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Abstract: This paper investigates the existence of positive solutions for a nonhomogeneous nonlinear
integral equation of the form

u”_l(x)sz)_dy+fL)_dy, xeQ
le_ylna le_ylna

where ri—’; <p<21<a<nn>2 Qisabounded domain in R”. We show that under suitable
assumptions on f, the integral equation admits a positive solution in L#s (Q). Our method combines
the Ekeland variational principle, a blow-up argument and a rescaling argument which allows us to
overcome the difficulties arising from the lack of Brezis-Lieb lemma in anT"a(Q).
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1. Introduction

This paper concerns the existence of positive solutions for the following integral equation:

ul’—‘(x):fﬂdy+fﬂdy, xeQ (1.1)
Q Q

|x — y[r— |x — y[

where u € L7 (Q), f e LP (Q),n > 2, 2L = p, < p <2,1 < a < nand Q is a bounded domain in R”".

> n+a

When we set f(x) = 0, Eq (1.1) simplifies to the subsequent integral equation:
ul(x) = f &dy, xeQ. (1.2)
o =)

Indeed, the existence of solutions for problem (1.2) is connected to the classic sharp Hardy-Littlewood-
Sobolev (HLS) inequality:
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Theorem A. Let @ € (0, n). The classical sharp HLS inequality ( [15, 16,19-21]) states that

| f f SO = ™" Vg(y)dxdy| < N(p, a, m|| fllo@n)|lgll (1.3)
R JR7

forall f € IP(R"),g € L'(R"),1 < p,t < 00,0 < a <nand 1l/p+1/t+n—-a)/n = 2. If
p=1t=2n/(n+ a), then

_ ym(—)
[ [ e =03 < Nl g o el

holds for all f, g € L« (R") where

_ 2n wwp D@2 T(n/2)) ™"
Na '_N(nm’“’”)_" F(n/2+a//2){ T() } '

And the equality holds if and only if

n+a

1 2
f) =180 = e (—2)
c3 + |x = xol
where ¢, is any constant, ¢y, c3 are positive constants and x, € R". Clearly, inequality (1.3) is applicable
to bounded domains as well. Motivated by this, Dou and Zhu in [11] recently explored the Euler-
Lagrange equation for inequality (1.3) in a bounded domain, as per the following equation:

! :fu—(y)dy,xe Q (1.4)
alx—yle
where Q is a bounded domain in R”. Additionally, Dou and Zhu examined the subsequent general
equation:
w(x) = f M—(Y)dy + /lfu—(y)ldy, u>0, xeQ. (1.5)
alx =yl |x =yl

Using the compact embedding theorem along with a blowing-up and rescaling argument (as mentioned
in Lemma 4.3 of [11]), they established the following theorem.
Theorem B. Assume « € (1, n) and Q is a smooth bounded domain.
(1) For 2~ < p < 2 (subcritical case), there is a positive solution u € C'(Q) to Eq (1.5) for any given
A€eR;
(2) For p = ,ir—"a (critical case) and A > 0, there is a positive solution u € C (Q) to Eq (1.5).

Dou and Zhu in [11] established the existence results for weak solutions to (1.5) when 4 > 0 and
P = pPo. They considered the functional

Q (Q) jfvl Jg‘) Lt(x) (lX - yl_(n_a/) + /l|x - y|_("_a_l)) u(y)dxdy
A = sup )

ueLra (Q)\{0} 27, Q)

Due to homogeneity, we know that the corresponding Euler-Lagrange equation for nonnegative
extremal functions up to a constant multiplier is the integral equation (1.5) for p = p,. It should
be noted that Eq (1.5) differs from Eq (1.1) due to the nonhomogeneous nature of Eq (1.1). Therefore,
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we cannot directly obtain the existence results for weak solutions to (1.1) using the approach of setting
up extremal problems as done in [11]. Integral equations or systems of integral equations on the
whole space, bounded domains or upper half space have been extensively studied previously as shown
in [6-10,12-14,17,18,23-25] and the references therein.

