (Rn)‖w̃‖Lpα (Rn) = Nα‖u‖Lpα (Ω)‖w‖Lpα (Ω)

≤ C(n, p, α,Ω)‖u‖Lp(Ω)‖w‖Lp(Ω).

This implies that I ∈ C1 (Lp(Ω),R).
We first investigate the critical problem, leading to the following existence result, which is the

principal outcome of this paper.

Theorem 1.1. Assume that f (x) is a non-negative function satisfying the following conditions:

(A1) For small enough ε, ‖ f ‖pα < min{C(n, pα, α,Ω)N
1

pα−2
α , ε

n+α
2 };

(A2) f (x) ∈ C0(Bδ(x∗))
⋂

Lpα+δ(Ω), f (x∗) > 0 where Bδ(x∗) ⊆ Ω for some x∗ ∈ Ω and δ > 0 is
small enough.
Then, problem (1.1) has at least one positive solution u ∈ Lpα (Ω), 1 < α < (

√
2 − 1)n, n > 2 and Ω is

a bounded domain in Rn.

Next, we examine the existence result for Eq (1.1) in the subcritical case.

Theorem 1.2. Let f (x) ∈ Lp(Ω), f (x) , 0, ‖ f ‖p < C(n, p, α,Ω)N
1

p−2
α . Then problem (1.1) has at least

two positive solutions u0, u1 ∈ Lp (Ω), 2n
n+α

< p < 2, 1 < α < n, n > 2 and Ω is a bounded domain
in Rn.

Remark 1.1. In what follows, we proceed with the proof of these theorems. For the critical case, we
employ the Ekeland variational principle (see [22]) and a blow-up argument and a rescaling argument to
find a weak solution of (1.1). In the process of proving the main theorem (Theorem 1.1), we encounter
difficulties similar to those in [22]. In [22], the following core lemma is required to be proved:

Lemma 1.1. For f , 0, n > 2, p = 2n
n−2 ,

µ0 =: inf
‖u‖p=1

(
cn‖∇u‖(n+2)/2 −

∫
Ω

f u
)

is achieved, where cn is a constant that only depends on n.

Similarly, we aim to show that for p = pα,

Qp(Ω) =: inf
‖u‖p=1

(
cn,α(

∫
Ω

∫
Ω

u(x)u(y)
|x − y|n−α

dxdy)
(p−1)
p−2 −

∫
Ω

∫
Ω

u(x) f (y)
|x − y|n−α

dxdy
)

is achieved in this paper. It’s important to note that the Brezis-Lieb lemma [4] plays a crucial role
in proving Lemma 1.1 through the variational method. However, since 1 < pα < 2, the Brezis-Lieb
lemma [4] does not hold in Lpα(Ω). Consequently, the proof method of Lemma 1.1 fails to prove that
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Qpα(Ω) is achieved. To solve the problem, we use a blow-up argument and a rescaling argument in this
paper. First, for 2n

n+α
< p < 2, we can show Qp(Ω) is achieved at a point up. For p = pα, we will show

limp→pα

∥∥∥up

∥∥∥
L∞(Ω)

≤ C, by a blow-up argument and a rescaling argument. Thus, up → u∗ as p→ pα in
C(Ω̄). Once Qp(Ω) is achieved, we can prove that problem (1.1) has at least one positive solution by
Ekeland variational principle.

The structure of this paper is as follows: In Section 2, we provide preliminary results. In Section 3,
we prove Theorems 1.1 and 1.2.

Throughout this paper, we utilize the symbols c and C to represent various positive constants, the
value of which may change from one line to another.

2. Preliminaries

To obtain the proof of the main theorems, several preliminary are needed. Let

Λ =

{
u ∈ Lp(Ω) : ‖u‖p

p −

∫
Ω

∫
Ω

u(x)u(y)
|x − y|n−α

dxdy −
∫

Ω

∫
Ω

u(x) f (y)
|x − y|n−α

dxdy = 0
}
,

Λ+ =

{
u ∈ Λ : (p − 1)‖u‖p

p −

∫
Ω

∫
Ω

u(x)u(y)
|x − y|n−α

dxdy > 0
}
,

Λ0 =

{
u ∈ Λ : (p − 1)‖u‖p

p −

∫
Ω

∫
Ω

u(x)u(y)
|x − y|n−α

dxdy = 0
}
,

Λ− =

{
u ∈ Λ : (p − 1)‖u‖p

p −

∫
Ω

∫
Ω

u(x)u(y)
|x − y|n−α

dxdy < 0
}
.

