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Abstract: The purpose of this work is to provide a stochastic framework based on the scale 

conjugate gradient neural networks (SCJGNNs) for solving the malaria disease model of pesticides 

and medication (MDMPM). The host and vector populations are divided in the mathematical form of 

the malaria through the pesticides and medication. The stochastic SCJGNNs procedure has been 

presented through the supervised neural networks based on the statics of validation (12%), testing 

(10%), and training (78%) for solving the MDMPM. The optimization is performed through the 

SCJGNN along with the log-sigmoid transfer function in the hidden layers along with fifteen 

numbers of neurons to solve the MDMPM. The accurateness and precision of the proposed 

SCJGNNs is observed through the comparison of obtained and source (Runge-Kutta) results, while 

the small calculated absolute error indicate the exactitude of designed framework based on the 

SCJGNNs. The reliability and consistency of the SCJGNNs is observed by using the process of 

correlation, histogram curves, regression, and function fitness. 

Keywords: scale conjugate gradient; malaria disease; neural networks; mathematical model; 

numerical solutions 
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1. Introduction 

There are many life-threatening diseases, out of which Malaria is one of them that is produced 

through the parasite known as Plasmodium that transmits to humans with the infected anopheles 

mosquito bite [1–3]. People with malaria are infected by the Protozoan parasite, which grows within 

the cells of red blood and spreads the illness. There are four Plasmodia species that can become the 

reason of infection, known as oval, falciparum, malaria, and vivax, while the two other most 

widespread Plasmodium species are falciparum and vivax [4]. Malaria affects lots of people each 

year, mainly in South Asia, Africa, and South America. It becomes the major reason of death and 

illness in various developing regions, specifically young children, and pregnant women. The main 

symptoms of malaria are fever, muscle pain, and headache. Malaria can progress promptly, possibly 

severe anemia, lung problems, and even cause death. There are various effective tactics that proposed 

the World Health Organization (WHO) to treat and prevent this dangerous disease. Some of them are 

indoor spraying, pesticide-treated bed nets, and some antimalarial medications. The vector control 

systems can be applied to lessen the poisoned mosquito population. In general, malaria is a 

substantial global health task, which needs a comprehensive approach for its cure by using the 

strategies of vector control and early identification for its treatment. 

Malaria is a dynamic and complicated disease, which is considered difficult to present its model 

mathematically. The malaria parasite’s life cycle is complex due to numerous phases of development 

both in mosquito vector and human host. These points are prompted by numerous features, e.g., 

mosquito actions, host immunity, and environmental environments that is used to make difficult the 

disease dynamics to predict and understand. The intricacy of the virus's spread dynamics is one of 

the main problems with malaria modelling. Malaria spread is influenced by numerous interrelated 

influences, e.g., the mosquito vector density, the host immunity degree, and the accessibility of 

efficient mediations. The relations between these aspects indicate the nonlinearity and hard to 

capture using the mathematical systems [5]. However, the mathematical malaria disease model based 

on the pesticides and medication (MDMPM) is presented, which is categorized in four human 

(susceptible, exposed, infected, recovered) and two vector (susceptible, infected) classes. The 

pathogen infects the population of host then the individuals are categorized into groups based on the 

parasites number and virus types. Kermack–McKendrick [6] proposed the mathematical SEIRSI 

model based on the population of human/vector groups. The nonlinear dynamics of the SEIRSI 

model is presented as [7]: 

  (1) 
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The compartmental illustration of the SEIRSI model based on the MDMPM is shown in Figure 

1, while the description of each parameter is given in Table 1. 

 

Figure 1. Graphical representations of the MDMPM. 

Table 1. Parameter details of the MDMPM. 

Parameters Details 

1  Susceptible form of recovered individuals  

m  Newborn mosquitoes transfer rate into mS  

h  Newborns ratio to enter in hS  

1  Transfer ratio of illness from one affected to susceptible people 

  Transfusions rate of average blood with stable time in hI  and hS  

2  Exposed to infected infection rate in people 

  Infected mosquito susceptible bites using fixed time 

3  Rate of Mosquitos infection  

2  Disease transfer through infected (mosquito) to susceptible (individual) 

h  People natural rate of death 

2  Exposed recovered population 

1  Susceptible recovered population 

p  Rate of humans heal 

  Infected human death due to disease 

m  Mosquitos’ natural death 

  Anti-malarial prescriptions 

e  Bites mS  using the infected humans 

  Expires sections using spraying for mS  and mI   

x  Time 
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There are various deterministic and conventional numerical schemes that have been presented to 