In relation to the nonhomogeneous critical semilinear elliptic equation associated with Eq (1.1),

{ —Au=u* Pu+ f(x) xeQ (1.6)

u € H\(Q),

where 2 = n% is the critical Sobolev exponent, n > 2, Q is a bounded domain in R" with smooth
boundary. Tarantello [22] demonstrated that problem (1.6) possesses at least two solutions. The
fundamental idea is to partition the Nehari manifold A = {u € W&’Z(Q); ' (u),uy = O} into three disjoint
subsets, namely A", A~ and A, and to employ the Ekeland variational principle to obtain one solution
in A" and another solution in A~. The existence results for an elliptic problem of (p, g)-Laplacian
type, involving a critical term, a power-type nonlinearity at the critical level with a subcritical term,
nonnegative weights and a positive parameter A have been discussed in the literature, specifically in
references [2, 3], for the entire space RY.

There exists a notable distinction between integral and differential equations. For instance, consider

1 Sfuy)

u(x) = dy, x € Q
cn, @) Jo lx =yl

where Q is a bounded domain and c(n, @) is a constant, dependent only on n,@. Given f = ui and
a = 2, it can be observed that # must fulfill

n+2

u(x) = [ =9y on 6Q,

Q [x-yI"=2

{ —Au=cmu2,u>0 inQ,

but not conversely, as seen in [11]. Furthermore, the difference between W!'2(Q) and L (Q)(1 < p < 2)
arises challenges when attempting to treat integral equations in the same manner as differential
equations. For instance, the Brezis-Lieb lemma [4] cannot be applied in LP(Q2)(1 < p < 2) because
almost-everywhere convergence of sequences cannot be inferred from weak convergence of sequences
in LP(Q)(1 < p < 2). This fact complicates our attempts to prove the existence of the solution
to Eq (1.1) using the variational method to handle Eq (1.6).

Inspired by the work described above, our study differs from previous works on integral equations
which primarily focused on the homogeneous case in that we instead handle the nonhomogeneous
case. Therefore, we consider the existence of positive solutions for Eq (1.1) for p, < p < 2. A
function u € L”(Q) is said to be a solution of (1.1) if u satisfies

fIulp_lw—ffdedy—ffdedy:OforallweL”(Q).
Q aJa lx =y aJa lx =y

Consider functionals I : L?(Q) — R:

I(u):l f W_} f f wxXuQ) dy - f f u(X)f({) dxdy.
P Jo 2 lx =yl aJa lx =yl
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Let
i(x) = u(x), xeQ, P(x) = w(x), xe€Q,
V=10, xern@ "WT)lo, xernQ

For u,w € LP(Q), due to HLS inequality and Holder inequality, we have

f f i1(x0)|x — YT W(y)dxdy
n R’l

< Nl zre e W] re rry = Nollullzre @lIWllre )

< C(n, p, a, Dllullr ) Wllr@)-

This implies that I € C! (L”(Q), R).
We first investigate the critical problem, leading to the following existence result, which is the
principal outcome of this paper.

Theorem 1.1. Assume that f(x) is a non-negative function satisfying the following conditions:

n+a

(A1) For small enough e, ||f|l,, < min{C(n, p,, @, Q)N”" Pt

(As) f(x) € CUBs(x,) N LF*(Q), f(x,) > 0 where Bs(x,) € Q for some x, € Q and § > 0 is
small enough.

Then, problem (1.1) has at least one positive solution u € LP* (Q), 1 < a < (\/i —Dn,n>2and Qis
a bounded domain in R".

Next, we examine the existence result for Eq (1.1) in the subcritical case.

Theorem 1.2. Let f(x) € LP(Q),f(x) # 0, |Ifll, < C(n, p,a, Ny ". Then problem (1.1) has at least
two positive solutions ug,u; € LP (Q), ﬁ <p<21<a<n, n>2andQ is a bounded domain
in R".

Remark 1.1. In what follows, we proceed with the proof of these theorems. For the critical case, we
employ the Ekeland variational principle (see [22]) and a blow-up argument and a rescaling argument to
find a weak solution of (1.1). In the process of proving the main theorem (Theorem 1.1), we encounter
difficulties similar to those in [22]. In [22], the following core lemma is required to be proved:

Lemma 1.1. For f #0, n> 2, p = n%,

o =: inf (c,,||w||<n+2>/2— f fu)
[feell p=1 Q

is achieved, where c, is a constant that only depends on n.