Lemma 2.1. Let f , 0 satisfy (A1). For every u ∈ Lp (Ω) , pα ≤ p < 2, u , 0, there exists unique
t+ = t+(u) > 0 such that t+u ∈ Λ−. In particular:

t+ >


∫

Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy

(p − 1)‖u‖p
p


1/(p−2)

:= tmax

and I (t+u) = maxt≥tmax I(tu).Moreover, if
∫

Ω

∫
Ω

u(x) f (y)
|x−y|n−α dxdy > 0, then there exists a unique t− = t−(u) > 0

such that t−(u) ∈ Λ+. In particular,

t− <


∫

Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy

(p − 1)‖u‖p
p


1/(p−2)

,

I (t−u) ≤ I(tu),∀t ∈ [0, t+].

Proof. Let ϕ(t) = tp−1‖u‖p
p− t

∫
Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy. Easy computations show that ϕ is concave and achieves

its maximum at

tmax =


∫

Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy

(p − 1)‖u‖p
p


1/(p−2)

.

Also

ϕ (tmax) =

[
1

p − 1

](p−1)/(p−2)

(2 − p)

 (
∫

Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy)(p−1)

‖u‖p
p


1/(p−2)

,
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that is

ϕ (tmax) = cn,α

 (
∫

Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy)(p−1)

‖u‖p
p


1/(p−2)

.

Thus, if
∫

Ω

∫
Ω

u(x) f (y)
|x−y|n−α dxdy ≤ 0, then there exists a unique t+ > tmax such that: ϕ (t+) =

∫
Ω

∫
Ω

u(x) f (y)
|x−y|n−α dxdy

and ϕ′ (t+) < 0. Equivalently t+u ∈ Λ− and I (t+u) ≥ I(tu), ∀t ≥ tmax. In case∫
Ω

∫
Ω

u(x) f (y)
|x−y|n−α dxdy > 0, by assumption (A1) we have that necessarily,

∫
Ω

∫
Ω

u(x) f (y)
|x − y|n−α

dxdy < cn,α

 (
∫

Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy)(p−1)

‖u‖p
p


1/(p−2)

= ϕ (tmax) .

Therefore, in this case, we have unique 0 < t− < tmax < t+ such that

ϕ
(
t+) =

∫
Ω

∫
Ω

u(x) f (y)
|x − y|n−α

dxdy = ϕ
(
t−
)

and
ϕ′

(
t−
)
> 0 > ϕ′

(
t+) .

Equivalently t+u ∈ Λ− and t−u ∈ Λ+. �

Let

Qp(Ω) = inf
u∈Lp(Ω)\{0}

‖u‖
2 p−1

2−p

Lp(Ω)

cn,α(
∫

Ω

∫
Ω

u(x)
(
|x − y|−(n−α)u(y)

)
dydx))

p−1
2−p

− ‖u‖−1
Lp(Ω)

∫
Ω

∫
Ω

u(x)
(
|x − y|−(n−α) f (y)

)
dydx,

we show

Lemma 2.2. Assume that f (x) is a non-negative function satisfying (A2).
Then, Qp(Ω) < 1

cn,α(Nα)
p−1
2−p
,where p = pα.

Proof. Similar to the proof of Lemma 4.1 of [11], let x∗ ∈ Ω. For small positive ε and a fixed R > 0 so
that BR (x∗) ⊂ Ω, we define

ũε(x) =

{
uε(x) x ∈ BR (x∗) ⊂ Ω,

0 x ∈ Rn\BR (x∗) ,

where

uε(x) = e−
n+α

2 u
(
|x − x∗|
ε

)
=

(
ε

ε2 + |x − x∗|2

) n+α
2

.

Obviously, ũε ∈ Lpα (Rn) . Thus, similar to the proof of Proposition 2.1 of [11] we have∫
Ω

∫
Ω

1
|x−y|n−α ũε(x)ũε(y)dxdy

=
∫
Rn

∫
Rn

1
|x−y|n−α uε(x)uε(y)dxdy

−2
∫
Rn

∫
Rn\BR(x∗)

uε (x)uε (y)
|x−y|n−α dxdy +

∫
Rn\BR(x∗)

∫
Rn\BR(x∗)

uε (x)uε (y)
|x−y|n−α dxdy

= Nα ‖uε‖2Lpα (Rn) − I1 + I2

(2.1)
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where

I1 = 2
∫
Rn

∫
Rn\BR(x∗)

uε(x)uε(y)
|x − y|n−α

dxdy = C
∫
Rn\BR(x0)

u
2n

n+α
ε (x)dx = O

(R
ε

)−n

as ε → 0,

I2 =

∫
Rn\BR(x∗)

∫
Rn\BR(x∗)

uε(x)uε(y)
|x − y|n−α

dxdy ≤ Nα ‖uε‖2Lpα(Rn
\BR(x0)) = O

(R
ε

)−n−α

as ε → 0.

By (A2), we have f (x) ∈ C0(Bδ(x∗)), Bδ(x∗) ⊆ Ω for some point x∗ within Ω and a positive real
number δ. Subsequently, we can select δ1 such that 0 < δ1 < δ thereby ensuring f (x) > C for
every x in the ball Bδ1(x∗) where C is a constant independent of x. Choose ε < R so that |εη| < δ1 if
η ∈ B1(0). Set

I3 :=
∫

BR(x∗)

∫
Ω

uε(x) f (y)
|x − y|n−α

dxdy.