solve the biological models, including the wavelet Bernstein scheme that has been presented to solve 

the epidemic SIR fractional kind of infectious disease model [8], Laplace method is applied for the 

fractional epidemic system of born vector disease [9], q-homotopy transform technique is proposed 

to solve the fractional Schistosomiasis disease model [10,11], a theoretic investigation is presented 

based on the impacts of vector-virus transmission mechanism [12], a collocation technique with 

shifted Chebyshev polynomials is applied to solve the fractional order diseased model of Rubella 

ailment [13], an analytical computational approach is provided for the inflammatory atherosclerosis 

disease system [14], the differential stomach and coronavirus models have been discussed 

numerically by applying the Adam method [15,16] and the design of a numerical method is presented 

for the maturing communication in population and epidemic models [17]. Some more deterministic 

procedures that have been applied to solve different dynamical models are presented in [18–22].  

All mentioned schemes have their individual strength, and demerits, however the stochastic 

solvers have never been tested before for the nonlinear dynamics of the MDMPM. The current study 

is related to the numerical solutions of the MDMPM through the stochastic procedures using the 

scale conjugate gradient neural networks (SCJGNNs). In recent years, the stochastic computing 

paradigms have been proposed in various applications, e.g., eye surgery differential systems [23,24], 

food chain systems [25,26], smoking dynamical systems [27], models arising in biological 

applications, [28,29], thermal explosion singular systems [30,31], and many more [32–43]. Based on 

these noteworthy applications of neuro-computing paradigm, the authors are motivated to present the 

numerical solutions of the malaria disease model of pesticides and medication (MDMPM) with 

stochastic framework of scale conjugate gradient neural networks (SCJGNNs). The purpose of this 

work is to provide a stochastic framework based on the SCJGNNs for solving the mathematical 

model representing MDMPM dynamics. 

The contributions, insights and innovative aspects of the current scheme is portrayed in terms of 

salient features as follows: 

• A novel design of the stochastic framework via SCJGNNs is introduced/presented to get the 

numerical results/outcomes of the nonlinear dynamics of governing mathematical model of 

MDMPM. 

• The capability and knacks of Runge-Kutta solver is exploited/developed to formulate the 

target datasets for different scenario of MDMPM system that are used for the testing, and 

training procedure of the networks via SCJGNNs. 

• The exactness of the stochastic SCJGNNs is attained/verified/validated through the 

overlapping of the results with standard counterparts having very small magnitude of absolute 

error (AE). 

• The reliable matching of the numerical results, a strong arrangement using the benchmark 

outputs along with consistent statistical performance indices further prove the 

importance/significance/role of the SCJGNNs to solve the variant of MDMPM models.  

The remaining paper is presented as: Proposed SCJGNNs design is shown in Section 2, Sect 3 

presents the numerical results, and the conclusions are discussed in the final section. 

2. Proposed SCJGNNs scheme 

The current section is used to design the computing SCJGNNs structure to solve the MDMPM in 
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two steps, including the detail of designed SCJGNNs performances along with its execution. The 

designed SCJGNNs is presented in Figure 2. In the 1st phase of Figure 2, the nonlinear mathematical 

system is illustrated, the stochastic methodology using the SCJGNNs is provided in the 2nd phase of 

Figure 2, while some results are presented in the last phase of Figure 2. The performances using the 

multi-layers network based on the structure of single neuron is illustrated in Figure 3.  

1. Model: Nonlinear MDMPM

Computational framework

The multi-layer data is programmed 

based on the SCJGNNs for the 

malaria disease model employing 

drugs and pesticides

3. Results with analysis

EHS

SCJGNNs stochastic procedure along with the assessment through with the fitness measures , EHs values, 
regression/correlation performances for solving the nonlinear MDMPM.

AE

Proposed Results
Initiate the suggested SCJGNNs procedure by 
applying the reference dataset to achieve the 
approximate performances of the results to 

solve the MDMPM. 

Reference data

Proposed computing scheme for the nonlinear 
dynamics of the MDMPM

 A single neuron network

2. Methodology: SCJGNNs
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Figure 2. Illustration of proposed SCJGNNs performances to solve the MDMPM. 
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Figure 3. Single layer neural network. 

The computing SCJGNNs approach for solving the MDMPM is executed using the command 

‘nftool’ in software ‘MATLAB’, n-folded cross authentication, layers (output/hidden/input) structure, 

epochs are taken maximum 1000, fifteen hidden neurons, transfer function log-sigmoid, stopping 

standards, SCJG algorithm, tolerances, and step size. The label statics and input/target training are 

achieved using the basic outputs by taking the statics of validation (12%), testing (10%), and training 

(78%) for the MDMPM. 