Similarly, we aim to show that for p = p,,

0,(Q) =: inf (Cm(ff u(x)uiyid d )w—ff&f’(}_}idxdy)
=1 lx =yl aJalx -yl

is achieved in this paper. It’s important to note that the Brezis-Lieb lemma [4] plays a crucial role
in proving Lemma 1.1 through the variational method. However, since 1 < p, < 2, the Brezis-Lieb
lemma [4] does not hold in LP+(€2). Consequently, the proof method of Lemma 1.1 fails to prove that
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0,,(Q)1s achieved To solve the problem, we use a blow-up argument and a rescaling argument in this
paper. First, for 2 =L < p <2, we can show Q,(€) is achieved at a point u,. For p = p,, we will show
lim,_,,, C, by a blow-up argument and a rescaling argument. Thus, u, — u, as p — p, in

”P||L°°(Q)
C(Q). Once 0,(Q) is achieved, we can prove that problem (1.1) has at least one positive solution by
Ekeland variational principle.

The structure of this paper is as follows: In Section 2, we provide preliminary results. In Section 3,
we prove Theorems 1.1 and 1.2.

Throughout this paper, we utilize the symbols ¢ and C to represent various positive constants, the
value of which may change from one line to another.

2. Preliminaries

To obtain the proof of the main theorems, several preliminary are needed. Let

{ueL”(Q) lull?, - ff uUO) o —ff LICVCS _o}
lx — y["=@ o lx—y/e
{ueA(p—wa j:f”()@%1@>0}
ol ylre
m—&eA@—ww fffw?1$=@,
Q

A= {u €A (p— Dl - ff l”(x)ulgyld dy < 0}.
Q

Lemma 2.1. Let f # 0 satisfy (A,). For everyu € L? (Q),p, < p < 2,u # 0, there exists unique
tt =1t"(u) > 0 such that t'u € A~. In particular:

u(x)u(y)
fﬂ fQ [x—yl"~ ~vdx d
(p = Dllull,

1/(p-2)

+

= lmax

and I (t"u) = max,, I(tu). Moreover, if fQ o %dxdy > 0, then there exists a uniquet™ =t (u) > 0
such that t~(u) € A*. In particular,

1/(p=2)

u(x)u(y)
Jo Jo i5peaddy

(p = Dllully

b

I(t7u) < I(tu), ¥t € [0, 1"].

Proof. Let o(t) = tP~! ||u||§ —t fg fQ ;;(f;'r(_yz dxdy. Easy computations show that ¢ is concave and achieves
its maximum at
u(x)u(y)
I dxdy

0 |X yln @
(p = Dllully

1/(p-2)

max —

Also

2-

1 ](p—l)/(p—Z)

P
[elly

u(x)u(y) (-1 P=2)
|:(\[§2 Q Ix_yln—a/ dXdy) ]
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that is

u(x)u(y) (p-1) 1/(p-2)
(J;z Q Ix yln nd d )
@ (tmax) = Cna .

uall

Thus, if fg fQ %dxdy < 0, then there exists a unique t* > f,,, such that: ¢ (") = fg fQ li(x;{;@gdxdy

and ¢ (t*) < 0. Equivalently 'u € A~ and [(t'u) > I(tu), YVt > tnax. In case
fg fg u(x)f—(_y)dxdy > 0, by assumption (A;) we have that necessarily,

|x_y|n 3
u(x)u(y) _n /-2
u(x) f(y) ( fQ fg = dxdy)®w~D )
dy < Cpa =@ (fmax) -
a |)C yln a

uall

Therefore, in this case, we have unique 0 < 1~ < t,,x < t* such that

o) = f f ”(X)f'%d dy= ()

and
¢ (1) >0>¢ (7).
Equivalently r*fu € A~ and ru € A*. O
Let -
lll, 5
0, = _inf =
LN ¢, ([ u(x) (1 = Y u(y)) dydx) Er
— Nl q) f f u(x) Ix - yl‘(”‘“)f(y)) dydx,
aJo
we show

Lemma 2.2. Assume that f(x) is a non-negative function satisfying (A,).
Then, Q,(Q) < ,where p = p,.