For I3, we have

I3 :=
∫

BR(x∗)

∫
Ω

|x − y|−(n−α)
(

ε

ε2 + |x − x∗|2

) n+α
2

f (y)dxdy

≥

∫
BR(x∗)

∫
BR(x∗)

|x − y|−(n−α)
(

ε

ε2 + |x − x∗|2

) n+α
2

f (y)dxdy

= ε−
n+α

2 +α−n+2n
∫

B R
ε

(0)

∫
B R
ε

(0)
|ξ − η|−(n−α)

(
1 + |ξ|2

)− n+α
2 f (εη + x∗)dξdη

≥ ε−
n+α

2 +α−n+2n
∫

B1(0)

∫
B1(0)
|ξ − η|−(n−α)

(
1 + |ξ|2

)− n+α
2 Cdξdη

≥ C0ε
n+α

2 .

So, for 1 < α < (
√

2 − 1)n and small enough ε, we get

Qp(Ω) ≤
‖uε‖

2 p−1
2−p

Lp(Ω)

cn,α(
∫

Ω

∫
Ω

uε(x)
(
|x − y|−(n−α)uε(y)

)
dydx))

p−1
2−p

− ‖uε‖−1
Lp(Ω)

∫
Ω

∫
Ω

uε(x)
(
|x − y|−(n−α) f (y)

)
dydx

=
‖uε‖

2 p−1
2−p

Lp(Ω)

(Nα ‖uε‖2Lp(Rn) − I1 + I2)
p−1
2−p

− ‖uε‖−1
Lp(Ω)I3

≤
1

(Nα − I1‖uε‖−2
Lp(Ω))

p−1
2−p

− ‖uε‖−1
Lp(Ω)I3

≤
1

(Nα)
p−1
2−p

+ C(I1)
p−1
2−p − ‖uε‖−1

Lp(Ω)I3

≤
1

(Nα)
p−1
2−p

+ C1

(R
ε

)−n( n−α
2α )

−C0ε
n+α

2

≤
1

(Nα)
p−1
2−p

−C0ε
n+α

2 .
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Notation: For any function u(x) defined on Ω, we always use

Iα,Ωu(x) =

∫
Ω

u(y)
|x − y|n−α

dy.

Lemma 2.3. (Lemma 3.1 of [11]) Let p > pα and p
′

=
p

p−1 be its conjugate. There exists a positive
constant C(n, α,Ω) > 0 such that

‖Iα,Ωu‖Lp′ (Ω) ≤ C(n, p, α,Ω)‖u‖Lp(Ω) (2.2)

holds for any u ∈ Lp(Ω). Moreover, for α > 1 operator Iα,Ω : Lp(Ω) ↪→ Lp
′

(Ω) is a compact embedding.

Lemma 2.4. Assume f (x) is a non-negative function satisfying (A1), (A2). Then,

inf
‖u‖p=1

(
cn,α(

∫
Ω

∫
Ω

u(x)u(y)
|x − y|n−α

dxdy)
(p−1)
p−2 −

∫
Ω

∫
Ω

u(x) f (y)
|x − y|n−α

dxdy
)

:= Qp(Ω)

is achieved and Qp(Ω) > 0, where p = pα.

Proof. In order to establish the conclusion, we need to prove that

Qp(Ω) = inf
u∈Lp(Ω),‖u‖

−p p−1
p−2

Lp(Ω) =1

cn,α(
∫

Ω

∫
Ω

u(x)
(
|x − y|−(n−α)u(y)

)
dydx))

p−1
p−2

−

∫
Ω

∫
Ω

u(x)
(
|x − y|−(n−α) f (y)

)
dydx

is achieved, where p = pα. For this purpose, for 2 > p > pα, we wil show that the infinum is attained
by a positive function up. To do this, all we have to do is show

Qp(Ω) = inf
u∈Lp(Ω)\{0}

cn,α‖u‖
−2 p−1

p−2

Lp(Ω) (
∫

Ω

∫
Ω

u(x)
(
|x − y|−(n−α)u(y)

)
dydx))

p−1
p−2

− ‖u‖−1
Lp(Ω)\{0}

∫
Ω

∫
Ω

u(x)
(
|x − y|−(n−α) f (y)

)
dydx

is achieved. By Lemma 2.3, we have∥∥∥Iα,Ωu
∥∥∥

Lp′ (Ω)
≤ C(N, p, α,Ω)‖u‖Lp(Ω)

where p
′

=
p

p−1 . Together with the HLS inequality this implies:

cn,α‖u‖
−2 p−1

p−2

Lp(Ω) (
∫

Ω

∫
Ω

u(x)
(
|x − y|−(n−α)u(y)

