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1. Introduction

The classic Hardy operator and its dual operator are defined by

H( f )(x) :=
1
x

∫ x

0
f (y)dy, H∗( f )(x) :=

∫ ∞

x

f (y)
y

dy,

for the locally integrable function f on R and x , 0. The classic Hardy operator was introduced by
Hardy and he showed the following Hardy inequalities

‖H( f )‖Lp ≤
p

p − 1
‖ f ‖Lp , ‖H∗( f )‖Lp ≤ p‖ f ‖Lp ,

where 1 < p < ∞, the constants p
p−1 , p are best possible.

Faris [6] first extended Hardy-type operator to higher dimension, Christ and Grafakos [2] gave an
equivalent version of n-dimensional Hardy operatorH for nonnegative function f on Rn,

H f (x) :=
1

Ωn|x|n

∫
|y|<|x|

f (y)dy, x ∈ Rn\{0},
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where Ωn = π
n
2

Γ(1+ n
2 ) is the volume of the unit ball in Rn. By a direct computation, the dual operator ofH

can be defined by setting, for nonnegative function f on Rn,

H∗( f )(x) :=
∫
|y|≥|x|

f (y)
Ωn|y|n

dy, x ∈ Rn\{0}.

Christ and Grafakos [2] proved that the norms of H and H∗ on Lp(Rn)(1 < p < ∞) are also p
p−1

and p, which is the same as that in the 1-dimensional case and is also independent of the dimension.
The sharp weak estimate forH was obtained by Zhao et al. [19]. For 1 ≤ p ≤ ∞,

‖H( f )‖Lp,∞ ≤ 1 × ‖ f ‖Lp ,

where 1 is best constant.
In recent years, the research on Hardy operator related issues is receiving increasing attention, Hardy

et al. provided us with the early development and application of Hardy’s inequalities. In [8, 9, 15], Fu
et al. have engaged in many related discuss, which provide convenience for our research.

In this paper, we will investigate the sharp bound for Hardy-type operators in the setting of the
Heisenberg group, which plays important role in several branches of mathematics. Now, allow us to
introduce some basic knowledge about the Heisenberg group which will be used in the following. The
Heisenberg group Hn is a non-commutative nilpotent Lie group, with the underlying manifold R2n × R

with the group law

x ◦ y =

x1 + y1, . . . , x2n + y2n, x2n+1 + y2n+1 + 2
n∑

j=1

(
y jxn+ j − x jyn+ j

)
and

δr (x1, x2, . . . , x2n, x2n+1) = (rx1, rx2, . . . , rx2n, r2x2n+1), r > 0,

where x = (x1, · · · , x2n, x2n+1), y = (y1, · · · , y2n, y2n+1). The Haar measure on Hn coincides with the
usual Lebesgue measure on R2n+1. We denote the measure of any measurable set E ⊂ Hn by |E|. Then

|δr(E)| = rQ|E|, d(δr x) = rQdx,

where Q = 2n + 2 is called the homogeneous dimension of Hn.
The Heisenberg distance derived from the norm

|x|h =


 2n∑

i=1

x2
i

2

+ x2
2n+1


1/4

,

where x = (x1, x2, · · · , x2n, x2n+1), is given by

d(p, q) = d(q−1 p, 0) = |q−1 p|h.

This distance d is left-invariant in the sense that d(p, q) remains unchanged when p and q are both
left-translated by some fixed vector on Hn. Furthermore, d satisfies the triangular inequality [12]

d(p, q) ≤ d(p, x) + d(x, q), p, x, q ∈ Hn.
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For r > 0 and x ∈ Hn, the ball and sphere with center x and radius r on Hn are given by

B(x, r) = {y ∈ Hn : d(x, y) < r}

and
S (x, r) = {y ∈ Hn : d(x, y) = r} ,

respectively. And we have
|B(x, r)| = |B(0, r)| = ΩQrQ,

where

ΩQ =
2πn+ 1

2 Γ(n/2)
(n + 1)Γ(n)Γ((n + 1)/2)

is the volume of the unit ball B(0, 1) on Hn, and the area of the unit sphere SQ−1 is ωQ = QΩQ (see [4]).
More about Heisenberg group can refer to [7, 11, 16].

