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1. Introduction

Zadeh [32] inculcated the theory of vagueness and uncertainty into a new class of fuzzy sets.
Contributions to the theory of ambiguousness play a significant part in solving many predicament
problems involved with impreciseness. Applications of fuzzy sets are extended and disseminated to
various fields such as information [22], control [23], robotics [14–16], etc.

Chang [8] has made a promising contribution to applying fuzzy sets in topological structures.
Atanassov [6, 7] generalized the fuzzy set intuitionistically, and the intuitionistic fuzzy set theory
emerged. Coker [9] developed the theory on intuitionistic fuzzy set. The fuzzy set theory provides the
degree of membership, while the intuitionistic fuzzy set also aggregates the degree of non-membership.
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B. Cong and V. Kerinovich [11] defined the concept of picture fuzzy set, which was deduced from
the fuzzy set and intuitionistic fuzzy set. Abdul Razaaq et al. [19] defined the rank of picture
fuzzy topological space and properties related to continuous functions. Tareq M. Al-Shami et al. [1]
introduced SR fuzzy set and its relationship with generalizations of fuzzy sets, weighted aggregated
operators to facilitate the multiattribute decision makers. An effective approach in decision making
problems using aggregation operations for (m,n) fuzzy sets are established by Tareq M. Al-Shami
et al. [2]. Multi criteria decision making problems under (a,b) fuzzy soft set and (2,1) fuzzy sets are
obtained by aggregated operators defined by Tareq M. Al-Shami et al. [3, 4]. A new fuzzy ordered
weighted averaging (OWA) operator is proposed by Juan-juan Peng et al. [17] to solve the aggregation
problem associated with many fuzzy numbers. Moreover, various operators are defined with their
desirable properties. Chao Tian et al. [26] developed the weighted picture fuzzy power Choquet
ordered geometric (WPFPCOG) operator and a weighted picture fuzzy power Shapley Choquet ordered
geometric (WPFPSCOG) operator based on fuzzy measure to deal with multi criteria decision making
problems. Sustainability evaluation index system for water environment treatment public-private-
partnership (WET-PPP) projects is constructed by Chao Tian et al. [27] to improve the accuracy of
decision-making problems and applied effectively to evaluation problems.

Picture fuzzy set has adequate applications in various situations involving many human perspectives
in addition to yes, no, refusal, etc. Picture fuzzy set incorporates the degree of neutrality, membership,
and non-membership. Manufacturing the components in a fabrication industry by an employee
emulates the picture fuzzy set, where the completion of the product by the employee is the degree
of membership, the incomplete products contribute the degree of non-membership, and the damaged
product is the degree of neutrality.

Statistical data analysis can be effectively implemented by clustering analysis techniques, which
are extensively applied in several domains, such as pattern recognition, microbiology analysis, data
mining, information retrieval, etc. In an empirical world, the data considered for clustering may be
linguistic and uncertain. Abundant clustering algorithms corresponding to various fuzzy environments
have been proposed, e.g., intuitionistic clustering algorithm [29, 30] concerning the correlation
coefficient formulas for IFSs, classification of picture fuzzy sets using correlation coefficients [21]
and Sanchez et al. [20] created a new method, Fuzzy Granular Gravitational Clustering Algorithm
(FGGCA) and also compared FGGCA with other clustering techniques. The correlation coefficient
analyzes the association and interdependencies between variables. The correlation coefficient is
observed under probability distribution in classical statistics, whereas many real situations are
subjective. Correlation coefficients between intuitionistic fuzzy sets are applied to linguistic variables,
which overcome the limitations obtained in fuzzy correlation measures. The correlation coefficient
between two picture fuzzy sets is the one in which the membership values have different and unique
consequences, which helps the decision makers to classify their attributes more effectively. Picture
fuzzy clustering [25] is one of the computational intelligence methods used in pattern recognition.
The enhancement of the traditional and intuitionistic fuzzy sets is picture fuzzy sets. In computational
intelligence, a picture fuzzy set provides a better clustering quality than other admissible clustering
algorithms involved with different fuzzy sets.

Picture fuzzy set has a robust application in medical diagnosis [12]. In the medical diagnosis of
a specific disease, some symptoms do not directly affect the particular disorder, and those symptoms
have neutral membership. In this way, the picture fuzzy set constitutes a good effect on the medical
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diagnosis. The topological structures: filters, grills, clusters, etc., have many applications in the field
of pattern analysis in the context of camouflaged objects [18], their applications of obtaining a C
structure compactification [28], intuitionistic fuzzy C-ends [31] and Q neighbourhoods, infra fuzzy
topological spaces, infra fuzzy homeomorphism, infra fuzzy isomorphisms [5] triggered us to define
the picture fuzzy topological structures like filters, grills, ultrafilter. Picture fuzzy filters have a wide
variety of applications in the field of Science and Technology, including pattern recognition, image
analysis, digital image processing, and forgery detection. Picture fuzzy filters, picture fuzzy grills, and
picture fuzzy ultrafilters may contribute to better analysis of various pattern recognition in the context
of camouflaged objects.

Many clustering algorithms are available to classify the data set among picture fuzzy sets, which
reflects the significance of the degree of positive, negative and neutral membership. In this paper,
the clustering algorithm defined using the correlation coefficient between picture fuzzy sets belonging
to the picture fuzzy filter collection enhances the data set’s classification method. A straightforward
approach based on the picture fuzzy filter is applied to the clustering algorithm, which classifies the data
set more effectively in the picture fuzzy topological space domain than the other existing classifications.
Classification of picture fuzzy clusters among the picture fuzzy filter collection of any cardinality can
be obtained at the fourth stage of the iteration process of the equivalent coefficient matrix involved in
the clustering algorithm employed in the paper. An illustration is provided in this paper to experience
the ease of classification using a picture fuzzy filter collection. It is compared with some intuitionistic
fuzzy set collection and intuitionistic fuzzy filter collection.

The paper is structured as follows: Section 2 deals with the fundamentals of Picture fuzzy sets and
the corresponding topological structures. Section 3 explores the fundamental properties of various
structures like picture fuzzy filter, grill and ultrafilter. Section 4 deals with an illustration of the
application of the clustering algorithm of picture fuzzy sets. For a practical example, the cotton industry
is considered. The primary four processes involved in producing yarn are assumed as the attributes. An
employee whose performance is based on completion, damage and incomplete of the product plays the
role of picture fuzzy sets. A clustering algorithm for picture fuzzy sets is applied to the filter collection
to classify the picture fuzzy sets in a filter collection, which helps the industry analyze the employee’s
performance. The abbreviations and acronyms used in the paper are listed in Table 1.