)
dydx))

p−1
p−2

− ‖u‖−1
Lp(Ω)

∫
Ω

∫
Ω

u(x)
(
|x − y|−(n−α) f (y)

)
dydx

≥ cn,α(
‖u‖Lp(Ω)

‖Iα,Ωu‖Lp′ (Ω)

)
p−1
2−p −

‖Iα,Ωu‖Lp′ (Ω)‖ f ‖Lp(Ω)

‖u‖Lp(Ω)

≥ cn,α(
1

C(n, p, α,Ω)
)

p−1
2−p −C(n, p, α,Ω)‖ f ‖Lp(Ω).
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Select a minimizing positive sequence
{
u j

}∞
j=1

such that
∥∥∥Iα,Ωu j

∥∥∥
Lp′ (Ω)

= 1. Thus,
{
u j

}
is bounded in

Lp(Ω). It follows that there exists a subsequence {u j}(still denoted as {u j}) and u∗ ∈ Lp(Ω) such that

u j ⇀ u∗ in Lp(Ω), so ‖u∗‖Lp(Ω) ≤ lim inf
j→∞

∥∥∥u j

∥∥∥
Lp(Ω)

.

By Lemma 2.3, we get
Iα,Ωu j → Iα,Ωu∗ in Lp′(Ω).

Then,

Qp(Ω) = lim
j→∞

cn,α‖u j‖
−2 p−1

p−2

Lp(Ω) (
∫

Ω

∫
Ω

u j(x)
(
|x − y|−(n−α)u j(y)

)
dydx))

p−1
p−2

− ‖u j‖
−1
Lp(Ω)\{0}

∫
Ω

∫
Ω

u j(x)
(
|x − y|−(n−α) f (y)

)
dydx

≥ cn,α‖u∗‖
−2 p−1

p−2

Lp(Ω) (
∫

Ω

∫
Ω

u∗(x)
(
|x − y|−(n−α)u∗(y)

)
dydx))

p−1
p−2

− ‖u∗‖−1
Lp(Ω)\{0}

∫
Ω

∫
Ω

u∗(x)
(
|x − y|−(n−α) f (y)

)
dydx.

Therefore, u∗ is a minimizer. Thus, we have

Qp(Ω) = inf
u∈Lp(Ω)\{0}

cn,α‖u‖
−2 p−1

p−2

Lp(Ω) (
∫

Ω

∫
Ω

u(x)
(
|x − y|−(n−α)u(y)

)
dydx))

p−1
p−2

− ‖u‖−1
Lp(Ω)\{0}

∫
Ω

∫
Ω

u(x)
(
|x − y|−(n−α) f (y)

)
dydx.

Also, by considering u
‖u‖p

, we have

Qp(Ω) = inf
u∈Lp(Ω),‖u‖

−p p−1
p−2

Lp(Ω) =1

cn,α(
∫

Ω

∫
Ω

u(x)
(
|x − y|−(n−α)u(y)

)
dydx))

p−1
p−2

−

∫
Ω

∫
Ω

u(x)
(
|x − y|−(n−α) f (y)

)
dydx

is achieved, where 2 > p > pα. Thus, for 2 > p > pα, the infinum is attained by a positive function up,

which satisfies the following equation with subcritical exponent

(Qp(Ω) +

∫
Ω

∫
Ω

p
2(p − 1)

up(x) f (y)
|x − y|n−α

dxdy)
up−1

p (x)

‖up‖
p p−1

2−p +p

Lqα(Ω)

= cn,α(
∫

Ω

∫
Ω

up(x)up(y)
|x − y|n−α

dxdy)
1

p−2

∫
Ω

up(y)
|x − y|n−α

dy −
p − 2

2(p − 1)

∫
Ω

f (y)
|x − y|n−α

dy, x ∈ Ω̄,

(2.3)

where
∥∥∥up

∥∥∥
p

= 1. We claim that up ∈ C(Ω̄) and Qp → Qpα for p→ pα. First, we prove that up ∈ C(Ω̄).
According to Eq (2.3), by writing g(x) = up−1(x), we can obtain a weak positive solution g(x) ∈ Lp′(Ω)
to

g(x) = C(n, p, α,Ω)
∫

Ω

gp′−1(y)
|x − y|n−α

dy + C(n, p, α,Ω)
∫

Ω

f (y)
|x − y|n−α

dy, x ∈ Ω̄, (2.4)

AIMS Mathematics Volume 8, Issue 9, 22207–22224.