L
Cna (No) 2-

Proof. Similar to the proof of Lemma 4.1 of [11], let x, € Q. For small positive € and a fixed R > 0 so
that Bg (x,) C Q, we define
A(x )_{ u(x) x€ Bg(x,) CQ,
‘ x € R"\Bg (x.),

where

nta

X—X € 2
u(x) = e_ngau(l *l) = ( 2) .
€ €+ |x — x|

Obviously, ite € LP* (R"). Thus, similar to the proof of Proposition 2.1 of [11] we have

Ji‘l j;) |x— ;|n a ﬁe(x)fte(y)dxdy
R" J]I‘%" |x—y|’l duf(x)ue(y)d)(fdy

ue(X)ue(y) ue(X)ue(y)
j}%n ‘ﬁl‘%”EBR(x ) |X }ln @ d)Cdy + »ﬁl‘%n\BR(x*) \ﬁl‘Q"\BR(x*) |x_y|n_a, dxdy
=N, ||u6||LPn(R" L+

(2.1
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where

€ € R -
_ v’ﬂ b’ﬁ u (;r)Lt (y)(ixxiy — (j v’ﬂ n+n(;x)cixj__ (___) as € > (L
Ri\Bp(x,) 1X = YO R\ Br(x) €

ue(X)u(y) R\
:f f AR dxdy < Nyl oy = O() a5 €0,
R"™\Bgr(x.) JR"\Bg(x.) |X - yl €

By (A,), we have f(x) € C°%Bs(x,)), Bs(x,) € Q for some point x, within Q and a positive real
number 6. Subsequently, we can select 6; such that 0 < ¢6; < ¢ thereby ensuring f(x) > C for
every x in the ball By (x,) where C is a constant independent of x. Choose € < R so that |en| < ¢, if

ne Bl(O) Set
L= f f W) )y
Br(x) Ja [X =y

n+a

—(n—a € B
i [ e >(ﬁ) FOdxdy
Br(x.) JQ €+ |x — x|

n+a

—(n—a € =
[ ) o
Br(x.) J Br(x.) €+ |x — x|

n+a

=2 +a—n+2nf f |ég_ nl—(n—a/) (1 + |§|2)_T f(€77 + X*)dfdl]
Br(0) JBR(0)

> et [ ey (14 ggf) ™ cagan
B1(0) JB(0)

nta

> Coe 2.

For I5, we have

So, for 1 < @ < (V2 — 1)n and small enough €, we get
p-1

el

Cnalfj oy 1) (6 = Y- (y)) dydx)) =
_ ”uE”Zpl(Q) L L uf(x) (|x _ yl—(n—oz)f(y)) dydx

p—1
2-p

0,(Q) <

||u6||Lp(Q)
= 5 ||Ms||Lp(Q)
(Na ”ue”LP(Rn Il + 12)2 P
1 -1
< P ||u6||LP(Q)I3
(Nw Il””e”Lp(Q))
1 et -1
= — T C(Il)zfl’ - ||u6||Lﬁ(Q)I3
(No)r
1 R _n(% n+a
<— +C (—) Gyt
(Na/)zfp €
1 n+a
< P C06 2
(Na)z_p
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Notation: For any function u(x) defined on Q, we always use

Lou(x) = f ”—(y) dy.
olx =yl

Lemma 2.3. (Lemma 3.1 of [11]) Let p > p, and p' = % be its conjugate. There exists a positive
constant C(n, a, Q) > 0 such that

”I(Y,Qu”Lp/ 1)) < C(”» p,a, Q)”””LP(Q) (22)

holds for any u € LP(Q). Moreover, for « > 1 operator I, : LP(Q) — L (Q) is a compact embedding.

Lemma 2.4. Assume f(x) is a non-negative function satisfying (A;), (Az). Then,

it (enn [ [ 228D anay - [ [0 )= 0,000
Iunp—l lx — y|"= lx =yl

is achieved and Q,(2) > 0, where p = p,.