Table 1. List of abbreviations and acronyms used in the paper.
Abbreviations Definitions
PFS Picture Fuzzy Set
PFS(X) Collection of all Picture Fuzzy Sets on X
PFTS Picture Fuzzy Topological Space
IFS Intuitionistic Fuzzy Set
IFTS Intuitionistic Fuzzy Topological Space
PFOS Picture Fuzzy Open Set
PFCS Picture Fuzzy Closed Set
PFNF Picture Fuzzy Normal Family
int(D) Interior of D
cl(D) Closure of D
Ep(D) Informational energy of D
Cp2 (D, E) Correlation between D and E
Kp3 (D, E) Correlation Coefficient between D and E
PFsec(E) Picture Fuzzy Section of (E)
MC Correlation Matrix
C Association Matrix
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2. Preliminaries

2.1. Picture fuzzy sets and associated topological space

Definition 2.1. [10] A picture fuzzy set(PFS ) D on X is of the form of D={(x, γD(x), νD(x), ηD(x))|x ∈
X}. In this form γD(x), νD(x), ηD(x) denote the degree of positive membership, the degree of negative
membership, the degree of neutral membership of x in D respectively which satisfying, ∀x ∈ X, γD(x) +

νD(x)+ηD(x) ≤ 1. The degree of refusal membership of x in D is given by ρD(x) = (1− (γD(x)+νD(x)+

ηD(x))). Such collection of sets is represented as PFS (X).

Definition 2.2. [10] Let D and E any two PFS s, then

(i) D ⊆ E iff (y ∈ X, γD(y) ≤ γE(y) and νD(y) ≥ νE(y) and ηD(y) ≤ ηE(y));
(ii) D = E iff (D ⊆ E and E ⊆ D);

(iii) D ∪ E={(x,∨(γD(x), γE(x)),∧(νD(x), νE(x)),∧(ηD(x), ηE(x)))|x ∈ X};
(iv) D ∩ E={(x,∧(γD(x), γE(x)),∨(νD(x), νE(x)),∧(ηD(x), ηE(x)))|x ∈ X};
(v) CO(D) = D = {(νD(x), γD(x), ηD(x))|x ∈ X}.

Definition 2.3. [10] Some Special PFS s are as follows:

(i) A constant picture fuzzy set is the PFS ̂(ϑ, ε, %) = {(y, ϑ, ε, %)|y ∈ X};
(ii) Picture fuzzy universe set is 1X defined as 1X = ̂(1, 0, 0) = {(y, 1, 0, 0)|y ∈ X};

(iii) Picture fuzzy empty set is φ defined as φ = 0X = ̂(0, 0, 1) = {(y, 0, 0, 1)|y ∈ X}.

Definition 2.4. [24] A picture fuzzy topology on X is a collection σ of PFS satisfying

(1) ̂(ϑ, ε, %) ∈ σ, ̂(ϑ, ε, %) ∈ PFS (X);
(2) G ∩ H ∈ σ for any G,H ∈ σ;
(3) ∪i∈IHi for {Hi|i ∈ I} ⊆ σ.

Then (X, σ) is said to be a picture fuzzy topological space (PFTS ) and the member of σ is picture
fuzzy open set (PFOS ) in X. The picture fuzzy closed set (PFCS ) is the complement of it. σc denote
the collection of all PFCS s.

Definition 2.5. [24] For a picture fuzzy topological space (X, σ), int(D) and cl(D) denotes the interior
and closure operator of a picture fuzzy set D in (X, σ) and is defined as follows:

int(D) = ∪{H|H is a PFOS , H ⊆ D},
cl(D) = ∩{K|K is a PFOS , D ⊆ K}.

Definition 2.6. [10] The image of D ∈ PFS (X) under the function f from X into Y is defined as
follows:

f (D)(b) =


 ∨

a∈ f −1(b)
γD(a),

∧
a∈ f −1(b)

νD(a),
∧

a∈ f −1(b)
ηD(a)

 , if f −1(b) , φ,

(0, 0, 0) , if f −1(b) = φ.

The pre image of E ∈ PFS (Y) under f is f −1(E)(a)= (γE( f (a)), νE( f (a)), ηE( f (a))).
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2.2. Linear relationship between two IFSs

Let X = {x1, x2, · · · , xn} be a discrete universe of discourse, D and E be a two IFSs on X denoted
as D = {(xi, γD(xi), νD(xi))|xi ∈ X, i = 1, 2, · · · , n} and E = {(xi, γE(xi), νE(xi))|xi ∈ X, i = 1, 2, · · · , n}
respectively.

Definition 2.7. [13] For IFS D={(xi, γD(xi), νD(xi))|xi ∈ X, i = 1, 2, · · · , n}, the informational energy
of the set D is defined as

EIFS (D) =

n∑
i=1

(γ2
D(xi) + ν2

D(xi)). (2.1)

Definition 2.8. [13] For D, E ∈ IFS s, the correlation Cp2(D, E) is defined by

CIFS 1(D, E) =

n∑
i=1

(γD(xi)γE(xi) + νD(xi)νE(xi)). (2.2)

Definition 2.9. [13] The correlation coefficient between any two intuitionistic fuzzy sets D and E is
given by,

KIFS 1(D, E) =
CIFS 1(D, E)

(EIFS (D))
1
2 (EIFS (E))

1
2

=

n∑
i=1

(γD(xi)γE(xi) + νD(xi)νE(xi)
/{ n∑

i=1

ui(γ2
D(xi) + ν2

D(xi))
} 1

2
·
{ n∑

i=1

(γ2
E(xi) + ν2

E(xi))
} 1

2
.

(2.3)

Proposition 2.1. [13] The correlation coefficient between two IFSs D and E defined in Eq (2.3),
satisfies:

(1) KIFS 1(D, E) = KIFS 1(E,D);
(2) 0 ≤ KIFS 1(D, E) ≥ 1;
(3) KIFS 1(D, E) = 1 iff D = E.

Definition 2.10. [13] Let D j( j = 1, 2, · · · ,m) be m IFSs, and C = (Ki j)m×m be a correlation matrix,
where Ki j = K(Di,D j) denotes the correlation coefficient of two IFSs Di and D j and satisfies:

(1) 0 ≤ Ki j ≤ 1;
(2) Kii = 1;
(3) Ki j = K ji.

Definition 2.11. [30] The correlation matrix of m IFSs is given by MC = (Ki j)m×m, the composition
matrix of a correlation matrix is M2

C = MC ◦ MC = (Ki j)m×m, where

Ki j = maxn

{
min{Kin,Kn j}

}
. (2.4)

Definition 2.12. [30] Let MC = (Ki j)m×m be a correlation matrix, if M2
C ⊆ MC, i.e.,

maxn

{
min{Kin,Kn j}

}
≤ Ki j i, j = 1, 2, · · · ,m. (2.5)

Then MC is called an equivalent correlation matrix.
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Definition 2.13. [30] Let MC = (Ki j)m×m be an equivalent correlation matrix. Then we call (MC)λ =

(λKi j)m×m the λ-cutting matrix of MC, where

λKi j =

0, i f Ki j < λ,

1, i f Ki j ≥ λ,
(2.6)

and λ is the confidence level with λ ∈ [0, 1].