22216

for p′ < 2n
n−α = qα. By (2.4) and HLS inequality, we have

‖g‖Ls(Ω) =
∥∥∥Iα,Ωgp′−1

∥∥∥
Ls(Ω)
≤ C(n, p, α,Ω)

∥∥∥up′−1
∥∥∥

Lt(Ω)
+ C(n, p, α,Ω)‖ f ‖p

for 1/s = 1/t − α/n. By employing a similar method as in Lemma 3.3 of [11], we can use the above
inequality in an iterative process to obtain g ∈ C(Ω̄). Therefore, we can conclude that up ∈ C(Ω̄). Using
a similar method as in Lemma 2.3 of [5], we apply Proposition 2.1 in [11] and the Hölder inequality
to find a minimizing sequence of Qpα from the minimizer up. Consequently, we can establish that
Qp → Qpα as p→ pα.

Next, we need to show limp→pα

∥∥∥up

∥∥∥
L∞(Ω)

≤ C. We prove this by contradiction. Suppose not. Let

up

(
xp

)
= maxΩ̄ up(x). Then up

(
xp

)
→ ∞ as p → pα. Let µp = u

p−2+
p

2−p
p

(
xp

)
and Ωµ =

Ω−xp

µp
:={

z|z =
x−xp

µp
for x ∈ Ω

}
. We define gp(z) = µ

−p2+4+p
p−2

p up

(
µpz + xp

)
for z ∈ Ωµ. Then, gp satisfies

(Qp(Ω)
gp−1

p (z)

‖gp‖
p p−1

2−p +p

Lp(Ω)

+

∫
Ω

∫
Ω

p
2(p − 1)

up(x) f (y)
|x − y|n−α

dxdy
gp−1

p (z)

‖gp‖
p p−1

2−p +p

Lp(Ω)

= cn,α(
∫

Ωµ

∫
Ωµ

gp(x)gp(y)
|x − y|n−α

dxdy)
1

p−2

∫
Ωµ

gp(y)
|z − y|n−α

dy

−
p − 2

2(p − 1)

∫
Ω

u
(1−p)((p−2+

p
p−1 )n)( p−1

2−p +1)
p (xp) f (y)

|x − y|n−α
dy,

and gp(0) = 1, gp(z) ∈ (0, 1].
For p close to pα with 1 < α < n, we have (1 − p)((p − 2 +

p
p−1 )n)( p−1

2−p + 1) < 0.

∫
Ω

u
(1−p)((p−2+

p
p−1 )n)( p−1

2−p +1)
p (xp) f (y)

|x − y|n−α
dy ≤ Cn,αu

(1−p)((p−2+
p

p−1 )n)( p−1
2−p +1)

p (xp)‖ f ‖p

→ 0, as p→ pα.

(2.5)

Additionally, let Ωc
R = Ω\B̄Rµp

(
xp

)
. For p close to pα, we know α < n/p. We can observe that for any

fixed
∣∣∣x − xp

∣∣∣ < Cµp, as R being chosen large enough

∫
Ωc

R

up(y)
|x − y|n−α

dy ≤
∥∥∥up

∥∥∥
p
·


∫

Ωe
R

[
1

|x − y|n−α

] p
p−1

dy


p−1

p

≤ C
(
Rµp

)α− n
p
.

Thus, ∫
Ωc

R

u
(1−p)((p−2+

p
p−1 )n)( p−1

2−p +1)
p (xp) · up(y)

|x − y|n−α
dy ≤ CRα− n

p · u
(1−p)((p−2+

p
p−1 )n)( p−1

2−p +1)
p (xp)→ 0 (2.6)

as p→ pα and R→ ∞. As p→ pα, there are two cases:
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Case 1. Ωµ → Rn, and up(z) → g(z) point-wise in Rn where g(z) satisfies from
estimates (2.5) and (2.6) :

(Qpα(Ω)
gpα−1

pα (z)

‖gpα‖
pα

pα−1
2−pα

+pα

Lpα(Rn)

+ lim
p→pα

∫
Ω

∫
Ω

p
2(p − 1)

up(x) f (y)
|x − y|n−α

dxdy
gpα−1

pα (z)

‖gpα‖
pα

pα−1
2−pα

+pα

Lpα(Rn)

= cn,α(
∫
Rn

∫
Rn

gpα(x)gpα(y)
|x − y|n−α

dxdy)
1

pα−2

∫
Rn

gpα(y)
|z − y|n−α

dy, z ∈ Ω̄.

(2.7)

Also, direct computation yields

1 =

∫
Ω

up
p(y)dy = u

(p−2+
p

p−1 )n+p
p (xp)gp

pdz ≥
∫

Ωµ

gp
pdz.

Thus
∫
Rn gpαdz ≤ 1. Combining this with (2.7) and Lemma 2.2, we have

1

cn,α(Nα)
pα−1
2−pα

≤
‖g‖

2 pα−1
2−pα

Lpα (Rn)

cn,α(
∫
Rn

∫
Rn g(x)

(
|x − y|−(n−α)g(y)

)
dydx))

pα−1
2−pα

≤
‖g‖

pα
pα−1
2−pα

Lpα (Rn)

cn,α(
∫
Rn

∫
Rn g(x)

(
|x − y|−(n−α)g(y)

)
dydx))

pα−1
2−pα

= Qpα(Ω) + lim
p→pα

∫
Ω

∫
Ω

p
2(p − 1)

up(x) f (y)
|x − y|n−α

dxdy

<
1

cn,α(Nα)
pα−1
2−pα

−C0ε
n+α

2 + C‖ f ‖Lpα (Ω)

<
1

cn,α(Nα)
pα−1
2−pα

.

