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Abstract: In practical applications of regression models, we may meet with the situation where a
true model is misspecified in some other forms due to certain unforeseeable reasons, so that estimation
and statistical inference results obtained under the true and misspecified regression models are not
necessarily the same, and therefore, it is necessary to compare these results and to establish certain
links between them for the purpose of reasonably explaining and utilizing the misspecified regression
models. In this paper, we propose and investigate some comparison and equivalence analysis problems
on estimations and predictions under true and misspecified multivariate general linear models. We
first give the derivations and presentations of the best linear unbiased predictors (BLUPs) and the best
linear unbiased estimators (BLUEs) of unknown parametric matrices under a true multivariate general
linear model and its misspecified form. We then derive a variety of necessary and sufficient conditions
for the BLUPs/BLUEs under the two competing models to be equal using a series of highly-selective
formulas and facts associated with ranks, ranges and generalized inverses of matrices, as well as block
matrix operations.
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1. Introduction

Throughout, the symbol Rm×n stands for the collection of all m × n matrices with real numbers; M′,
r(M), and R(M) stand for the transpose, the rank, and the range (column space) of a matrix M ∈ Rm×n,
respectively; Im denotes the identity matrix of order m. Two symmetric matrices M and N of the same
size are said to satisfy the inequality M < N in the Löwner partial ordering if M − N is nonnegative
definite. The Kronecker product of any two matrices M and N is defined to be M ⊗ N = (mi jN). The
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vectorization operator of a matrix M = [ m1, . . . ,mn ] is defined to be vec(M) =
−→
M = [ m′1, . . . ,m

′
n ]′. A

well-known property on the vec operator of a triple matrix product is
−−−−→
MXN = (N′⊗M)

−→
X. The Moore-

Penrose generalized inverse of M ∈ Rm×n, denoted by M+, is defined by the unique solution G to the
four matrix equations MGM = M, GMG = G, (MG)′ = MG and (GM)′ = GM. We also denote by
PM = MM+, M⊥ = EM = Im −MM+ and FM = In −M+M the three orthogonal projectors induced
from M, respectively, which will help in briefly denoting calculation processes related to generalized
inverses of matrices. Further information about the orthogonal projectors PM, EM and FM with their
applications in the linear statistical models can be found, e.g., in [11, 21, 22].

In this paper, we reconsider a multivariate general linear model (for short, MGLM):

M : Y = XΘ + ΩΩΩ, E(ΩΩΩ) = 0, Cov(
−→
ΩΩΩ) = Cov{

−→
ΩΩΩ,
−→
ΩΩΩ} = ΣΣΣ2 ⊗ ΣΣΣ1, (1.1)

where it is assumed that Y ∈ Rn×m is an observable random matrix (longitudinal data set), X = (zi j) ∈
Rn×p is a known model matrix of arbitrary rank (0 ≤ r(X) ≤ min{n, p}), Θ = (θi j) ∈ Rp×m is a
matrix of fixed but unknown parameters, ΩΩΩ ∈ Rn×m is a matrix of randomly distributed error terms,
ΣΣΣ1 = (σ1i j) ∈ Rn×n and ΣΣΣ2 = (σ2i j) ∈ Rm×m are two known nonnegative definite matrices of arbitrary

ranks and ΣΣΣ2 ⊗ ΣΣΣ1 means that
−→
ΩΩΩ has a Kronecker product structured covariance matrix.

We now give some general remarks regarding M in (1.1) and propose a research topic in the
context of the model. An MGLM as in (1.1) is a relative direct extension of the most welcome
type of univariate general linear models, which means the incorporation of regressing one response
variable on a given set of regressors to several response variables on the regressors. This model is
also a typical representation of various multivariate regression frameworks yet has been a core issue of
study in the theory of multivariate analysis and its applications. Usually in the statistical applications
of regression models, we may meet with situations where a true regression model is misspecified in
some other forms due to different unforeseeable reasons. In such a case, the estimation and statistical
inference results under the true and misspecified models are not necessarily the same, so that we have
to face with the work of clearly and reasonably explaining and comparing the results. To illustrate this
problem, we typically assume that the model matrix X in (1.1) is misspecified as X0 ∈ R

n×q, and the
covariance matrix ΣΣΣ2⊗ΣΣΣ1 in (1.1) is misspecified as V2⊗V1. In this case, (1.1) appears in the following
misspecified form:

N : Y = X0Θ0 + ΩΩΩ0, E(ΩΩΩ0) = 0, Cov(
−→
ΩΩΩ0) = V2 ⊗ V1, (1.2)

where it is assumed that X0 ∈ R
n×q is a known model matrix of arbitrary rank, and Θ0 ∈ R

q×m is a
matrix of fixed but unknown parameters. ΩΩΩ0 ∈ R

n×m is a matrix of randomly distributed error terms,
and V1 ∈ R

n×n and V2 ∈ R
m×m are two known nonnegative definite matrices of arbitrary ranks. Because

X0, Θ0 and V2 ⊗ V1 in (1.2) can be taken any pre-assumed expressions, a general form as in (1.2)
includes almost all misspecified models of (1.1) as its special cases, such as X0Θ0 = XΘ + WΓΓΓ,
V2 ⊗ V1 = σ2Imn, etc.

Before proposing and discussing a number of concrete comparison problems regarding inference
results and facts in the contexts of (1.1) and (1.2), we review some relevant methods and techniques
that can be conveniently used in the analysis of multivariate general linear models. Recall that the
Kronecker products and vec operations of matrices are popular and useful tools in dealing with matrix
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operations associated with MGLMs. Referring to these operations, we can alternatively represent the
two models in (1.1) and (1.2) as the following ordinary linear models:

M̂ :
−→
Y = (Im ⊗ X)

−→
Θ +
−→
ΩΩΩ, E(

−→
ΩΩΩ) = 0, Cov(

−→
ΩΩΩ) = ΣΣΣ2 ⊗ ΣΣΣ1, (1.3)

N̂ :
−→
Y = (Im ⊗ X0)

−→
Θ0 +

−→
ΩΩΩ0, E(

−→
ΩΩΩ0) = 0, Cov(

−→
ΩΩΩ0) = V2 ⊗ V1. (1.4)

Given (1.1), a primary task is to estimate or predict certain functions of the unknown parameter
matrices Θ and ΩΩΩ in (1.1). To do so, we construct a set of parametric functions containing both Θ and
ΩΩΩ as follows:

R = KΘ + JΩΩΩ,
−→
R = (Im ⊗K)

−→
Θ + (Im ⊗ J)

−→
ΩΩΩ, (1.5)

where it is assumed that K and J are k × p and k × n matrices, respectively. In this case,

E(R) = KΘ, Cov(
−→
R) = (Im ⊗ J)(ΣΣΣ2 ⊗ ΣΣΣ1)(Im ⊗ J)′, (1.6)

Cov{
−→
R,
−→
Y} = Cov{

−−→
JΩΩΩ,
−→
ΩΩΩ} = (Im ⊗ J)(ΣΣΣ2 ⊗ ΣΣΣ1). (1.7)

When K = X and J = In, (1.5) becomes R = XΘ + ΩΩΩ = Y, the observed response matrix. Hence, (1.5)
includes all matrix operations in (1.1) as its special cases. Thus, the construction of R can be used
to identify their estimations and predictions of Θ and ΩΩΩ, simultaneously. Under the misspecified
assumptions in (1.2), a general matrix of parametric functions is given by

R0 = K0Θ0 + J0ΩΩΩ0,
−→
R0 = (Im ⊗K0)

−→
Θ0 + (Im ⊗ J0)