The n-dimensional Hardy operator and its dual operator on Heisenberg group is defined by Wu and
Fu [18]

Hh f (x) :=
1

ΩQ|x|
Q
h

∫
|y|h<|x|h

f (y)dy, H∗h f (x) :=
∫
|y|h≥|x|h

f (y)

ΩQ|y|
Q
h

dy, (1.1)

where x ∈ Hn\{0}, f be a locally integrable function on Hn. They proved that Hh and H∗h is bounded
from Lp(Hn) to Lp(Hn), 1 < p ≤ ∞. Moreover,

‖Hh‖Lp(Hn) =
p

p − 1
‖ f ‖Lp(Hn), ‖H∗h‖Lp(Hn) = p‖ f ‖Lp(Hn). (1.2)

This is the same as the result on Rn.
In [10, 13], León-Saavedra and González studied the behavior of Cesàro operator, Chu et al. in [3]

defined the n-dimensional weighted Hardy operator on Heisenberg group Hhw and n-dimensional
weighted Cesàro operator on Heisenberg groupH∗hw. Let us recall their definition.

Definition 1. Let w : [0, 1] → [0,∞) be a measurable function. For a measurable function f on Hn,
the n-dimensional weighted Hardy operator on Heisenberg groupHhw is defined by

Hhw f (x) :=
∫ 1

0
f (δtx)w(t)dt, x ∈ Hn.

For a measurable complex-valued function f on Hn, nonnegative function w : [0, 1]→ (0,∞),∫ 1

0
t−

Q
p w(t)dt < ∞

and ∫ 1

0
t−Q(1−1/p)w(t)dt < ∞,

the n-dimensional weighted Cesàro operator is defined by

H∗hw f (x) :=
∫ 1

0

f (δ1/tx)
tQ w(t)dt, x ∈ Hn,
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which satisfies ∫
Hn

f (x)(Hhwg)(x)dx =

∫
Hn

g(x)(H∗hw f )(x)dx,

where f ∈ Lp(Hn), g ∈ Lq(Hn), 1 < p < ∞, q = p/(p − 1), Hhw is bounded on Lp(Hn) and H∗hw is
bounded on Lq(Hn).

Remark 1. In [3], Chu et al. proved the equality

Hhw f (x) :=
∫ 1

0
f (δtx)w(t)dt = Hh f (x), x ∈ Hn\{0},

was established when w(t) = QtQ−1 and f is radial function.

Recently, many operators in harmonic analysis have been proved to be bounded on mixed radial-
angular spaces, for instance, Duoandikoetxea and Oruetxebarria [5] built the extrapolation theorems on
mixed radial-angular spaces to study the boundedness of a large class of operators which are weighted
bounded. In [17], Wei and Yan studied the sharp bounds for n-dimensional Hardy operator and its
dual in mixed radial-angular spaces on Euclidean space. Inspired by them, we will investigate the
sharp bounds for n-dimensional Hardy operator and its dual operator in mixed radial-angular spaces
on Heisenberg groups.

Now, we give the definition of mixed radial-angular spaces on Heisenberg group.

Definition 2. For any n ≥ 2,1 ≤ p,p̄ ≤ ∞, the mixed radial-angular space Lp
|x|h

L p̄
θ (Hn) consists of all

functions f in Hn for which

‖ f ‖Lp
|x|h

L p̄
θ (Hn) :=

∫ ∞

0

(∫
SQ−1
| f (r, θ)|pdθ

) p
p̄

rQ−1dr


1
p

< ∞,

where SQ−1 denotes the unit sphere in Hn.

Next, we will provide the main results of this article.

2. Mixed radial-angular bounds forHh andH∗h

Theorem 1. Let n ≥ 2, 1 < p, p̄1, p̄2 < ∞. Then Hh is bounded from Lp
|x|h

L p̄1
θ (Hn) to Lp

|x|h
L p̄2
θ (Hn).