This is a contradiction.
Case 2. Ωµ → Rn

T := {(z1, z2, · · · , zn) |zn > −T } for some T > 0, gq(z) → g(z) pointwise in
Rn

T , where g(z) satisfies from estimates (2.5) and (2.6) :

Qpα(Ω)gqα−1 =

∫
Rn

T

g(y)
|z − y|n−α

dy, g(0) = 1.

Similarly, we know
∫
Rn gpαdz ≤ 1. Combining this with (2.7), A2 and Lemma 2.2, we have
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1

cn,α(Nα)
pα−1
2−pα

≤
‖g‖

2 pα−1
2−pα

Lpα (RTn)

cn,α(
∫
RT

n

∫
RT

n g(x)
(
|x − y|−(n−α)g(y)

)
dydx))

pα−1
2−pα

≤
‖g‖

pα
pα−1
2−pα

Lpα (Rn)

cn,α(
∫
Rn

∫
Rn g(x)

(
|x − y|−(n−α)g(y)

)
dydx))

pα−1
2−pα

= Qpα(Ω) + lim
p→pα

∫
Ω

∫
Ω

p
2(p − 1)

up(x) f (y)
|x − y|n−α

dxdy

<
1

cn,α(Nα)
pα−1
2−pα

−C0ε
n+α

2 + C‖ f ‖Lpα (Ω)

<
1

cn,α(Nα)
pα−1
2−pα

.

This is a contradiction.
Let up > 0 be solutions to (2.3) for p ∈ (pα, 2) which are also the minimizers of the energy Qp(Ω).

Then,
∥∥∥up

∥∥∥
L∞(Ω̄)

≤ C, which yields that up is uniformly bounded and equi-continuous due to Eq (2.3).
Thus, up → u∗ as p→ pα in C(Ω̄), and u∗ is the energy minimizer for Qpα(Ω). �

Lemma 2.5. Let f be a non-negative function satisfying (A1), (A2). For every u ∈ Λ, u , 0, p = pα we
have

(p − 1)‖u‖p
p −

∫
Ω

∫
Ω

u(x)u(y)
|x − y|n−α

dxdy , 0,

(i.e., Λ0 = {0}).

Proof. By contradiction, assume that for some u ∈ Λ with u , 0, we have

(p − 1)‖u‖p
p −

∫
Ω

∫
Ω

u(x)u(y)
|x − y|n−α

dxdy = 0. (2.8)

Thus, we have

0 = ‖u‖p
p −

∫
Ω

∫
Ω

u(x)u(y)
|x − y|n−α

dxdy−
∫

Ω

∫
Ω

u(x) f (y)
|x − y|n−α

dxdy = (2− p)‖u‖p
p −

∫
Ω

∫
Ω

u(x) f (y)
|x − y|n−α

dxdy. (2.9)

Using the HLS inequality and the condition (2.8), we have

‖u‖p =

(
p − 1
Nα

)1/(2−p)

:= γ,

and from (2.9) we obtain:
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0 < Qp(Ω)γ 5 ψ(u) =[
1

p − 1

](p−1)/(p−2)

(2 − p)


∫

Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy(p−1)

‖u‖p
p


1/(p−2)

−

∫
Ω

∫
Ω

u(x) f (y)
|x − y|n−α

dxdy

= (2 − p)


[

1
p − 1

](p−1)/(p−2)

∫

Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy(p−1)

‖u‖p
p


1/(p−2)

− ‖u‖p
p


= (2 − p)‖u‖p

p



∫

Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy

(p − 1)‖u‖p
p


(p−1)/(p−2)

− 1

 = 0,

which leads to a contradiction. �

As a consequence of Lemma 2.5 we have:

Lemma 2.6. Let f (x) be a non-negative function satisfying (A1), (A2). Given u ∈ Λ, u , 0, p = pα,
there exist ε > 0 and a differentiable function t = t(w) > 0, w ∈ Lp(Ω), ‖w‖ < ε satisfying the
following properties:

t(0) = 1, t(w)(u − w) ∈ Λ, for ‖w‖ < ε

and

〈t′(0),w〉 =
p
∫

Ω
|u|p−2uw − 2

∫
Ω

∫
Ω

u(x)w(y)
|x−y|n−α dxdy −

∫
Ω

∫
Ω

f (x)w(y)
|x−y|n−α dxdy

(p − 1)‖u‖p
p −

∫
Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy

. (2.10)

Proof. Define F : R × Lp(Ω)→ R as follows:

F(t,w) = tp−1‖u − w‖p
p − t

∫
Ω

∫
Ω

(u(x)−w(x))(u(y)−w(y))
|x−y|n−α dxdy

−
∫

Ω

∫
Ω

f (x)(u(y)−w(y))
|x−y|n−α dxdy.