Proof. In order to establish the conclusion, we need to prove that

0= il el f f () (1% = 31 uy)) dyd) £

-p
ueLP @)l 07 =1

- [ [ (=i s v
QJQ

is achieved, where p = p,. For this purpose, for 2 > p > p,, we wil show that the infinum is attained
by a positive function u,,. To do this, all we have to do is show

0@ = _int el f f ) (1 = 50 uty)) dydy

ueLP(Q)\(0
— o0 L L u(x) lx — y|_("_a)f(y)) dydx
is achieved. By Lemma 2.3, we have
[egt]],,s o, < CON, p, &, Dlltllioer

where p' = ﬁ. Together with the HLS inequality this implies:
cnallilsiy [ [ 0 (1= u) vy

~ [lull} g f f u(x) (1x = Y7 £(y)) dydx
QJQ

> e ( lluellzr ) o ||Ia,QM||Lp’(Q)||f||Lﬂ(Q)
- ||I(I,Qu||Lp/ Q) ||M||UI(Q)
1 p-
2 Cpo(————— T —-C(n,p,a,Q >
n,a(c(n’ D, Q)) (n,p NINAlI7: Q-
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Select a minimizing positive sequence {u j};; such that ||Ia,gu J|| @ = 1. Thus, {u J} is bounded in
LP(Q). It follows that there exists a subsequence {u;}(still denoted as {u;}) and u, € L”(2) such that

sy inIP T .
uj — u, in LP(Q), so |[u.ll;rq) < hﬁgglf ||u]||L,,(Q) .

By Lemma 2.3, we get
Lot — Iou. in LF(Q).

Then,

pl

Q€)= Hm €l 105 f f 1,0 (1x = Y7 Pu;(v)) dydx)) =

_”“.i”lpl(g)\{O}ffuj(x) |X—y|_("_“)f(y))dydx
> Cpalltt. ||L,,(Q) (ffu (x) Ix YDy, (y))dydx))p =

A f f u*(x) Ix—yl_("_“) f(y))dydx.
QJQ

Therefore, u, is a minimizer. Thus, we have

0,(Q) = 1nf\ }cmllullL,,(Q) (ffu(x) Ix — y|=" “)u(y))dydx))”

uelr(Q)
_||u||2pl(g)\{o}ffu(x) |X_Y|_(n_a)f(y)) dydx.
o Ja

Also, by considering ﬁ we have
p

0= int el [

p P2 Q
ueLP@)lull =1

- [ [ (=) v
QJQ

is achieved, where 2 > p > p,. Thus, for 2 > p > p,, the infinum is attained by a positive function u,,
which satisfies the following equation with subcritical exponent

p—1
(QAQ)+Jnjﬁﬂp %K)fwhhd” u E?

— 1) |X yln a =)

”up”an(Q) (2.3)

) -
= Cpal f f dedy)ﬁ f #p() dy — p f fo) dy, xeQ,
aJao lx—y"@ o lx =y 20p-1 Jo lx—yl"

where ||up||p = 1. We claim that u, € C(Q) and Q, — Q,, for p — p,. First, we prove that u, € C(Q).

[ ) (=517t ey

According to Eq (2.3), by writing g(x) = u”~'(x), we can obtain a weak positive solution g(x) € L” (Q)

to
p-1
o) dy+C(n,p,a,Q)f| fO)

e o lx =y

g(x)=C(n,p,a, Q)f dy, x¢€ Q, 2.4)

AIMS Mathematics Volume 8, Issue 9, 22207-22224.
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for p’ < == = g,. By (2.4) and HLS inequality, we have

gl = [[faog” |0 < C1 P, O[], + Cot, p s DA

for 1/s = 1/t — a/n. By employing a similar method as in Lemma 3.3 of [11], we can use the above
inequality in an iterative process to obtain g € C(Q). Therefore, we can conclude that u, € C(Q). Using
a similar method as in Lemma 2.3 of [5], we apply Proposition 2.1 in [11] and the Holder inequality
to find a minimizing sequence of Q, from the minimizer u,. Consequently, we can establish that
Qp - Qpa as p = Pa-

Next, we need to show lim,,_,,, ||u,,|| Loy S C. We prove this by contradiction. Suppose not. Let

up, (xp) = maxg U,(x). Then u, (xp) — o0 as p > p,. Let y, = u§_2+r” (xp) and Q, = Q;XP =
7p2+4+p
{zlz = % for x € Q}. We define g,(z) = p, " u, (ypz + xp) for z € Q,,. Then, g, satisfies
p-1
Z u,(x Z
(Qp(Q) i ) N ff P up( )f(y)dxdy 8p (_])
S Jada2(p- 1) Ix -yl PE+p
I ,,||L,,<m lg, I
by
o f f 8p(08p(y) dxdy)™ gr() dy
o, Jo, lx=yI" o, lz=yl"
A-p)((p—2+5 Eoms=+
B p—2 Mp P p—2et =3 21 xp)f(y)dy
2(p-1) Ja lx =yl ’
and gp(O) = 19g17(z) € (Oa 1]
For p close to p, with 1 < @ < n, we have (1 — p)(p -2 + ﬁ)n)(% +1)<0.
A=p)(p=2+-Lpm)(5=; 1+1>
w, p)f(y)d <o TP IS
o |x =yl mally M (2.5)

-0, as p— p,.