Moreover,
‖Hh‖Lp

|x|h
L p̄1
θ (Hn)→Lp

|x|h
L p̄2
θ (Hn) =

p
p − 1

ω
1/p̄2−1/ p̄1
Q .

Theorem 2. Let n ≥ 2, 1 < p, p̄1, p̄2 < ∞. Then H∗h is bounded from Lp
|x|h

L p̄1
θ (Hn) to Lp

|x|h
L p̄2
θ (Hn).

Moreover,
‖H∗h‖Lp

|x|h
L p̄1
θ (Hn)→Lp

|x|h
L p̄2
θ (Hn) = pω1/ p̄2−1/p̄1

Q .

Proof of Theorem 1. Set

g(x) =
1
ωQ

∫
SQ−1

f (δ|x|hθ)dθ, x ∈ Hn, (2.1)
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then g is a radial function. Moreover, we have

‖g‖Lp
|x|h

L p̄1
θ (Hn) =

∫ ∞

0

(∫
SQ−1
|g(r, θ)| p̄1dθ

)p/p̄1

rQ−1dr
1/p

=

(∫ ∞

0

(
ωQ|g(r)| p̄1

)p/ p̄1
rQ−1dr

)1/p

= ω
1/ p̄1
Q

(∫ ∞

0
|g(r)|prQ−1dr

)1/p

,

where g(r) can be defined as g(r) = g(x) for any x ∈ Hn with |x|h = r since g is a radial function. By
using Hölder inequality, we have

‖g‖Lp
|x|h

L p̄1
θ (Hn) = ω

1/p̄1
Q

(∫ ∞

0

∣∣∣∣∣∣ 1
ωQ

∫
SQ−1

f (δrθ)dθ

∣∣∣∣∣∣p rQ−1dr
)1/p

= ω
1/p̄1−1
Q

(∫ ∞

0

∣∣∣∣∣∫
SQ−1

f (δrθ)dθ
∣∣∣∣∣p rQ−1dr

)1/p

≤ ω
1/p̄1−1
Q

∫ ∞

0

(∫
SQ−1
| f (δrθ)| p̄1dθ

)p/ p̄1
(∫
SQ−1

dθ
)p/ p̄

′

1

rQ−1dr


1/p

=

∫ ∞

0

(∫
SQ−1
| f (δrθ)| p̄1dθ

)p/p̄1

rQ−1dr
1/p

= ‖ f ‖Lp
|x|h

L p̄1
θ (Hn).

Next, we use another form of Hardy operator

Hh( f )(x) =
1

|B(0, |x|h)|

∫
B(0,|x|h)

f (y)dy, x ∈ Hn\{0}.

By change of variables, we can get

Hhg(x) =
1

|B(0, |x|h)|

∫
B(0,|x|h)

(
1
ωQ

∫
SQ−1

f (δ|x|hθ)dθ
)

dy

=
1

|B(0, |x|h)|

∫ |x|h

0

∫
|y′ |h=1

(
1
ωQ

∫
SQ−1

f (δrθ)dθ
)

rQ−1dy′dr

=
1

|B(0, |x|h)|

∫ |x|h

0

∫
|y′ |h=1

f (δrθ)rQ−1dθdr

= Hh f (x).

Thus, we have obtained
‖Hh( f )‖Lp

|x|h
L p̄2
θ (Hn)

‖ f ‖Lp
|x|h

L p̄1
θ (Hn)

≤

‖Hh(g)‖Lp
|x|h

L p̄2
θ (Hn)

‖g‖Lp
|x|h

L p̄1
θ (Hn)

,
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which implies the operator H and its restriction to radial function have same norm from Lp
|x|h

L p̄1
θ to

Lp
|x|h

L p̄2
θ . Without loss of generality, we can assume that f is a radial function in the rest of proof.