Since F(1, 0) = 0 and Ft(1, 0) = (p − 1)‖u‖p
p −

∫
Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy , 0 (by Lemma 2.5), we can apply the

implicit function theorem at the point (1, 0) and obtain the desired result. �

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let us denote

p = pα, inf
Λ

I = c0. (3.1)

We will first show that I is bounded from below in Λ. For u ∈ Λ, we have:∫
Ω

|u|p −
∫

Ω

∫
Ω

u(x)u(y)
|x − y|n−α

dxdy −
∫

Ω

∫
Ω

u(x) f (y)
|x − y|n−α

dxdy = 0.

Thus,
I(u) = 1

p

∫
Ω
|u|p − 1

2

∫
Ω

∫
Ω

u(x)u(y)
|x−y|n−α dxdy −

∫
Ω

∫
Ω

u(x) f (y)
|x−y|n−α dxdy

≥ ( 1
p −

1
2 )‖u‖p

p −
Nα

2 ‖u‖p‖ f ‖p ≥ C‖ f ‖
p

p−1
p .
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In particular, we have

c0 ≥ C‖ f ‖
p

p−1
p .

To obtain an upper bound for c0, let v ∈ Lp(Ω) be a positive solutions for up−1 =
∫

Ω

f (y)
|x−y|n−α dy. So, for

f , 0 ∫
Ω

∫
Ω

f (x)v(y)
|x − y|n−α

dxdy = ‖v‖p
p > 0.

Set t0 = t−(v) > 0 as defined by Lemma 2.1. It follows that t0v ∈ Λ+ and

I (t0v) =
tp
0

p

∫
Ω

|v|p −
t2
0

2

∫
Ω

∫
Ω

v(x)v(y)
|x − y|n−α

dxdy − t0

∫
Ω

∫
Ω

v(x) f (y)
|x − y|n−α

dxdy

= tp
0 (

1
p
− 1)

∫
Ω

|v|p +
t2
0

2

∫
Ω

∫
Ω

v(x)v(y)
|x − y|n−α

dxdy <
−2nα + 2α2

n + α
tp
0

∫
Ω

|v|p.

This implies

c0 <
−2nα + 2α2

n + α
tp
0

∫
Ω

|v|p < 0. (3.2)

It is clear that Ekeland’s variational principle (see [1], Corollary 5.3.2) holds for the minimization
problem (3.1). This principle provides a minimizing sequence {um} ⊂ Λ with the following properties:
(i) I (um) < c0 + 1

m , (ii) I(w) ≥ I (um) − 1
m ‖(w − um)‖p ,∀w ∈ Λ. By taking m large, from (3.2) we have

I (um) = ( 1
p −

1
2 )

∫
Ω
|um|

p − 1
2

∫
Ω

∫
Ω

um(x) f (y)
|x−y|n−α dxdy

< c0 + 1
m < −2nα+2α2

n+α
tp
0

∫
Ω
|v|p.

(3.3)

Thus, it follows that
1
2

∫
Ω

∫
Ω

um(x) f (y)
|x − y|n−α

dxdy =
2nα − 2α2

n + α
tp
0

∫
Ω

|v|p > 0. (3.4)

Therefore, we have um , 0. By applying HLS inequality, um , 0 and (3.3), we obtain

‖um‖p ≤ Cn,α‖ f ‖
1

p−1
p . (3.5)

Using HLS inequality and (3.4), we have

Cn,α
‖v‖p

p

‖ f ‖p
≤ ‖um‖p. (3.6)

Applying (3.5) and (3.6), we obtain

Cn,α
‖v‖p

p

‖ f ‖p
≤ ‖um‖p ≤ Cn,α‖ f ‖

1
p−1
p . (3.7)

Our goal is to show that ‖I′ (um)‖p → 0 as m → +∞. Hence, let us assume ‖I′ (um)‖p > 0 for m large
(otherwise we are done). Applying Lemma 2.6 with u = um and w = δ I′(um)

‖I′(um)‖p
, δ > 0 small, we find

tm(δ) := t
[
δ I′(um)
‖I′(um)‖p

]
such that

wδ = tm(δ)
[
um − δ

I′ (um)
‖I′ (um)‖p

]
∈ Λ.
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Using condition (ii) we have

1
m
‖(wδ − um)‖p ≥ I (um) − I (wδ) = (1 − tm(δ)) 〈I′ (wδ) , um〉

+ δtm(δ)
〈
I′ (wδ) ,

I′ (um)
‖I′ (um)‖p

〉
+ o(δ).