−→
ΩΩΩ0, (1.8)

where it is assumed that K0 and J0 are k × q and k × n matrices, respectively.
Notice that the assumptions in the contexts of (1.1) and (1.2) are apparently different in

representations. Thus, this fact means the statistical inference results on R derived from (1.1) and
those on R0 derived from (1.2) are not necessarily the same, and of course, the findings under (1.2)
generally are incorrect conclusions. Even so, there is a possibility that certain calculational results
under (1.1) and (1.2) coincide. This possibility prompts statisticians to consider the comparison and
relevance problems of inference results under the two models, especially to establish the relationships
of predictions/estimations of unknown parameters under the two models. A classic investigation on
relationships between true and misspecified linear models was given in [17], while many investigations
on comparison problems of predictions/estimations of unknown parameters under true models and their
misspecified models can be found in the literature; see, e.g., [2–5,8,9,12,14–18,23,26]. Recently, [30]
discussed some kinds of relationships between true models and their misspecified forms under a
general linear model, [7] considered the equivalence of predictions/estimations under an MGLM
with augmentation, and [31] considered simultaneous prediction issues under an MGLM with future
observations.

In this paper, we focus on the problems pertaining to the comparisons of the best linear unbiased
predictors (for short, BLUPs) of R derived from (1.1) and those of R0 derived from (1.2). The BLUPs
now are known as one of the important parametric methods of predicting unknown parameters, which
is a core concept and conventional topic in the regression analysis of linear statistical models, and many
general and special contributions in relation to BLUPs under linear statistical models were given in the
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literature. This paper is mainly concerned with the connection analysis of the BLUPs of R under (1.1)
and R0 under (1.2).

The rest of this paper is organized as follows. In Section 2, we introduce notation and a collection
of matrix analysis tools that we shall use to characterize matrix equalities that involve generalized
inverses and give the definitions of predictability and the BLUPs of parameter matrix under (1.1).
In Section 3, we present some basic estimation and inference theory regarding an MGLM, including
analytical expressions of the BLUPs and their mathematical and statistical properties and features in
the contexts of (1.1) and (1.2). In Section 4, we derive several groups of identifying conditions for the
BLUPs to equal under the true and misspecified MGLMs using a series of precise and analytical tools
in matrix theory. Some conclusions and remarks are given in Section 5. The proofs of the main results
are given in the Appendix.

2. Notation and some preliminaries

For the purpose of establishing and describing equalities for different predictions/estimations in
the context of linear statistical models, we need to adopt a selection of commonly-used matrix rank
formulas and equivalent facts about matrix equalities in the following three lemmas, which will
underpin the establishments and simplifications of various complicated matrix expressions and matrix
equalities that appear in the statistical inference of MGLMs.

Lemma 2.1. Let S and T be two sets composed by matrices of the same size. Then,

S ∩ T , ∅ ⇔ min
S∈S,T∈T

r( S − T ) = 0, (2.1)

S ⊆ T ⇔ max
S∈S

min
T∈T

r( S − T ) = 0. (2.2)

Lemma 2.2. [13] Let A ∈ Rm×n, B ∈ Rm×k, and C ∈ Rl×n. Then, the following rank equalities hold:

r[ A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (2.3)

r
[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC), (2.4)

r
[
AA′ B
B′ 0

]
= r[ A, B ] + r(B). (2.5)

In particular, the following results hold.

(a) r[ A, B ] = r(A)⇔ R(B) ⊆ R(A)⇔ AA+B = B⇔ EAB = 0.

(b) r
[
A
C

]
= r(A)⇔ R(C′) ⊆ R(A′)⇔ CA+A = C⇔ CFA = 0.

(c) r[ A, B ] = r(A) + r(B)⇔ R(A) ∩R(B) = {0} ⇔ R((EAB)′) = R(B′)⇔ R((EBA)′) = R(A′).

(d) r
[
A
C

]
= r(A) + r(C)⇔ R(A′) ∩R(C′) = {0} ⇔ R(CFA) = R(C)⇔ R(AFC) = R(A).