Additionally, let Qf = Q\E’Rﬂp (x,,) . For p close to p,, we know a < n/p. We can observe that for any

fixed |x — x,| < Cu,, as R being chosen large enough

() f [ 1 ] B
P g . | 4
fg; lx =yl yS”M””P { o | Ix =yl g

n

< C(R,up)a ",
Thus,

A=-p)(p=2+35 Lyn) (5= +1)
u, B (xp) - up(y) ot (=p)(p=2+FEm(+1)
dy < CR*7 - u, (x) = 0 (2.6)
|.X' _ yln—a

Qp

as p — p,and R — oo. As p — p,, there are two cases:

AIMS Mathematics Volume 8, Issue 9, 22207-22224.
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Case 1. Q, — R" and uy(z) — g(z) point-wise in R" where g(z) satisfies from
estimates (2.5) and (2.6) :

i Pa—1
0 @D i [ [ gt 10 gy 850
aJa 2(p

(tpa a*’pa PPa - 1) |.x - |n_a Pa La ;+pa
Igp. ot y 18 pal @.7)
= Cual f dedy)m%z Mdy, z€ Q.
re Jrn X =y re |2 =y

Also, direct computation yields

1=fup(y)dy— (- 2+p1)+p( p)gﬁdzzf gpdz.
Q Q

Thus fRn gP*dz < 1. Combining this with (2.7) and Lemma 2.2, we have

P(r 1

L lgliys,
pa-l — pa—1
Cna(No)?Pe  Cpal fRn fRn g(x) (|x = yI""=9g(y)) dydx)) >
Pabt
gl

IA

Cna fo Jou 8C0) (1 - yl‘("‘“)g(y)) dydx))*5
= 0,,(@) + lim f f o IO 44y

P—Pa —1) |x — y|=@

< ——C06 2 + Cllfllz,, @

pa-1
Cn,(z(Na) Zopa
1

pa=l"’

Cn,a(Na) Zopa

<

This is a contradiction.

Case 2. Q, — R} := {(z1,22,-" " ,24) |z, > =T} for some T > 0,g,(z) — g(z) pointwise in
R’., where g(z) satisfies from estimates (2.5) and (2.6) :
_ )
0, (Q)g% ! = Lde, g(0) =L
R |z =yl

Similarly, we know fw gP*dz < 1. Combining this with (2.7), A, and Lemma 2.2, we have

AIMS Mathematics Volume 8, Issue 9, 22207-22224.
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9 Pa= 1
2 ~Pa

lgll, 27,
1 pa—1 S g : (R ) Pa—l
CraNo)™ 7 Caal fo o fo 0 8(0) (X = Y798 (y)) dydx)) =

-1
pnz Pa

[Fe
Pa—1
nal [ fon 8C0) (1x = y|*<"*a>g<y>) dydx)) =

0, (0f0)
Q”"(Q”Jirﬁf e

< —,1 —Coe ™ + Cllfllzre @)
Cn,a(Na) 2opa
1

pa-1"
Cn,a(Na/) 2pa

IA

This is a contradiction.
Let u, > 0 be solutions to (2.3) for p € (p,, 2) which are also the minimizers of the energy Q,(£2).
Then, ||up|| L@ S C, which yields that u,, is uniformly bounded and equi-continuous due to Eq (2.3).

Thus, u, - u,as p — p,inC (Q), and u, is the energy minimizer for Q,, (L2). O

Lemma 2.5. Let f be a non-negative function satisfying (A1), (Ay). Foreveryu € A,u # 0, p = p, we

have D)
(=g - [ [ O vy 20,

Proof. By contradiction, assume that for some u € A with u # 0, we have

(p = Dlll?, - f fg l”(x)”(y) xdy = 0. 2.8)

|na

(i.e., Ao = {0}).