The designed computing SCJGNNs for the solutions of the MDMPM is performed by using 15 

neurons, which have been validated through the best values of underfitting and overfitting based on the 

authorization and training at epochs 100, 86 and 69. For small neurons, the premature convergence 

(under fitting) problem is faced, while similar precision by using higher intricacy (overfitting issue) is 

noticed by taking higher neurons. The trials have been taken for the validation (12%), testing (10%), 

and training (78%) to solve the MDMPM. By taking a smaller data training, like 40% to 60%, the MSE 

values for testing 30% to 40% increase and generally poor presentations have been observed. On the 

other hand, if the training statics is almost designated > 90% and 5% for both testing and certification, 

the procedure’s correctness improves marginally by choosing the label static, which presents the bias and 

targets input, but stochastic procedure’s strength is not severely established for unbiased statics exclusive 

based targets information. The proposed values are performed on the input [0, 1] by applying the 

stochastic SCJGNNs procedure for the numerical performances of the MDMPM. The neuron 

structure using the input, output and hidden layers is shown in Figure 4. 

 

Figure 4. Different layers structure for the MDMPM. 

3. Results and analysis 

The numerical solution for three different cases of the MDMPM by applying the computing 
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procedures based on the SCJGNNs is presented in this section. 

Case 1: Consider the values 0.038 = , 0.027,h = 1 0.020, =  0.13 = , 1

1

730
 = , 2 0.010 = , 

1 0.001 = , 0.0004h = ,
2 0.001 = , 0.611p = , 

2 0.001 = , 0.05 = , 0.01 = , 0.022e = , 

0.13m = , 3 0.072 = , (0) 0.01,hS =  (0) 0.02,hE =  (0) 0.03,hI =  (0) 0.04,hR =  (0) 0.05,mS =  

and (0) 0.06mI =  in system (1), which is shown as: 

Case 2: Consider the parameter values 0.038 = , 0.027,h = 1 0.020, =  0.13 = , 1

1

730
 = , 

2 0.010 = , 
1 0.001 = , 0.0004h = ,

2 0.001 = , 0.611p = , 
2 0.001 = , 0.05 = , 0.01 = , 

0.022e = , 0.13m = , 3 0.072 = , (0) 0.02,hS =  (0) 0.03,hE =  (0) 0.04,hI =  (0) 0.05,hR =  

(0) 0.06,mS =  and (0) 0.07mI =  in system (1) that is given as: 

Case 3: Consider 0.038 = , 0.027,h = 1 0.020, =  0.13 = , 1

1

730
 = , 2 0.010 = , 

1 0.001 = , 

0.0004h = ,
2 0.001 = , 0.611p = , 

2 0.001 = , 0.05 = , 0.01 = , 0.022e = , 0.13m = , 

3 0.072 = , (0) 0.03,hS =  (0) 0.04,hE =  (0) 0.05,hI =  (0) 0.06,hR =  (0) 0.07,mS =  and 

(0) 0.08mI =  in system (1), given as: 

The plots of the estimated results based on the numerical SCJGNNs procedure for solving the 

MDMPM are shown in Figures 5 to 9. Figure 5 presents the best validation measures and state 

transitions for the nonlinear dynamics of the MDMPM through the stochastic computing SCJGNNs 

0

0

0

0.027 0.0014 (0.00076 0.0014 0.0013 ) , ( ) 0.01,( ) ( ) ( ) ( ) ( )

( ) (0.00076 0.0013 ) 0.0024 ( ), ( ) 0.02,( ) ( ) ( )

( ) 0.00752 ( ) 0.001 ( ), ( ) 0.03,

( ) 0.00611 ( )

h h h m h h

h h m h h h

h h h h

h h

S x R x I x I x S x S

E x I x I x S x E x E

I x I x E x I

R x I x

 = + − + + =

 = + − =

 = − + =

 = − 0

0

0

0.00177 ( ) 0.001 0.001 , ( ) 0.04,( ) ( )

( ) 0.13 0.05 0.001584 , ( ) 0.05,( ) ( ) ( )

( ) 0.001584 0.05 , ( ) 0.06.( ) ( ) ( )

h h h h

m m h m m

m m h m m

R x E x S x R

S x S x I x S x S

I x S x I x I x I







+ + =
  = − − =

 = − =

 (2) 

0

0

0

0.027 0.0014 (0.00076 0.0014 0.0013 ) , ( ) 0.02,( ) ( ) ( ) ( ) ( )