Lemma 2.3. [25] Let X ∈ Rn×p, X0 ∈ R
n×q, and let ΣΣΣ1, V1 ∈ R

n×n be two nonnegative definite
matrices. Then,

r
[
X X0 ΣΣΣ1

0 0 X′

]
= r[ X, X0, ΣΣΣ1 ] + r(X), r

[
X X0 V1

0 0 X′0

]
= r[ X, X0, V1 ] + r(X0), (2.6)
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r


X X0 ΣΣΣ1 V1

0 0 X′ 0
0 0 0 X′0

 = r[ X, X0, ΣΣΣ1, V1 ] + r(X) + r(X0). (2.7)

Lemma 2.4. [24, 29] Let A ∈ Rm×n, B ∈ Rm×k, and C ∈ Rl×n. Then, the maximum and minimum ranks
of A − BW and A − BWC with respect to the variable matrix W are given by the following analytical
formulas:

max
W∈Rk×n

r( A − BW ) = min{ r[ A, B ], n }, (2.8)

min
W∈Rk×n

r( A − BW ) = r[ A, B ] − r(B), (2.9)

max
W∈Rk×l

r( A − BWC ) = min
{

r[ A, B ], r
[
A
C

]}
. (2.10)

Below, we give an existing result about the general solution of a basic linear matrix equation.

Lemma 2.5. [20] The linear matrix equation AX = B is consistent if and only if r[A, B] = r(A),
or equivalently, AA+B = B. In this case, the general solution of the equation can be written in the
parametric form X = A+B + ( I − A+A )U, where U is an arbitrary matrix.

Lemma 2.6. Let A ∈ Rm×n and B ∈ Rm×k and assume that R(A) = R(B). Then,

XA = 0⇔ XB = 0. (2.11)

For the purpose of clearly and analytically solving the matrix minimization problem in (3.1),
we need to use the following existing result on a constrained quadratic matrix-valued function
minimization problem, which was proved in [27].

Lemma 2.7. [27] Let
f (X) = ( XC + D )M( XC + D)′ s.t. XA = B, (2.12)

where A ∈ Rp×q, B ∈ Rn×q, C ∈ Rp×m, D ∈ Rn×m are given, M ∈ Rm×m is positive semi-definite, and the
matrix equation XA = B is consistent. Then, there always exists a solution X0 of X0A = B such that

f (X) < f (X0) (2.13)

holds for all solutions of XA = B. In this case, the matrix X0 satisfying (2.13) is determined by the
following consistent matrix equation:

X0[ A, CMC′A⊥ ] = [ B, −DMC′A⊥ ], (2.14)

while the general expression of X0 and the corresponding f (X0) are given by

X0 = argmin
XA=B

f (X) = [ B, −DMC′A⊥ ][ A, CMC′A⊥ ]+ + V[ A, CMC′ ]⊥, (2.15)

f (X0) = min
XA=B

f (X) = KMK′ −KMC′(A⊥CMC′A⊥)+CMK′, (2.16)

f (X) − f (X0) = (XCMC′A⊥ + DMC′A⊥)(A⊥CMC′A⊥)+(XCMC′A⊥ + DMC′A⊥)′, (2.17)

where K = BA+C + D, and V ∈ Rn×p is arbitrary.
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3. Basic theory for the BLUPs of all unknown parameter matrices in an MGLM

In this section, we present a review of the most important theoretical concepts concerning an
MGLM. As usual, the unbiasedness of given linear predictions/estimations with respect to certain
unknown parameters in an MGLM is an important property, but there are often many possible unbiased
predictions/estimations for the same parameters. The classic statistical concept of predictability was
originated from [6], while the predictability/estimability concepts of parameters in an MGLM were
established in [1, 19]. Under the assumptions in (1.1), the predictability/estimability of the unknown
parameters is defined as follows.

Definition 3.1. Let the parametric matrix R be as given in (1.5).

(a) The matrix R is said to be predictable under (1.1) if there exists a k × n matrix L such that
E(LY − R) = 0.

(b) The vector
−→
R is said to be predictable under (1.3) if there exists an mk × mn matrix L such that

E(L
−→
Y −
−→
R) = 0.

Definition 3.2. Let the parametric matrix R be as given in (1.5).