2.3. Linear relationship between two PFSs

Let X = {x1, x2, · · · , xn} be a discrete universe of discourse, D and E be a two PFSs on X denoted
as D={(xi, γD(xi), νD(xi), ηD(xi))|xi ∈ X, i = 1, 2, · · · , n} and E={(xi, γE(xi), νE(xi), ηE(xi))|xi ∈ X,
i = 1, 2, · · · , n} respectively. Let u = (u1, u2, · · · , un)T be the weight vector of xi(i = 1, 2, · · · , n)
with ui ≥ 0 and

∑n
i=1 ui = 1.

Definition 2.14. [21] For PFS D={(xi, γD(xi), νD(xi), ηD(xi))|xi ∈ X, i = 1, 2, · · · , n}, the informational
energy of the set D is defined as

Ep(D) =

n∑
i=1

ui(γ2
D(xi) + ν2

D(xi) + η2
D(xi) + ρ2

D(xi)). (2.7)

Definition 2.15. [21] For D, E ∈ PFS s, the correlation Cp2(D, E) is defined by

Cp2(D, E) =

n∑
i=1

ui(γD(xi)γE(xi) + νD(xi)νE(xi) + ηD(xi)ηE(xi) + ρD(xi)ρE(xi)). (2.8)

Definition 2.16. [21] The correlation coefficient between any two picture fuzzy sets D and E is given
by,

Kp3(D, E) =
Cp2(D, E)

(Ep(D))
1
2 (Ep(E))

1
2

=

n∑
i=1

ui(γD(xi)γE(xi) + νD(xi)νE(xi) + ηD(xi)ηE(xi)

+ ρD(xi)ρE(xi))
/{ n∑

i=1

ui(γ2
D(xi) + ν2

D(xi) + η2
D(xi)

+ ρ2
D(xi))

} 1
2
·
{ n∑

i=1

ui(γ2
E(xi) + ν2

E(xi) + η2
E(xi) + ρ2

E(xi))
} 1

2
.

(2.9)

Kp3(D, E) in Eq (2.9) depends on the following factors:

(1) The amount of information expressed by the degree of positive membership, the degree of neutral
membership, the degree of negative membership.

(2) The reliability of the information expressed by refusal membership.

Proposition 2.2. [21] Let u = (u1, u2, · · · , un)T be the weight vector of xi(i = 1, 2, · · · , n) with ui ≥ 0
and
∑n

i=1 ui = 1 then correlation coefficient between two PFSs D and E defined in Eq (2.9), satisfies:
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(1) Kp3(D, E) = Kp3(E,D);
(2) 0 ≤ Kp3(D, E) ≥ 1;
(3) Kp3(D, E) = 1 iff D = E.

Definition 2.17. [21] Let D j( j = 1, 2, · · · ,m) be m PFSs, and C = (Ki j)m×m be a correlation matrix,
where Ki j = K(Di,D j) denotes the correlation coefficient of two PFSs Di and D j and satisfies:

(1) 0 ≤ Ki j ≤ 1;
(2) Kii = 1;
(3) Ki j = K ji.

Definition 2.18. [30] The correlation matrix of m PFSs is given by MC = (Ki j)m×m, the composition
matrix of a correlation matrix is M2

C = MC ◦ MC = (Ki j)m×m, where

Ki j = maxn

{
min{Kin,Kn j}

}
. (2.10)

Definition 2.19. [30] Let MC = (Ki j)m×m be a correlation matrix, if M2
C ⊆ MC, i.e.,

maxn

{
min{Kin,Kn j}

}
≤ Ki j i, j = 1, 2, · · · ,m. (2.11)

Then MC is called an equivalent correlation matrix.

Definition 2.20. [30] Let MC = (Ki j)m×m be an equivalent correlation matrix. Then we call (MC)λ =

(λKi j)m×m the λ-cutting matrix of MC, where

λKi j =

0, i f Ki j < λ,

1, i f Ki j ≥ λ,
(2.12)

and λ is the confidence level with λ ∈ [0, 1].

3. Picture fuzzy filter

Throughout the paper picture fuzzy topology is observed in the sense of Chang [8].

Definition 3.1. Let (X, σ) be a PFTS . Picture fuzzy filter E ⊂ σc on X is a collection of PFS (X)
satisfying

(1) E is nonempty and 0X < E;
(2) If D1,D2 ∈ E then D1 ∩ D2 ∈ E;
(3) If D ⊆ E where D ∈ E and E ∈ σc then E ∈ E.

Definition 3.2. If (X, σ) is a PFTS and Y ⊆ X, the collection σY = {D∩ 1Y : D ∈ σ} is a picture fuzzy
topology on Y. (Y, σY) is called a picture fuzzy subspace on X.

Example 3.1. Let X = {k, l, m} and σ = {1X, 0X, H, K, E = H ∪ K, D = H ∩ K}, the membership
values of H, K, E and D are provided in Table 2.
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Table 2. Membership values.

H K E D 1X 0X

γ 0.3 0.3 0.3 0.3 1 0
k η 0.2 0.2 0.2 0.2 0 0

ν 0.4 0.4 0.4 0.4 0 1
γ 0.2 0.7 0.2 0.7 1 0

l η 0.1 0.0 0.0 0.0 0 0
ν 0.3 0.2 0.3 0.2 0 1
γ 0.4 0.3 0.3 0.4 1 0

m η 0.2 0.1 0.1 0.1 0 0
ν 0.3 0.4 0.4 0.3 0 1

Thus (X, σ) is a picture fuzzy topological space. Let Y = {k, l}. σY = {D ∩ 1Y |D ∈ σ} is a picture
fuzzy topology on Y.

Definition 3.3. Let (X, σ) be a PFTS . Picture fuzzy grill G ⊂ σc on X is a collection of PFS (X)
satisfying

(1) G is non empty and 0X < G ;
(2) If D ∈ G and D ⊆ E then E ∈ G ;
(3) If D ∪ E ∈ G then D ∈ G or E ∈ G .

Definition 3.4. Picture fuzzy section of E is PFsec(E) = {E ∈ σc : D ∩ E , 0X,D ∈ E}.

Definition 3.5. B ⊂ E is a picture fuzzy base for E if for every D ∈ E ∃ E ∈ B with E ⊆ D.

Definition 3.6. H ⊂ σc is a picture fuzzy subbase for E if {∩n
i=1Di|Di ∈ H } is a picture fuzzy base

for E.

Proposition 3.1. Let (X, σ) be a PFTS and B ⊂ σc. Then (i) and (ii) are equivalent.

(i) There is only one picture fuzzy filter E having B as a picture fuzzy base;
(ii) (a) B is non empty and 0X < B;

(b) If E1, E2 ∈ B there is E3 ∈ B with E3 ⊆ E1 ∩ E2.