Consequently, we have

‖Hh f ‖Lp
|x|h

L p̄2
θ (Hn) =

∫ ∞

0

(∫
SQ−1
|Hh( f )(r, θ)| p̄2dθ

)p/p̄2

rQ−1dr
 1

p

=

∫ ∞

0

(∫
SQ−1
|Hh( f )(r)| p̄2dθ

)p/ p̄2

rQ−1dr
1/p

= ω
1/ p̄2
Q

(∫ ∞

0
|Hh( f )(r)|prQ−1dr

)1/p

,

whereHh( f )(r) can be defined asHh( f )(r) = Hh( f )(x) for any |x|h = r. Using Minkowski’s inequality,
we can get

‖Hh f ‖Lp
|x|h

L p̄2
θ (Hn) = ω

1/ p̄2
Q

(∫ ∞

0

∣∣∣∣∣∣ 1
ΩQ

∫
B(0,1)

f (δry)dy

∣∣∣∣∣∣p rQ−1dr
)1/p

=
ω

1/ p̄2
Q

ΩQ

(∫ ∞

0

∣∣∣∣∣∣
∫

B(0,1)
f (δry)dy

∣∣∣∣∣∣p rQ−1dr
)1/p

≤
ω1/P̄2

Q

ΩQ

∫
B(0,1)

(∫ ∞

0
| f (δ|y|hr)|prQ−1dr

)1/p

dy

=
ω1/P̄2

Q

ΩQ

∫
B(0,1)

(∫ ∞

0
| f (r)|prQ−1dr

)1/p

|y|−Q/p
h dy

=
ω

1/ p̄2−1/p̄1
Q

ΩQ

∫
B(0,1)

(∫ ∞

0
ω

p/ p̄1
Q | f (r)|prQ−1dr

)1/p

|y|−Q/p
h dy

=
ω

1/ p̄2−1/p̄1
Q

ΩQ

∫
B(0,1)
|y|−Q/p

h dy‖ f ‖Lp
|x|h

L p̄1
θ

=
p

p − 1
ω

1/ p̄2−1/ p̄1
Q ‖ f ‖Lp

|x|h
L p̄1
θ (Hn).

Therefore, we have
‖Hh f ‖Lp

|x|h
L p̄2
θ (Hn) ≤

p
p − 1

ω
1/ p̄2−1/p̄1
Q ‖ f ‖Lp

|x|h
L p̄1
θ (Hn). (2.2)

On the other hand, for 0 < ε < 1, take

fε(x) =

0, |x|h ≤ 1,

|x|
−
(

Q
p +ε

)
h |x|h > 1

.

Then we can obtain

‖ fε‖Lp
|x|h

L p̄1
θ

=
ω

1/ p̄1
Q

(pε)1/p
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and

Hh( fε)(x) =

0, |x|h ≤ 1,

Ω−1
Q |x|

−
Q
p −ε

h

∫
|x|−1

h <|y|h<1
|y|
−

Q
p −ε

h dy, |x|h > 1
.

So, we have

‖Hh( fε)‖Lp
|x|h

L p̄2
θ (Hn) =

ω
1/p̄2
Q

ΩQ

(∫
r>1

∣∣∣∣∣∣r− Q
p −ε

∫
r−1<|y|h<1

|y|
−

Q
p −ε

h dy

∣∣∣∣∣∣p rQ−1dr
)1/p

≥
ω

1/p̄2
Q

ΩQ

∫
r> 1

ε

∣∣∣∣∣∣r− Q
p −ε

∫
ε<|y|h<1

|y|
−

Q
p −ε

h dy

∣∣∣∣∣∣p rQ−1dr
1/p

=
ω

1/p̄2
Q

ΩQ

∫
r> 1

ε

r−pε−Qdr
1/p ∫

ε<|y|h<1
|y|
−

Q
p −ε

h dy

=
ω

1+1/p̄2
Q

ΩQ

∫
r> 1

ε

r−pε−Qdr
1/p ∫ 1

ε

rQ−1− Q
p −εdr

= εε
1 − εQ− Q

p −ε

1 − 1
p −

ε
Q

ω
1/p̄2−1/ p̄1
Q ‖ fε‖Lp

|x|h
L p̄1
θ
.