(a) Given that R is predictable under (1.1), if there exists a matrix L0 such that

Cov(
−−−→
L0Y −

−→
R ) = min s.t. E(L0Y − R) = 0 (3.1)

holds in the Löwner partial ordering, the linear statistic L0Y is defined to be the best linear
unbiased predictor (BLUP) of R under (1.1), and is described by

L0Y = BLUPM (R) = BLUPM (KΘ + JΩΩΩ). (3.2)

If J = 0 or K = 0 in (1.5), the L0Y satisfying (3.1) is called the best linear unbiased estimator
(BLUE) of KΘ and the BLUP of JΩΩΩ under (1.1), respectively, and is described by

L0Y = BLUEM (KΘ), L0Y = BLUPM (JΩΩΩ), (3.3)

respectively.
(b) Given that

−→
R is predictable under (1.3), if there exists a matrix L0 such that

Cov( L0
−→
Y −
−→
R ) = min s.t. E(L0

−→
Y −
−→
R) = 0 (3.4)

hold in the Löwner partial ordering, the linear statistic L0
−→
Y is defined to be the BLUP of

−→
R

under (1.3) and is described by

L0
−→
Y = BLUPM̂ (

−→
R) = BLUPM̂ ((Im ⊗K)

−→
Θ + (Im ⊗ J)

−→
ΩΩΩ). (3.5)

If J = 0 or K = 0 in (1.5), the L0
−→
Y satisfying (3.4) is called the BLUE of (Im ⊗ K)

−→
Θ and the

BLUP of (Im ⊗ J)
−→
ΩΩΩ under (1.3), respectively, and is denoted by

L0
−→
Y = BLUEM̂ ((Im ⊗K)

−→
Θ), L0

−→
Y = BLUPM̂ ((Im ⊗ J)

−→
ΩΩΩ), (3.6)

respectively.
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Admittedly, BLUPs/BLUEs of unknown parameters were common concepts and principles in the
statistical inference of parametric models, which were highly appraised and regarded in the domain
of regression analysis due to their simple and optimal performances and properties, while the study of
BLUPs/BLUEs and the related issues were core parts in the research field of statistics and applications.
As a fundamental and theoretical tool in matrix theory, the analytical solution of the constrained
quadratic matrix-valued function optimization problem in the Löwner partial ordering in Lemma 2.7
was used to derive a number of exact and analytical formulas for calculating BLUPs/BLUEs and their
properties under various linear regression frameworks; see, e.g., [5, 7, 10, 28, 30, 31].

In this section, we present a sequence of existing formulas, results, and facts about the
predictability/estimability and the analytical formulas of the BLUPs of R and R0 in (1.5) and (1.8).
Recall that the unbiasedness of predictions/estimations and the lowest dispersion matrices, as
formulated in (3.1), are two of the most intrinsic requirements in statistical inference in the context
of regression models, which can conveniently be interpreted as some special cases of mathematical
optimization problems with regard to constrained quadratic matrix-valued functions in the Löwner
partial ordering.

Due to the linear nature of an MGLM, we see from (1.1) and (1.5) that LY − R and
−−−−−−→
LY − R can be

rewritten as

LY − R = LXΘ + LΩΩΩ −KΘ − JΩΩΩ = (LX −K)Θ + (L − J)ΩΩΩ, (3.7)
−−−−−−→
LY − R = (Im ⊗ (LX −K))

−→
Θ + (Im ⊗ (L − J))

−→
ΩΩΩ. (3.8)

Hence, the expectations of LY − R and
−−−−−−→
LY − R can be expressed as

E(LY − R) = (LX −K)Θ, E(
−−−−−−→
LY − R) = (Im ⊗ (LX −K))

−→
Θ. (3.9)

The covariance matrix of
−−−−−−→
LY − R can be expressed as

Cov(
−−−−−−→
LY − R) = (Im ⊗ (L − J))Cov(

−→
ΩΩΩ)(Im ⊗ (L − J))′

= (Im ⊗ (L − J))(ΣΣΣ2 ⊗ ΣΣΣ1)(Im ⊗ (L − J))′

= ΣΣΣ2 ⊗ (L − J)ΣΣΣ1(L − J)′ 4= ΣΣΣ2 ⊗ f (L), (3.10)

where f (L) = (L − J)ΣΣΣ1(L − J)′.
Concerning the predictability and the BLUP of R in (1.5), we use the following existing results.