Proof.

(i)⇒(ii). Assume that there is only one picture fuzzy filter E having B as a picture fuzzy base. Since B
is a picture fuzzy base for E and 0X < E, 0X < B and also B is non empty. Also if E1, E2 ∈ B such that
E1 ⊆ D1 and E2 ⊆ D2, for D1,D2 ∈ E. Since D1,D2 ∈ E, D1 ∩ D2 = D3 ∈ E, E1 ∩ E2 ⊆ D1 ∩ D2 = D3.
Thus ∃ E3 ∈ B 3 E3 = E1 ∩ E2 ⊆ D3.

(ii)⇒ (i). Suppose that B is a picture fuzzy base for two different picture fuzzy filters E1 and E2. For
each D1 ∈ E1 ∃ E1 ∈ B 3 E1 ⊆ D1. Similarly for each D2 ∈ E2 ∃ E2 ∈ B 3 E2 ⊆ A2. Also if
D1 ∩ D2 = 0X then 0X ∈ B which is impossible. Hence D1 ∩ D2 , 0X. Therefore D1 ∩ D2 lies in both
E1,E2 and thus the picture fuzzy filters are same. �

Proposition 3.2. If there is a picture fuzzy base B satisfies (a) and (b) of Proposition 3.1, then

E = {D ∈ σc|∃E ∈ B with E ⊆ D}
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is a picture fuzzy filter generated by B.

Proof. Since B is nonempty implies E is nonempty. If D ∈ E then D ⊇ E for some E ∈ B. By
assumption E , 0X thus D , 0X. If D1, D2 ∈ E there exists E1, E2 ∈ B with Ei ⊆ Di for i = 1, 2. Then
D1 ∩ D2 ⊇ E1 ∩ E2 ⊇ E3 for some E3 ∈ B. Thus D1 ∩ D2 ∈ E. This proves that E is a picture fuzzy
filter on X. �

Proposition 3.3. Let E be a picture fuzzy filter and D ∈ σc. E ∪ {D} lies in some picture fuzzy filter iff
for each E ∈ E, E ∩ D , 0X.

Definition 3.7. A picture fuzzy ultrafilter E is a maximal picture fuzzy filter among the set of all picture
fuzzy filters {E j} j∈J.

Proposition 3.4. Every picture fuzzy filter E extends to picture fuzzy ultrafilter V .

Proposition 3.5. For any picture fuzzy filter E on X, we have the equivalence.

(i) E is a picture fuzzy ultrafilter;
(ii) If D ∈ σc and ∀ E ∈ E with D ∩ E , 0X, then D ∈ E;

(iii) If D is PFCS and D is not in E, then there is E ∈ E 3 D ∩ E = 0X.

Proof.

(i)⇒(ii). Suppose D be a PFCS and D ∩ E , 0X, for all E ∈ E. From Proposition 3.3, E ∪ {D} lies in
some picture fuzzy filter E∗. By (i), E = E∗.

(ii)⇒ (iii). Let D is PFCS and is not in E. By (ii), for some E ∈ E we have D ∩ E , 0X.

(iii)⇒ (i). Let M be a picture fuzzy filter with E ⊂M and E ,M . Let D ∈M 3D < E. By (iii), ∃
E ∈ E with D ∩ E = 0X. Since E,D ∈M , E ∩ D ∈M implies 0X ∈M , contradicts our assumption.
Hence E = M which is a picture fuzzy ultrafilter. �

Proposition 3.6. If V1, V2 the two different picture fuzzy ultrafilters on X, then (∩iDi) ∩ (∩ jD j) = 0X

for all Di ∈ V1 and D j ∈ V2.

Proof. Suppose (∩iDi) ∩ (∩ jD j) , 0X, for all Di ∈ V1 and D j ∈ V2. Then there exists an x ∈ X
for which, ∧i(γDi(x)) , 0, ∨i(νDi(x)) , 1, ∧i(ηDi(x)) , 0. Also ∧ j(γD j(x)) , 0, ∨ j(νD j(x)) , 1,
∧ j(ηD j(x)) , 0, ⇒ ∧(γDi(x), γD j(x)) > 0, ∨(νDi(x), νD j(x)) < 1, ∧(ηDi(x), ηD j(x)) > 0, for all i, j.
Which implies Di ∩ D j , 0X. By Proposition 3.5, Di ∈ V2 and D j ∈ V1 for all i, j. Then it leads to
contradiction. �

Proposition 3.7. Every picture fuzzy ultrafilter is a picture fuzzy grill.

Proof. Let D, E be PFCS with D ∪ E lies in picture fuzzy ultrafilter V . Suppose D, E is not in V .
Then there exists D1, E1 ∈ V with D∩D1 = 0X and E ∩ E1 = 0X. Since V is a picture fuzzy ultrafilter,
(D∪ E)∩D1 ∩ E1 ∈ V . Now, [(D∪ E)∩D1]∩ E1 = [(D∩D1)∪ (E ∩ E1)]∩ E1 = [0X ∪ (E ∩D1)]∩ E1

= [0X ∩ E1]∪ [(E ∩D1)∩ E1] = 0X ∪ [E ∩ E1 ∩D1] = 0X ∪ 0X = 0X. This leads a contradiction. Hence
V is a picture fuzzy grill on X. �

Proposition 3.8. If P(E) is the collection of picture fuzzy grills containing E, then we have E =

∩G ∈P(E)G .
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Proof. If A be a PFCS and is not in E. Now, L denotes the inductive set consisting of all picture fuzzy
filters G containing E and A < G . L posses the maximal filter V . We claim V is a picture fuzzy grill.
Let B1, B2 ∈ σ

c with B1∪B2 ∈ V such that B1, B2 < V . Consider the family J = {F ∈ σc|F∪B2 ∈ V }.
Since B1 ∈ σ

c and B1 ∪ B2 ∈ V , implies that B1 ∈ J . This implies J is non empty. Suppose if 0X

is in J , B2 ∈ V . Contradicts our assumption. Hence 0X < J . If F1, F2 ∈ J . By definition of
J , F1 ∪ B2 ∈ V and F2 ∪ B2 ∈ V . Since V is a picture fuzzy filter. [F1 ∪ B2] ∩ [F2 ∪ B2] ∈ V ⇒
(F1 ∩ F2) ∪ B2 ∈ V ⇒ F1 ∩ F2 ∈ J . If F ∈ J and B ∈ σc such that F ⊆ B, F ∪ B2 ∈ V , V is
ultrafilter. B1 ∪ B2 ∈ V , implies that B ∈ J . Thus J is a picture fuzzy filter. Since B1 ∪ B2 ∈ V ,
(B1 ∪ B2) ∪ B2 ∈ V , implies that B1 ∪ B2 ∈ J . Thus V ⊂ J . Since B1 ∈ J and B1 < V . Thus
V , J . Let K = {C ∈ σc|A ∪ C ∈ V }. Suppose 0X ∈ K , then by definition of K , A ∈ V .
Contradicts our assumption V ∈ L and A < V . Hence 0X < K . Since 1x ∈ V , implies that 1X ∈ K .
K satisfies the first condition of picture fuzzy filter. If A∗, A∗∗ ∈ K . By definition of K , the picture
fuzzy sets A∗ ∪ A and A∗∗ ∪ A are in V . Since V is a picture fuzzy filter, A∗ ∪ A∗∗ ∪ A ∈ V . Therefore
A∗ ∪ A∗∗ ∈ K . If A ∈ K and A∗ ∈ σc such that A∗ ⊇ A then A∗∗ ∈ K . Hence K is a picture fuzzy
filter.