Thus, we have

“ny— [ [ O vty [ [ OB vy = -y~ [ [ 22D vy 29)
P JaJa lx =yl o Jo lx =y Q ye

Using the HLS inequality and the condition (2.8), we have

1/2-p)
p—1
|l , = ( ) =,

N

and from (2.9) we obtain:
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0 <0,y =y =

[ 1 ]“"”/(1"” (2_p)[fgfgf’§x§?°3d xdy” ”] R f f u@f()

p-l el ot =y
- (P=1)/(p=2) f fQ lt;(xzr(yn) dxdy =" 1/(p-2) p
_ p)[[f’ 1] Julf ] - ”””P]
o , fg fg lb;(ic;r(yi dxdy (P-D/(p-2)
= 2= p)llully [[ Ol - 1] =0,
which leads to a contradiction. _

As a consequence of Lemma 2.5 we have:

Lemma 2.6. Let f(x) be a non-negative function satisfying (A;), (Az). Givenu € A,u # 0, p = p,,
there exist € > 0 and a differentiable function t = t(w) > 0, w € LP(Q), |w|| < & satisfying the
following properties:

0)=1, twy(u—-w)eA, forl|w|<e

and

2 u(x)w(y) FOw(y)
p o lulPuw =2 [ [ iEerdxdy — [ [, s dady
r u(x)u(y) ’
(p = Dlllly = [, [, i5perdxdy
Proof. Define F : R X LP(Q2) — R as follows:

('), w) = (2.10)

F(t,w) =M —wily -1 [, [, SO g gy
FOw@)-w(y))
fQ fQ = d xdy.

[x—yl"=

Since F(1,0) = 0 and F,(1,0) = (p — Dllull, — [ [, =28 dxdy # 0 (by Lemma 2.5), we can apply the

|x—y|" @

implicit function theorem at the point (1, 0) and obtain the desired result. O
3. Proofs of Theorems 1.1 and 1.2
Proof of Theorem 1.1. Let us denote

P = Pa> ir/{fl = ¢p. (3.1)

We will first show that / is bounded from below in A. For u € A, we have:
f ul? f f u(X)u(y) dxdy - f f u(x) f(y) dxdy = 0.
o lx =y o Jo lx =yl

1 1 ux)u(y) ux)f)
) = o lul =3 fg o eprdxdy = [y [, fpedxdy
> (& = Dllully = Zellal, 1A, = CIART

Thus,
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In particular, we have

co 2 CIIfll;
To obtain an upper bound for ¢y, let v € LP(Q) be a positive solutions for u?~! = o |xf ;ly,,),(, dy. So, for
f#0
()v(y)
f / |nyad xdy = M2 > 0.
al

Set tp = t~(v) > 0 as defined by Lemma 2.1. It follows that v € A* and

P
L(tov) = Iy f w7 — f f V(x)V(y) dxdy - 1o f f (X)f(y)
P Ja |x =y olx —yl”“
S [ B[ [0 4 ﬁf
_to(p 1) QIVI’7 =y y < map— lelp.

—2na + 2a*
o< T g f v <0, (3.2)
Q

This implies

n+a

It is clear that Ekeland’s variational principle (see [1], Corollary 5.3.2) holds for the minimization
problem (3.1). This principle provides a minimizing sequence {u,,} C A with the following properties:
1) I(u,) <co+ %, @) Iw) = I(u,) — i lw = u)ll, , Yw € A. By taking m large, from (3.2) we have

_ /1 1 1 um(X) ()
L) = (5 =3) [y lunl” =5 [, J, BSiRdxdy

1 _ —2na+2d? Pf p
<c+t, <= —1 o [v|P.

lffum(x)f(y) dyz2na/ 2a° f|"|p>0 (3.4)
2 |x — y|-a n+a Q

Therefore, we have u,, # 0. By applying HLS inequality, u,, # 0 and (3.3), we obtain

(3.3)

Thus, it follows that

1
el < Cooll Il (3.5)
Using HLS inequality and (3.4), we have
C il < [fumll (3.6)
Al ol '
Applying (3.5) and (3.6), we obtain
M il < Conlf 7 (3.7)
Mllfllp_ ol < Cnall Al '