Thus, we have obtained

‖Hh‖Lp
|x|h

L p̄1(Hn)
θ →Lp

|x|h
L p̄2
θ (Hn)

≥ εε
1 − εQ− Q

p −ε

1 − 1
p −

ε
Q

ω
1/ p̄2−1/p̄1
Q ‖ fε‖Lp

|x|h
L p̄1
θ
.

Since εε → 1 as ε → 0, by letting ε → 0, we have

‖Hh‖Lp
|x|h

L p̄1
θ (Hn ≥

p
p − 1

ω
1/p̄2−1/ p̄1
Q ‖ f ‖Lp

|x|h
L p̄1
θ (Hn). (2.3)

Combining (2.2) and (2.3), we can get

‖Hh f ‖Lp
|x|h

L p̄2
θ (Hn) =

p
p − 1

ω
1/ p̄2−1/p̄1
Q ‖ f ‖Lp

|x|h
L p̄1
θ (Hn).

This completes the proof of Theorem 1. �

Proof of Theorem 2. The proof of Theorem 2 is similar to prove of Theorem 1, we omit the details. �

3. Mixed radial-angular bounds forHhw andH∗hw

Theorem 3. Let w : [0, 1] → (0,∞) be a function, n ≥ 2, 1 < p, p̄1, p̄2 < ∞. Then the n-dimensional
weighted Hardy operator on Heisenberg groupHhw is bounded from Lp

|x|h
L p̄1
θ (Hn) to Lp

|x|h
L p̄2
θ (Hn) if and

only if ∫ 1

0
t−

Q
p w(t)dt < ∞.

Moreover,

‖Hhw‖Lp
|x|h

L p̄1
θ (Hn)→Lp

|x|h
L p̄2
θ (Hn) = ω

1/ p̄2−1/p̄1
Q

∫ 1

0
t−

Q
p w(t)dt.
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Theorem 4. Let w : [0, 1] → (0,∞) be a function, n ≥ 2, 1 < p, p̄1, p̄2 < ∞. Then the n-dimensional
weighted Cesàro operator on Heisenberg groupH∗hw is bounded from Lp

|x|h
L p̄1
θ (Hn) to Lp

|x|h
L p̄2
θ (Hn) if and

only if ∫ 1

0
t−Q(1−1/p)w(t)dt < ∞.

Moreover,

‖H∗hw‖Lp
|x|h

L p̄1
θ (Hn)→Lp

|x|h
L p̄2
θ (Hn) = ω

1/p̄2−1/ p̄1
Q

∫ 1

0
t−Q(1−1/p)w(t)dt.

The proof methods for Theorems 3 and 4 are the same, and similar to the proof method for
Theorem 1. But as a special case, here we will give the proof of Theorem 4.

Proof of Theorem 4. Inspired by proof of Theorem 1, we have

‖H∗hw‖Lp
|x|h

L p̄2
θ (Hn) = ω

1/ p̄2
Q

(∫ ∞

0
|Hhw( f )(r)|prQ−1dr

)1/p

,

where H∗hw( f )(r) can be defined as H∗hw( f )(r) = H∗hw( f )(x) for any |x|h = r. Using Minkowski’s
inequality, we can get that

‖H∗hw‖Lp
|x|h

L p̄2
θ (Hn) = ω

1/ p̄2
Q

(∫ ∞

0

∣∣∣∣∣∣
∫ 1

0

f (δ1/rt)
tQ w(t)dt

∣∣∣∣∣∣p rQ−1dr
)1/p

≤ ω
1/ p̄2
Q

∫ 1

0

(∫ ∞

0
| f (δ1/tr)|prQ−1dr

)1/p

t−Qw(t)dt

= ω
1/ p̄2
Q

∫ 1

0

(∫ ∞

0
| f (r)|prQ−1dr

)1/p

t−Q+Q/pw(t)dt

= ω
1/ p̄2−1/p̄1
Q

∫ 1

0

(∫ ∞

0
ω

p/p̄1
Q | f (r)|prQ−1dr

)1/p

t−Q+Q/pw(t)dt

= ω
1/ p̄2−1/p̄1
Q

∫ 1

0
t−Q(1−1/p)w(t)dt‖ f ‖Lp

|x|h
L p̄1
θ
.