Now, E ⊂ K . A < K for A < V . Hence K also lies in L and V ⊂ K . V =K since V is
maximal. If A ∈ J , then A ∪ B2 ∈ V , implies that B2 ∈ K = V . Contradicts our assumption
B2 < V . Thus A < J . V = J , since J ∈ L , V ⊂ J . However, V , J . So it is absurd
to assume B1, B2 < V . Thus B1, B2 ∈ V . Therefore V is a picture fuzzy grill and A < V . Hence
∩G ∈P(E)G ⊂ E. �

Definition 3.8. A picture fuzzy filter Ex(ϑ,ε,%) generated by picture fuzzy point x(ϑ,ε,%), if the non empty
collection Ex(ϑ,ε,%) = {E ∈ σc|x(ϑ,ε,%) ⊆ E} is a picture fuzzy grill on X.

Definition 3.9. Picture fuzzy normal family(PFNF) is a collection of PFCS if given D1,D2 ∈ σ
c such

that D1 ∩ D2 = 0X there exist E1, E2 ∈ σ
c with E1 ∪ E2 = 1X, D1 ∩ E1 = 0X and D2 ∩ E2 = 0X.

Proposition 3.9. Let (X, σ) be any PFTS and σc be a PFNF. Every picture fuzzy grill G on X lies
exactly in one picture fuzzy ultrafilter.

Proof. Assume that V1 and V2 are the picture fuzzy ultrafilters having G ⊂ V1, G ⊂ V2, V1 , V2.
Then ∃ D1 ∈ V1 and D2 ∈ V2 with D1 ∩ D2 = 0X. Since σc is a PFNF, there exist E1, E2 ∈ σ

c with
E1 ∪ E2 = 1X, D1 ∩ E1 = 0X and D2 ∩ E2 = 0X. Since E1 ∪ E2 = 1X and G is a picture fuzzy grill,
E1 ∈ G or E2 ∈ G . Suppose if E1 ∈ G , then E1 ∈ V1 and E1 ∈ V2. Thus D1∩E1 = 0X with D1, E1 ∈ V1,
contradicts our assumption. Similarly, E2 ∈ G , then E2 ∈ V1 and E2 ∈ V2. Thus D2 ∩ E2 = 0X with
D2, E2 ∈ V2, contradicts our assumption. Hence V1 = V2. �

Proposition 3.10. Ifσc be a PFNF and for every picture fuzzy point x(ϑ,ε,%) there exists a unique picture
fuzzy ultrafilter Vx(ϑ,ε,%) which contains Ex(ϑ,ε,%) .

Proof. Proof follows from Definition 3.8 and Proposition 3.9. �

Proposition 3.11. For any two picture fuzzy points x(ϑ,ε,%), y(γ,δ,ϕ) with x = y, we have Vx(ϑ,ε,%) = Vy(γ,δ,ϕ) .

Proof. Proof is obtained from Proposition 3.6. �

Proposition 3.12. Let (X, σ) is a picture fuzzy topological space. Then
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(a) E is a picture fuzzy filter on X iff PFsec(E) is picture fuzzy grill on X.
(b) G is a picture fuzzy grill on X iff PFsec(G ) is picture fuzzy filter on X.

Proof.

(a) Let E be a picture fuzzy filter on X. First two conditions of PFsec(E) is true by the nature of E. Let
D ∪ E ∈ PFsec(E), then for all C ∈ E, C ∩ (D ∪ E) ∈ E. By definition of PFsec(E), D, E ∈ PFsec(E).
Hence PFsec(E) is a picture fuzzy grill on X. Conversely, PFsec(E) satisfies first and third condition
of picture fuzzy filter. If D1,D2 ∈ PFsec(E), D1 ∩ D2 ∈ PFsec(E). Hence PFsec(E) is a picture fuzzy
filter on X.

(b) Let E be a picture fuzzy grill on X. First and second conditions of picture fuzzy filter is true for
PFsec(E). For the second condition let D1,D2 ∈ PFsec(E), (D1∩C) , 0X and (D2∩C) , 0X, ∀C ∈ E).
Therefore D1 ∩ D2 ∈ PFsec(E). Hence PFsec(E) is a picture fuzzy filter on X. Conversely, PFsec(E)
is a picture fuzzy filter on X. First and second conditions of picture fuzzy grill is obvious. For the third
condition D ∪ E ∈ PFsec(E), C ∩ (D ∪ E) , 0X. Hence both D, E is in PFsec(E). Hence PFsec(E) is
a picture fuzzy grill on X. �

By the above Proposition, it is easy to analyze that there is a one to one correspondence between
the set of all picture fuzzy filters and the set of all picture fuzzy grills.

4. Implementation of clustering algorithm on PFSs

P. Singh [21] proposed the clustering algorithm for picture fuzzy set. The proposed algorithm is
applied to the picture fuzzy filter collection and the classification of picture fuzzy sets is obtained.

Proposition 4.1. [30] The composition matrix M2
C is also a correlation matrix.

Proposition 4.2. [30] Let MC be a correlation matrix. Then for any non-negative integers p1 and p2,
the composition matrix. Mp1 p2

C derived from Mp1 p2
C = Mp1

C ◦ Mp2
C is still a correlation matrix.

Proposition 4.3. [30] Let MC = (Ki j)m×m be a correlation matrix. Then after the finite times of
compositions:
MC → M2

C → M4
C → · · · → M2k

C → · · · , there must exist a positive integer k such that M2k

C = M2k+1

C

and M2k

C is also an equivalent correlation matrix.