( ) (0.00076 0.0013 ) 0.0024 ( ), ( ) 0.03,( ) ( ) ( )

( ) 0.00752 ( ) 0.001 ( ), ( ) 0.04,

( ) 0.00611 ( )

h h h m h h

h h m h h h

h h h h

h h

S x R x I x I x S x S

E x I x I x S x E x E

I x I x E x I

R x I x

 = + − + + =

 = + − =

 = − + =

 = − 0

0

0

0.00177 ( ) 0.001 0.001 , ( ) 0.05,( ) ( )

( ) 0.13 0.05 0.001584 , ( ) 0.06,( ) ( ) ( )

( ) 0.001584 0.05 , ( ) 0.07.( ) ( ) ( )

h h h h

m m h m m

m m h m m

R x E x S x R

S x S x I x S x S

I x S x I x I x I







+ + =
  = − − =

 = − =

 (3) 

0

0

0

0.027 0.0014 (0.00076 0.0014 0.0013 ) , ( ) 0.03,( ) ( ) ( ) ( ) ( )

( ) (0.00076 0.0013 ) 0.0024 ( ), ( ) 0.04,( ) ( ) ( )

( ) 0.00752 ( ) 0.001 ( ), ( ) 0.05,

( ) 0.00611 ( )

h h h m h h

h h m h h h

h h h h

h h

S x R x I x I x S x S

E x I x I x S x E x E

I x I x E x I

R x I x

 = + − + + =

 = + − =

 = − + =

 = − 0

0

0

0.00177 ( ) 0.001 0.001 , ( ) 0.06,( ) ( )

( ) 0.13 0.05 0.001584 , ( ) 0.07,( ) ( ) ( )

( ) 0.001584 0.05 , ( ) 0.08.( ) ( ) ( )

h h h h

m m h m m

m m h m m

R x E x S x R

S x S x I x S x S

I x S x I x I x I







+ + =
  = − − =

 = − =

 (4) 



21113 

AIMS Mathematics  Volume 8, Issue 9, 21106–21122. 

scheme. The values of the mean square error (MSE) and the state of transition values are depicted in 

Figure 5. The computed performances of MSE using the best curves plots, certification, and training 

are provided in Figure 5(a–c) and the SoT measures are portrayed in Figure 5(d–f). The best solution 

performances of the MDMPM are shown at epochs 100, 86 and 69, which are found around 1.69774 

×10−07, 1.4324 × 10−07 and 3.5876 × 10−07. It indicates that convergence through the MSE is observed 

based on dataset of training, testing and certification. It is also observed that by updating the epochs, 

the authentications, training, and testing graphs lead to steady-state position up to 10-07. The gradient 

curves by applying the process of SCJGNNs to solve the MDMPM are calculated as 1.4161×10-06, 

8.1804 × 10−07 and 2.9486 × 10−06. These graphic curves indicate the precision, exactness, and 

convergence by using the SCJGNNs procedure for the MDMPM. An error gradient presents the 

direction and magnitude that is calculated by the designed neural network for updating the weights in 

the proper amount/direction. In neural network fitting, the process of backpropagation is used to 

compute the loss function gradient. Mu is the used for the network’s training for the momentum 

parameter, which includes the updated weight expressions to avoid the local minimum issues. It is 

observed that the network can stuck sometimes to the local minimum, which does not perform the 

convergence. In addition, Mu shows the control parameter based on that scheme that is used in the 

neural network’s training. 

Figure 6(a to c) presents the curves of fitting for the nonlinear MDMPM, which certifies the 

comparison of the results. Figure 6(d–f) signifies the error histogram (EH) values for the MDMPM 

by applying the computing SCJGNNs. The construction of EH is used to test the errors of the 

targeted and predicted values after the designed artificial neural network training. These errors 

present that how predicted measures contrast from the targeted values. These values based on the EH 

are obtained as 1.95 × 10−05, 8.64 × 10−05 and −5.90 × 10−06 for respective dynamics of the MDMPM. 

Figures 7 to 9 present the correlation values for the MDMPM using the SCJGNNs. These measures 

based on the determination coefficient R2 are found as 1 for each case of the MDMPM. The graphs of 

substantiation, testing, and training verify the correctness of the MDMPM using the numerical 

stochastic SCJGNNs procedure. The values of MSE convergence using the train, epochs, certification, 

backpropagation, test, and intricacy are tabulated in Table 2. The complexity measures using the 

SCJGNNs for the MDMPM are performed to authenticate the intricacy based on the network’s 

training, i.e., epoch execution. 

Table 2. MSE performances for solving the MDMPM. 