Our goal is to show that ||l (u,,)ll, — 0 as m — +oo. Hence, let us assume ||’ (u,,)ll, > O for m large

lw) 5 < () small, we find
17 ),

(otherwise we are done). Applying Lemma 2.6 with u = u,, and w = ¢

—_ ()
t.(0) = t[(S”I, il such that

Ws = £,,(S) [um _ g ) ] cA

17 (un)ll,
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Using condition (ii) we have
1
= lws = wn)ll, 2 1) = T(ws) = (1 = 1,,(0)) I (W5) , )

, " (um)
+5%®%1mwlw(mm>+ow)

Dividing by ¢ > 0 and passing to the limit as 6 — 0 we derive

Ty
a(l'i‘ m

IIMmIIp) > =1, (0) T (@), tt) + U Cu)ll, = 11Ut

where we set #/,(0) = <t’(0), ”II((M”'”))” > Thus, from (3.7) we conclude that

for a suitable positive constant C. We do this once we show that |t,’n(0)| is bounded uniformly on m.
From (2.10) and the estimate (3.7) we get

, C
I Gl < — (1 +

Ci

I1,(0)| < ____ ,
| (p = Dllunlly = [, J, 22D dxdy |

C, > 0 suitable constant. Hence, we need to show that | (p — 1)||u,nll5 — ”’"@%&”dxdy | is bounded
P~ Ja Jo Ty
away from zero.
On the contrary, suppose that for a subsequence which we still call «,, we have

U (X (Y)
(P~ Dl - f f SO ddy = o). (3.8)
Using the estimates (3.7) and (3.8), we obtain
llumll, =y (y > O suitable constant) (3.9

and

P o(1).

Furthermore, combining (3.8) with the fact that u,, € A we also have

f f T iy = 2 = p) gl + o).
Q

o lx =y

”m(x)um(}) p 1)/(17_2)
[fgfg e dxdy } ~ [llu Hp](p DAP-D) _
m

This, together with (3.9) and Lemma 2.4 implies
0 < Qp( Y7 < Ny o (1)

U ()t () (p-1/(p-2)
Lﬁzuwadd}

=2-p)

- = [l P12 = o(D),
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which is clearly impossible. Therefore,
N (ull, >0 asn — +oo. (3.10)

Let uy € L(Q) be the weak limit in L”(Q) of (a subsequence of) u,,. From (3.7) we derive that
f f WWFO) )
aJa lx =y

(I (uy),wy =0, VYweL(Q),

and from (3.10) we have

1.e., Uy is a weak solution for (1.1). In particular, uy € A. Therefore,

COSI(uo)=(l—l)fluolp—lffmdm’ys lim T(u,) = co.
r 2 Jao 2 JaJo

|x — y|*@ n—s+00

Consequently u,, — ug strongly in LP(Q) and I (1) = ¢y = inf I. Also, from Lemma 2.1 and (3.10),
we can conclude that uy € A*. Finally, since f > 0 we can easily deduce that uy, > 0 from [22].
Therefore, for p = p,, the problem (1.1) has a positive solution uy € A*.

Proof of Theorem 1.2. Let rﬁr—’; < p < 2(subcritical case) and

infI = ¢;.
e

Similar to the proof of Theorem 1.1, we can show that there is a solution ©y € A* to Eq (1.1) using
compactness imbedding theorem (see Lemma 2.3). Analogously to the proof of the first solution, one
can show that the Ekeland’s variational principle gives a sequence {u,,} C A~ satisfying:

I(u,) — ci,
1" (u)Il,, — O.

Furthermore, by the compactness imbedding theorem (Lemma 2.3) it can be proved that the
functional I satisfies the usual (PS)., condition for the subcritical equation. For ,i—”a < p < 2, there is
another solution u; € A~ to Eq (1.1). We can also deduce that u; > 0 from f > 0 (see [22]).

4. Conclusions

In this paper, we demonstrate that under suitable assumptions on f, the integral equation admits
a positive solution in Ls (Q). Our approach combines the Ekeland variational principle, a blow-up
argument, and a rescaling argument. Additionally, we establish the existence of multiple solutions for
this equation in the subcritical case. In the next section, we will investigate the existence of multiple
solutions in the critical case.
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