4.1. Algorithm for PFSs [21]

Step 1. Let {D1,D2, · · · ,Dm} be a set of PFSs in X = {x1, x2, · · · , xn}. Using the formula, correlation
coefficient of picture fuzzy set can be calculated and the correlation matrix MC = (Ki j)m×m, where
Ki j = K(Di,D j) can be constructed.
Step 2. Check whether M2

C ⊆ MC, where M2
C = MC ◦ MC = (Ki j)m×m = maxn

{
min{Kin,Kn j}

}
≤ Ki j

i, j = 1, 2, · · · ,m. If it does not hold, construct the equivalent correlation matrix M2k

C : MC → M2
C →

M4
C → · · · → M2k

C → · · · , until M2k

C = M2k+1

C .
Step 3. For confidence level λ, construct a λ-cutting matrix (MC)λ = (λKi j)m×m through Definition 2.20
in order to classify the PFSs P j( j = 1, 2, · · · ,m). If all element of the ith column in (MC)λ are the same
as the corresponding elements of the jth column in (MC)λ, then the PFSs Di and D j are of the same
type. The classification of picture fuzzy sets can be done by the above principle.
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4.2. Illustration: performance measure of an employee in a cotton industry

Illustration 1. For a practical example, an employee from a subunit of the cotton industry is
considered. As the production of yarn depends on four crucial processes blowing, carding, drawing,
and roving can be performed by the workers. After completing the above-said stages, the product
yarn can be obtained through machines automatically. While doing the first four processes, there
are positive, negative, and flaws in an employee’s performance. We attempted to define a picture
fuzzy topological space on the collection of picture fuzzy sets obtained from employee performance.
Later picture fuzzy filter collection is obtained and applied with the clustering algorithm leads to a
classification of the employee based on their performance. Each employee is associated with four
different attributes denoted by X = {k, l, m, n}, k: Blowing; l: Carding; m: Drawing; n: Roving
with weight vector u = (0.4, 0.2, 0.3, 0.1). Based on the expert’s information, the evaluation of each
employee is expressed in the form of PFSs. Table 3 represents the degree of positive, negative, and
neutral membership of each attribute of X given by the experts.

Let σ = {1X, 0X, E1, E2, E3, E4, E5, E6, E7, E8, E9} be the picture fuzzy topology on X where

E1 = {(k, 0.7, 0.1, 0.2), (l, 0.9, 0.0, 0.1), (m, 0.8, 0.1, 0.0), (n, 0.7, 0.1, 0.2)},
E2 = {(k, 0.8, 0.1, 0.1), (l, 0.8, 0.1, 0.1), (m, 0.1, 0.1, 0.7), (n, 0.6, 0.2, 0.1)},
E3 = {(k, 0.4, 0.2, 0.2), (l, 0.7, 0.1, 0.2), (m, 0.6, 0.1, 0.3), (n, 0.6, 0.3, 0.1)},
E4 = E1 ∪ E2, E5 = E1 ∪ E3, E6 = E2 ∪ E3, E7 = E1 ∩ E2, E8 = E1 ∩ E3, E9 = E2 ∩ E3

and (X, σ) be the PFTS. Then σc = {1X, 0X, E1, E2, E3, E4, E5, E6, E7, E8, E9}. Consider the picture
fuzzy filter F1 = {0x, E2, E3, E6, E9}.

Table 3. Employees experts membership values.

E1 E2 E3 E4 E5 E6 E7 E8 E9 0X 1X

γ 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 1 0
k η 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0

ν 0.7 0.8 0.4 0.8 0.7 0.8 0.7 0.4 0.4 0 1
γ 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.2 1 0

l η 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0 0
ν 0.9 0.8 0.7 0.9 0.9 0.8 0.8 0.7 0.7 0 1
γ 0.0 0.7 0.3 0.0 0.0 0.3 0.7 0.3 0.3 1 0

m η 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0
ν 0.8 0.1 0.6 0.8 0.8 0.6 0.1 0.6 0.1 0 1
γ 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 1 0

n η 0.1 0.2 0.3 0.1 0.1 0.2 0.1 0.1 0.2 0 0
ν 0.7 0.6 0.6 0.7 0.7 0.6 0.6 0.6 0.6 0 1

Applying clustering algorithm to picture fuzzy sets from F1.

Step 1. The correlation coefficient of PFSs E j( j = 2, 3, 6, 9) can be computed by using Eq (2.9) and
the correlation matrix MC is constructed:
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MC =


1 0.7940 0.8924 0.9064 0.7395

0.7940 1 0.8364 0.8364 0.8495
0.8924 0.8364 1 0.7752 0.9486
0.9064 0.8364 0.7752 1 0.5975
0.7395 0.8495 0.9486 0.5975 1


.

Step 2. Construct equivalent correlation matrices:

M2
C =


1 0.8364 0.8924 0.9064 0.8924

0.8364 1 0.8495 0.8364 0.8495
0.8924 0.8495 1 0.8924 0.9486
0.9064 0.8364 0.8924 1 0.8364
0.8924 0.8495 0.9486 0.8364 1


,

M4
C =


1 0.8495 0.8924 0.9064 0.8924

0.8495 1 0.8495 0.8495 0.8495
0.8924 0.8495 1 0.8924 0.9486
0.9064 0.8495 0.8924 1 0.8924
0.8924 0.8495 0.9486 0.8924 1


,

M8
C =


1 0.8495 0.8924 0.9064 0.8924

0.8495 1 0.8495 0.8495 0.8495
0.8924 0.8495 1 0.8924 0.9486
0.9064 0.8495 0.8924 1 0.8924
0.8924 0.8495 0.9486 0.8924 1


.

Therefore M8
C = M4

C. Hence M4
C is equivalent matrix.

Step 3. λ-cutting matrix MCλ
= (λKi j)m×m is computed using the Eq (2.12), based on which, we get all

possible classification of the employee E j( j = 2, 3, 6, 9): classification shown in Table 6.

Thus the above illustration leads to classifying an employee from the picture fuzzy filter collection
obtained in the third iteration. The number of iterations is more for some collection of picture fuzzy
sets. Thus if the collection is a picture fuzzy filter, the classification is obtained at the earliest.

4.3. Illustration: classification of intuitionistic fuzzy sets from intuitionistic fuzzy filter

Illustration 2. Let σ = {1X, 0X, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10} be the IFT and (X, σ) be the IFTs.
The membership values of intuitionistic fuzzy sets belongs to σc is given in Table 4. Consider the
intuitionistic fuzzy filter F2 = {0x, A1, A6, A8, A10}.
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Table 4. The data of σc.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 0x 1x

x1 γAi 0.40 0.30 0.20 0.40 0.10 0.30 0.40 0.10 0.40 0.10 1.00 0.00
νAi 0.30 0.40 0.40 0.30 0.80 0.40 0.60 0.90 0.40 0.90 0.00 1.00

x2 γAi 0.70 0.10 0.10 0.00 0.20 0.50 0.20 0.20 0.00 0.00 1.00 0.00
νAi 0.20 0.50 0.60 0.90 0.70 0.30 0.40 0.70 1.00 0.80 0.00 1.00

x3 γAi 0.50 0.20 0.10 0.10 0.00 0.60 0.20 0.10 0.10 0.30 1.00 0.00
νAi 0.40 0.60 0.80 0.80 0.70 0.20 0.70 0.70 0.90 0.60 0.00 1.00

x4 γAi 0.80 0.70 0.60 0.10 0.10 0.20 0.60 0.50 0.20 0.20 1.00 0.00
νAi 0.10 0.20 0.20 0.70 0.40 0.50 0.30 0.40 0.60 0.50 0.00 1.00

x5 γAi 0.50 0.30 0.70 0.80 0.20 0.40 0.70 0.50 0.70 0.10 1.00 0.00
νAi 0.40 0.60 0.30 0.10 0.80 0.50 0.30 0.40 0.20 0.80 0.00 1.00

x6 γAi 0.70 0.20 0.20 0.80 0.60 0.60 0.10 0.00 0.80 0.40 1.00 0.00
νAi 0.20 0.70 0.50 0.20 0.40 0.30 0.60 0.80 0.10 0.60 0.00 1.00