Case 
MSE for instances of sampling 

Gradient Performance Epoch Time 
Test validation Train 

I 2.745×10−07 1.697 ×10−07 2.366×10−07 1.42×10−06 2.26×10−07 100 2 Sec 

II 1.795×10−07 1.432×10−07 1.920×10−07 8.18×10−07 1.91×10−07 86 2 Sec 

III 5.112×10−07 3.038×10−07 3.678×10−07 2.94×10−06 2.09×10−07 69 2 Sec 
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(a) Best validation performances for case 1    (b) Best validation performances for case 2. 

 

 

(c) Best validation performances for case 3.        (d) State transition values for case 1. 

 

(e) State transition values for case 2.           (f) State transition values for case 3. 

Figure 5. Best validation measures and state transitions for the nonlinear dynamics of the 

MDMPM by applying the stochastic computing SCJGNNs procedure. 
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(a) Function fitness for case 1.                 (b) Function fitness for case 2. 

 

(c) Function fitness for case 3.               (d) Error histogram measures for case 1. 

 

(e) Error histogram measures for case 2.      (f) Error histogram measures for case 3. 

Figure 6. Function fitness values and error histogram performances to solve the 

MDMPM by applying the SCJGNNs. 
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Figure 7. Values of regression for the MDMPM (1). Figure 8. Values of regression for the MDMPM (2). 

 

Figure 9. Values of regression for the MDMPM (3). 

Figures 10 and 11 present the comparison graphs and AE using the obtained and source statics 

for the MDMPM. It is demonstrated that the source and calculated outcomes of the MDMPM 

precisely coincided. Figure 10 represents the AE graphs for each category of the MDMPM. For the 

first class, the AE lies as 10−03 to 10−05 for case I and III and 10−02 to 10−04 for case II. These values 

for the 2nd category of the MDMPM are found around 10−05 to 10−06, 10−04 to 10−06 and 10−03 to 10−05 

for cases I, II and III. The AE measures for the 3rd dynamics of the MDMPM lie as 10−04 to 10−07, 

10−03 to 10−05 and 10−03 to 10−06 for respective cases. These values for the 4th class of the MDMPM 

are calculated as 10−03 to 10−05 for case I and for case II and III, these AE are found as 10−03 to 10−04. 
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The AE values for the 5th and 6th dynamics are found as 10−03 to 10−05 for each case of the model. 

These reduceable AE measures provides the accuracy of the scheme for the MDMPM. 

 

(a) Comparison: ( )hS x .        (b) Comparison: ( )hE x .         (c) Comparison: ( )hI x . 

 

(d) Comparison: ( )hR x .        (e) Comparison: ( )mS x .         (f) Comparison: ( )mI x . 

Figure 10. Achieved and reference results of the nonlinear MDMPM. 

 

(a) AE of class 1                 (b) AE of class 2           (c) AE of class 3 
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(d) AE of class 4              (e) AE of class 5             (f) AE of class 6 

Figure 11. The values of the AE for the nonlinear MDMPM. 

5. Conclusions 

The stochastic numerical performances of the malaria disease using the pesticides and 

medication have been presented in this study. The populations-based host and vector are divided in 

the mathematical classification of the malaria using the pesticides and medication. Some conclusions 

of this work are reported as: 

• The stochastic scale conjugate gradient neural network framework has been designed 

successfully for the numerical malaria disease model.  

• The neural network procedure is presented by using fifteen neurons along with the 

log-sigmoid transfer function in the hidden layers to solve the model. 

• The supervised neural networks process using the data as for validation 12%, testing 10%, 

and training 78% is presented for the numerical solutions of the system.  

• The accuracy of the proposed stochastic scheme is examined through the overlapping of the 

achieved obtained and Runge-Kutta source solutions. 

• The negligible performances of AE indicate the exactness of the computing stochastic approach. 

• The consistency and trustworthiness of the designed procedure are assessed through the 

correlation, histogram curves, regression, and functional fitness process to solve the 

MDMPM. 

• The perks/advantages of the proposed stochastic SCJGNNs procedure includes simplicity of 

the concept and understanding, straightforwardness in implementations and execution, 

provision of outcome on continuous domain, expandability and applicability. 

The limitation/disadvantage of the stochastic SCJGNNs paradigm is the issue of trapping in 

local minima for scale conjugate gradient methodology while training of the weights of the networks, 

however, the said limitation is rectified by exploited heuristic global search methodologies in future 

by the interested readers. Additionally, in future, the designed SCJGNNs procedure can be 

explored/implemented for different applications of the nonlinear mathematical models arising in the 

field of computational fluid mechanics. 
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