Therefore, we have

‖H∗hw‖Lp
|x|h

L p̄2
θ (Hn) ≤ ω

1/ p̄2−1/p̄1
Q

∫ 1

0
t−Q(1−1/p)w(t)dt‖ f ‖Lp

|x|h
L p̄1
θ
.

On the other, taking
C = ‖H∗hw‖Lp

|x|h
L p̄2
θ (Hn)→Lp

|x|h
L p̄1
θ (Hn) < ∞

and for f ∈ Lp
|x|h

L p̄2
θ (Hn), we obtain

‖H∗hw‖Lp
|x|h

L p̄2
θ (Hn) ≤ C‖ f ‖Lp

|x|h
L p̄1
θ (Hn).

For any ε > 0, taking

fε(t) =

0, |x|h ≤ 1,

|x|
−
(

Q
p +ε

)
h |x|h > 1

,
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then we have

‖ fε‖
p

Lp
|x|h

L p̄1
θ (Hn)

=
ω

p/p̄1
Q

pε

and

H∗hw( fε)(x) =

0, |x|h ≤ 1,

|x|
−

Q
p −ε

h

∫
|x|−1

h <t<1
t

Q
p +ε−Qw(t)dt, |x|h > 1

,

whereH∗hw( fε)(x) satisfiedH∗hw( fε)(x) = H∗hw( fε)(r) for any |x|h = r.
So we have

Cp‖ fε‖
p

Lp
|x|h

L p̄1
θ

≥ ‖H∗hw‖
p

Lp
|x|h

L p̄2
θ

= ω
p/p̄2
Q

∫
r>1

∣∣∣∣∣r− Q
p −ε

∫
r−1<t<1

t
Q
p +ε−Qw(t)dt

∣∣∣∣∣p rQ−1dr

≥ ω
p/p̄2
Q

∫
r> 1

ε

∣∣∣∣∣r− Q
p −ε

∫
ε<t<1

t
Q
p +ε−Qw(t)dt

∣∣∣∣∣p rQ−1dr

= ω
p/p̄2
Q

∫
r> 1

ε

r−pε−Qdr
(∫

ε<t<1
t

Q
p +ε−Qw(t)dt

)p

= ω
p/p̄2
Q

∫
|x|h> 1

ε

|x|−pε−Q
h dx

(∫
ε<t<1

t
Q
p +ε−Qw(t)dt

)p

.

By change of variable |x|h = δ1/ε |y|h, we have

Cp‖ fε‖
p
Lp
|x|h

L p̄1
≥ ω

p/ p̄2
Q

∫
|y|h>1
|y|−pε−Q

h εεpdy
(∫

ε<t<1
t

Q
p +ε−Qw(t)dt

)p

=

(
ω

1/ p̄2−1/ p̄1
Q εε

∫
1<t<ε

t
Q
p +ε−Qw(t)dt

)p

‖ fε‖LP
|x|h

L p̄1
θ (Hn).

This implies that

εε
∫

1<t<ε
t

Q
p +ε−Qw(t)dt ≤ C.

Let ε → 0, we have ∫ 1

0
t

Q
p −Qw(t)dt ≤ C.

Thus, we have finished the proof of Theorem 4.
It should be noted that operatorsHhw andH∗hw are very special cases of a general Hausdorff operator

over locally compact groups, introduced in [14]. �

4. Conclusions

In this article, we investigated the sharp bound for Hardy-type operators in the setting of the
Heisenberg group, which plays important role in several branches of mathematics. Firstly, we
studied n-dimensional Hardy operator and its dual in mixed radial-angular spaces on Heisenberg group
and obtain their sharp bounds by using the rotation method. Furthermore, the sharp bounds of n-
dimensional weighted Hardy operator and weighted Cesàro operator are also obtained.
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12. A. Koräanyi, H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math.,
80 (1985), 309–338. https://doi.org/10.1007/BF01388609

13. F. León-Saavedra, A. Piqueras-Lerena, J. B. Seoane-Sepúlveda, Orbits of Cesàro type operators,
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