Applying clustering algorithm to intuitionistic fuzzy sets from F2.
Step 1. The correlation coefficient of IFSs A j( j = 1, 6, 8, 10) can be computed by using Eq (2.3) and
the correlation matrix MC is constructed:

MC =


1 0.4306 0.9436 0.5204 0.1428

0.4306 1 0.3345 0.8750 0.5285
0.9436 0.3345 1 0.4511 0.0571
0.5204 0.8750 0.4511 1 0.3857
0.1428 0.5285 0.0571 0.3857 1


.

Step 2. Construct equivalent correlation matrices:

M2
C =


1 0.5204 0.9436 0.8750 0.4306

0.5204 1 0.4511 0.8750 0.5285
0.9436 0.4511 1 0.5204 0.3857
0.8750 0.8750 0.5204 1 0.5285
0.4306 0.5285 0.3857 0.5285 1


,

M4
C =


1 0.8750 0.9436 0.8750 0.5285

0.8750 1 0.5204 0.8750 0.5204
0.9436 0.5204 1 0.8750 0.5204
0.8750 0.8750 0.8750 1 0.5285
0.5285 0.5204 0.5204 0.5285 1


,

M8
C =


1 0.8750 0.9436 0.8750 0.5285

0.8750 1 0.5204 0.8750 0.5204
0.9436 0.5204 1 0.8750 0.5204
0.8750 0.8750 0.8750 1 0.5285
0.5285 0.5204 0.5204 0.5285 1


.
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Therefore M8
C = M4

C. Hence M4
C is equivalent matrix.

Step 3. λ-cutting matrix MCλ
= (λKi j)m×m is computed using the Eq (2.6) , based on which, we get all

possible classification of the A j( j = 1, 6, 8, 10): classification is shown in Table 6.

4.4. Illustration: classification of car data set

Illustration 3.

Now we utilize the algorithm-IFSC to cluster the ten new cars Ai(i = 1, 1, · · · , 10) whose positive
and negative membership values are provided in Table 5, which involves the following steps:

Table 5. The car data set.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

x1 γAi 0.30 0.40 0.40 0.30 0.80 0.40 0.60 0.90 0.40 0.90
νAi 0.40 0.30 0.20 0.40 0.10 0.30 0.40 0.10 0.40 0.10

x2 γAi 0.20 0.50 0.60 0.90 0.70 0.30 0.40 0.70 1.00 0.80
νAi 0.70 0.10 0.10 0.00 0.20 0.50 0.20 0.20 0.00 0.00

x3 γAi 0.40 0.60 0.80 0.80 0.70 0.20 0.70 0.70 0.90 0.60
νAi 0.50 0.20 0.10 0.10 0.00 0.60 0.20 0.10 0.10 0.30

x4 γAi 0.80 0.20 0.20 0.70 0.40 0.50 0.30 0.40 0.60 0.50
νAi 0.10 0.70 0.60 0.10 0.10 0.20 0.60 0.50 0.20 0.20

x5 γAi 0.40 0.30 0.30 0.10 0.80 0.50 0.30 0.40 0.20 0.80
νAi 0.50 0.60 0.70 0.80 0.20 0.40 0.70 0.50 0.70 0.10

x6 γAi 0.20 0.70 0.50 0.20 0.40 0.30 0.60 0.80 0.10 0.60
νAi 0.70 0.20 0.20 0.80 0.60 0.60 0.10 0.00 0.80 0.40

Step 1. Utilize to calculate the association coefficients of Ai(i = 1, 1, · · · , 10), and then construct an
association matrix:

C =



1.000 0.667 0.645 0.709 0.633 0.919 0.696 0.609 0.666 0.611
0.667 1.000 0.909 0.661 0.666 0.665 0.913 0.820 0.665 0.640
0.645 0.909 1.000 0.768 0.740 0.576 0.937 0.862 0.771 0.670
0.709 0.661 0.768 1.000 0.755 0.610 0.717 0.728 0.968 0.711
0.633 0.666 0.740 0.755 1.000 0.623 0.713 0.476 0.764 0.861
0.919 0.665 0.576 0.610 0.623 1.000 0.634 0.579 0.566 0.622
0.696 0.913 0.937 0.717 0.713 0.634 1.000 0.889 0.722 0.692
0.609 0.820 0.862 0.728 0.476 0.579 0.889 1.000 0.740 0.811
0.666 0.665 0.771 0.968 0.764 0.566 0.722 0.740 1.000 0.732
0.611 0.640 0.670 0.711 0.861 0.622 0.692 0.811 0.732 1.000



.
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Step 2. Similarly, C2,C4 has be computed and C8,C16 are as follows:

C8 =



1.000 0.709 0.709 0.709 0.709 0.919 0.709 0.709 0.709 0.709
0.709 1.000 0.913 0.771 0.811 0.709 0.913 0.889 0.771 0.811
0.709 0.913 1.000 0.771 0.811 0.709 0.937 0.889 0.771 0.811
0.709 0.771 0.771 1.000 0.771 0.709 0.771 0.771 0.968 0.771
0.709 0.811 0.811 0.768 1.000 0.709 0.811 0.811 0.771 0.861
0.919 0.709 0.709 0.709 0.709 1.000 0.709 0.709 0.709 0.709
0.709 0.913 0.937 0.771 0.811 0.709 1.000 0.889 0.771 0.811
0.709 0.889 0.889 0.771 0.811 0.709 0.889 1.000 0.771 0.811
0.709 0.771 0.771 0.968 0.771 0.709 0.771 0.771 1.000 0.771
0.709 0.811 0.811 0.771 0.861 0.709 0.811 0.811 0.771 1.000



,

C16 =



1.000 0.709 0.709 0.709 0.709 0.919 0.709 0.709 0.709 0.709
0.709 1.000 0.913 0.771 0.811 0.709 0.913 0.889 0.771 0.811
0.709 0.913 1.000 0.771 0.811 0.709 0.937 0.889 0.771 0.811
0.709 0.771 0.771 1.000 0.771 0.709 0.771 0.771 0.968 0.771
0.709 0.811 0.811 0.768 1.000 0.709 0.811 0.811 0.771 0.861
0.919 0.709 0.709 0.709 0.709 1.000 0.709 0.709 0.709 0.709
0.709 0.913 0.937 0.771 0.811 0.709 1.000 0.889 0.771 0.811
0.709 0.889 0.889 0.771 0.811 0.709 0.889 1.000 0.771 0.811
0.709 0.771 0.771 0.968 0.771 0.709 0.771 0.771 1.000 0.771
0.709 0.811 0.811 0.771 0.861 0.709 0.811 0.811 0.771 1.000



,

hence, C8 = C16, i.e., C8 is an equivalent association matrix.