Dividing by δ > 0 and passing to the limit as δ→ 0 we derive

1
m

(
1 +

∣∣∣t′m(0)
∣∣∣ ‖um‖p

)
≥ −t′m(0) 〈I′ (um) , um〉 + ‖I′ (um)‖p = ‖I′ (um)‖p

where we set t′m(0) =

〈
t′(0), I′(um)

‖I′(um)‖p

〉
. Thus, from (3.7) we conclude that

‖I′ (um)‖p ≤
C
m

(
1 +

∣∣∣t′m(0)
∣∣∣)

for a suitable positive constant C. We do this once we show that
∣∣∣t′m(0)

∣∣∣ is bounded uniformly on m.
From (2.10) and the estimate (3.7) we get

|t′m(0)
∣∣∣ ≤ C1

| (p − 1)‖um‖
p
p −

∫
Ω

∫
Ω

um(x)um(y)
|x−y|n−α dxdy |

,

C1 > 0 suitable constant. Hence, we need to show that | (p− 1)‖um‖
p
p −

∫
Ω

∫
Ω

um(x)um(y)
|x−y|n−α dxdy | is bounded

away from zero.
On the contrary, suppose that for a subsequence which we still call um we have

(p − 1)‖um‖
p
p −

∫
Ω

∫
Ω

um(x)um(y)
|x − y|n−α

dxdy = o(1). (3.8)

Using the estimates (3.7) and (3.8), we obtain

‖um‖p ≥ γ (γ > 0 suitable constant) (3.9)

and 
∫

Ω

∫
Ω

um(x)um(y)
|x−y|n−α dxdy

p − 1


(p−1)/(p−2)

−
[
‖um‖

p
p

](p−1)/(p−2)
= o(1).

Furthermore, combining (3.8) with the fact that um ∈ Λ we also have∫
Ω

∫
Ω

um(x) f (y)
|x − y|n−α

dxdy = (2 − p) ‖um‖
p
p + o(1).

This, together with (3.9) and Lemma 2.4 implies

0 < Qp(Ω)γ2/2−p ≤ ‖um‖
p/(2−p)
p ψ (um)

= (2 − p)



∫

Ω

∫
Ω

um(x)um(y)
|x−y|n−α dxdy

p − 1


(p−1)/(p−2)

−
[
‖um‖

(p−1)/(p−2)
p

]
= o(1),
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which is clearly impossible. Therefore,

‖I′ (um)‖p → 0 as n→ +∞. (3.10)

Let u0 ∈ Lp(Ω) be the weak limit in Lp(Ω) of (a subsequence of) um. From (3.7) we derive that∫
Ω

∫
Ω

u0(x) f (y)
|x − y|n−α

dxdy > 0

and from (3.10) we have
〈I′ (um) ,w〉 = 0, ∀w ∈ Lp(Ω),

i.e., u0 is a weak solution for (1.1). In particular, u0 ∈ Λ. Therefore,

c0 ≤ I (u0) = (
1
p
−

1
2

)
∫

Ω

|u0|
p −

1
2

∫
Ω

∫
Ω

u0(x) f (y)
|x − y|n−α

dxdy ≤ lim
n→+∞

I (um) = c0.

Consequently um → u0 strongly in Lp(Ω) and I (u0) = c0 = infΛ I. Also, from Lemma 2.1 and (3.10),
we can conclude that u0 ∈ Λ+. Finally, since f ≥ 0 we can easily deduce that u0 ≥ 0 from [22].
Therefore, for p = pα, the problem (1.1) has a positive solution u0 ∈ Λ+.
Proof of Theorem 1.2. Let 2n

n+α
< p < 2(subcritical case) and

inf
Λ−

I = c1.

Similar to the proof of Theorem 1.1, we can show that there is a solution u0 ∈ Λ+ to Eq (1.1) using
compactness imbedding theorem (see Lemma 2.3). Analogously to the proof of the first solution, one
can show that the Ekeland’s variational principle gives a sequence {um} ⊂ Λ− satisfying:

I (um)→ c1,

‖I′ (um)‖p → 0.

Furthermore, by the compactness imbedding theorem (Lemma 2.3) it can be proved that the
functional I satisfies the usual (PS )c1 condition for the subcritical equation. For 2n

n+α
< p < 2, there is

another solution u1 ∈ Λ− to Eq (1.1). We can also deduce that u1 ≥ 0 from f ≥ 0 (see [22]).

4. Conclusions

In this paper, we demonstrate that under suitable assumptions on f , the integral equation admits
a positive solution in L

2n
n+α (Ω). Our approach combines the Ekeland variational principle, a blow-up

argument, and a rescaling argument. Additionally, we establish the existence of multiple solutions for
this equation in the subcritical case. In the next section, we will investigate the existence of multiple
solutions in the critical case.
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