Step 3. Since the confidence level λ has a close relationship with the element of the equivalent
association matrix C8, in the following, we give a detailed sensitivity analysis with respect to the
confidence level λ and we get all possible classifications of the 10 new cars Ai(i = 1, 2, ..., 10):
classification is shown in Table 6.

Classification of the above Illustrations are provided in Table 6.
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Table 6. Classification of intuitionistic and picture fuzzy sets using clustering algorithm.

Class Confidence level Clustering result
5 0.9486 ≤ λ ≤ 1 {E2}, {E3}, {E6}, {E9}, {0X}

4 0.9064 ≤ λ ≤ 0.9486 {E2}, {E3}{E6, 0X}, {E9}

PFSf 3 0.8924 ≤ λ ≤ 0.9064 {E2, E9}, {E3}, {0X, E6}

2 0.8495 ≤ λ ≤ 0.8924 {E3}, {E2, E6, E9, 0X}

1 0 ≤ λ ≤ 0.8495 {E2, E3, E6, E9, 0X}

5 0.9436 ≤ λ ≤ 1 {A6}, {A8}, {A1}, {A10}, {0X}

4 0.8750 ≤ λ ≤ 0.9436 {A6, A8}, {A1}, {A10}, {0X}

IFSf 4 0.5285 ≤ λ ≤ 0.8750 {A6, A8}, {A1}, {A10}, {0X}

4 0.5204 ≤ λ ≤ 0.5285 {A6, A8}, {A1}, {A10}, {0X}

1 0 ≤ λ ≤ 0.5204 {A1, A6, A8, A10, 0X}

10 0.968 ≤ λ ≤ 1 {A3}, {A7}, {A5}, {A10},{A6}, {A1} {A2},{A8} {A4}, {A9}

9 0.937 ≤ λ ≤ 0.968 {A3}, {A7}, {A5}, {A10},{A6}, {A1} {A2},{A8} {A4, A9}

8 0.919 ≤ λ ≤ 0.937 {A3, A7}, {A5}, {A10},{A6}, {A1} {A2},{A8} {A4, A9}

7 0.913 ≤ λ ≤ 0.919 {A3, A7}, {A5}, {A10},{A6, A1} {A2},{A8} {A4, A9}

IFS 6 0.889 ≤ λ ≤ 0.913 {A3, A2, A7}, {A5}, {A10},{A6, A1},{A8} {A4, A9}

7 0.861 ≤ λ ≤ 0.889 {A3, A7}, {A5}, {A10},{A6, A1} {A2},{A8} {A4, A9}

6 0.811 ≤ λ ≤ 0.861 {A3, A7}, {A5, A10},{A6, A1} {A2},{A8} {A4, A9}

5 0.771 ≤ λ ≤ 0.811 {A3, A5, A7, A10},{A6, A1},{A2},{A8} {A4, A9}

2 0.709 ≤ λ ≤ 0.771 {A2, A3, A4, A5, A7, A8, A9, A10},{A6, A1}

1 0 ≤ λ ≤ 0.709 {A1, A2, A3, A4, A5, A6, A7, A8, A9, A10}

4.5. Comparative analysis

The clustering algorithm for picture fuzzy sets applied to picture fuzzy filter collection to classify
the picture fuzzy sets can accommodate situations in which the inputs are picture fuzzy in nature. As
the picture fuzzy set is the generalization of the fuzzy set and intuitionistic fuzzy set and hence the
proposed method can be widely used. In Illustration 3, the classification of the intuitionistic fuzzy
set is obtained by the C16 associative matrix, whereas the classification of the intuitionistic fuzzy set
belonging to the intuitionistic fuzzy filter by the clustering technique is obtained at the fourth stage.
In Illustration 1, the classification of picture fuzzy sets belonging to picture fuzzy filter collection is
obtained at the fourth stage, and the result is more generalized than the intuitionistic fuzzy set.

4.6. Advantages of proposed method

The correlation coefficient for the intuitionistic fuzzy set has some limitations and cannot reflect
the complete information about the nature of the fuzzy set. Picture fuzzy set is an extension of the
intuitionistic fuzzy set, which reflects the information about positive, negative, and neutral membership
and also the degree of refusal membership. The correlation coefficient between picture fuzzy sets
proposed by P. Singh [21] is applied to the picture fuzzy filter collection to effectively classify picture
fuzzy sets from the picture fuzzy topological space. Classification of picture fuzzy set from picture
fuzzy filter collection of any cardinality is obtained at the fourth stage of an equivalent correlation
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coefficient. The classification is compared with other intuitionistic fuzzy set collection to show fewer
iterations required to classify the sets.

5. Conclusions

This paper introduces the notion of picture fuzzy filter, picture fuzzy grill, and picture fuzzy
ultrafilter. Properties of the picture fuzzy base and subbase are discussed. Interrelations between
picture fuzzy filter, picture fuzzy grill and picture fuzzy ultrafilter are established along with their
characterization. Picture fuzzy compact space is studied, and its characterization based on picture
fuzzy filter, grill, and ultrafilter has been studied. A clustering algorithm for picture sets in a picture
fuzzy filter is implemented with an illustration. Picture fuzzy filter collection reduces the number of
iterations required to classify the picture fuzzy sets.

The clustering algorithm based on the correlation coefficient between picture fuzzy sets reflects the
significance of positive, negative, and neutral membership. Classification of picture fuzzy sets using
the clustering algorithm proposed by P. Singh [21] is applied to the collection of filters obtained from
the picture fuzzy topological space. Thus the paper shows that the decision-making problem in picture
fuzzy topological space can be performed in a better way by using the picture fuzzy filter collection.
The computational process for the correlation matrix in this work is obtained using MAPLE. The
iteration for the equivalent correlation matrix will end at the fourth stage for any cardinality of picture
fuzzy filter collection obtained from the picture fuzzy topological space, and the comparison among
picture fuzzy filter and Intuitionistic fuzzy filter collection of different cardinalities have been classified
at the fourth stage of the equivalent correlation matrix. In the future, the proposed work can be
explored more precisely by defining a new clustering algorithm using picture fuzzy topological distance
measure and picture fuzzy filter to analyze the classification in the topological structure and compare
the accuracy with the other existing clustering algorithms and also pattern recognition problems.
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