Theorem 3.1. [7] Let R be as given in (1.5). Then, the following statements are equivalent:

(a) R is predictable by Y in (1.1).
(b) R(Im ⊗K′) ⊆ R( Im ⊗ X′ ).
(c) R(K′) ⊆ R(X′ ).

Theorem 3.2. [7, 31] Assume R in (1.5) is predictable. Then,

Cov(
−−−−−−→
LY − R) = min s.t., E(LY − R) = 0⇔ L[ X, ΣΣΣ1X⊥ ] = [ K, JΣΣΣ1X⊥ ]. (3.11)
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The matrix equation in (3.11), called the BLUP equation associated with R, is consistent as well, i.e.,

[ K, JΣΣΣ1X⊥ ][ X, ΣΣΣ1X⊥ ]+[ X, ΣΣΣ1X⊥ ] = [ K, JΣΣΣ1X⊥ ] (3.12)

holds under Theorem 3.1(c), while the general expressions of L and the corresponding BLUPM (R)
can be written as

BLUPM (R) = PK;J;X;ΣΣΣ1Y =
(
[ K, JΣΣΣ1X⊥ ][ X, ΣΣΣ1X⊥ ]+ + U[ X, ΣΣΣ1X⊥ ]⊥

)
Y, (3.13)

where U ∈ Rk×n is arbitrary. In particular,

BLUEM (KΘ) =
(
[ K, 0 ][ X, ΣΣΣ1X⊥ ]+ + U[ X, ΣΣΣ1X⊥ ]⊥

)
Y, (3.14)

BLUPM (JΩΩΩ) =
(
[ 0, JΣΣΣ1X⊥ ][ X, ΣΣΣ1X⊥ ]+ + U[ X, ΣΣΣ1X⊥ ]⊥

)
Y, (3.15)

where U ∈ Rk×n is arbitrary. Further, the following results hold.

(a) ( [21, p. 123]) r[ X, ΣΣΣ1X⊥ ] = r[ X, ΣΣΣ1 ], R[ X, ΣΣΣ1X⊥ ] = R[ X, ΣΣΣ1 ], and R(X) ∩R(ΣΣΣ1X⊥) = {0}.
(b) L = PK;J;X;ΣΣΣ1 is unique if and only if r[ X, ΣΣΣ1 ] = n.
(c) BLUPM (R) is unique if and only if R(Y) ⊆ R[ X, ΣΣΣ1 ].
(d) The expectation, the dispersion matrices of

−−−−−−−−−−→
BLUPM (R) and

−→
R −

−−−−−−−−−−→
BLUPM (R) and covariance

matrix between
−−−−−−−−−−→
BLUPM (R) and

−→
R are unique, and they are given by

E(BLUPM (R) − R) = 0, (3.16)

Cov(
−−−−−−−−−−→
BLUPM (R))

= ΣΣΣ2 ⊗ ([ K, JΣΣΣ1X⊥ ][ X, ΣΣΣ1X⊥ ]+)ΣΣΣ1([ K, JΣΣΣ1X⊥ [ X, ΣΣΣ1X⊥ ]+)′, (3.17)

Cov{
−−−−−−−−−−→
BLUPM (R),

−→
R} = ΣΣΣ2 ⊗ [ K, JΣΣΣ1X⊥ ][ X, ΣΣΣ1X⊥ ]+ΣΣΣ1J′, (3.18)

Cov(
−→
R) − Cov(

−−−−−−−−−−→
BLUPM (R)) = ΣΣΣ2 ⊗ JΣΣΣ1J′

− ΣΣΣ2 ⊗ ([ K, JΣΣΣ1X⊥ ][ X, ΣΣΣ1X⊥ ]+)ΣΣΣ1([ K, JΣΣΣ1X⊥ ][ X, ΣΣΣ1X⊥ ]+)′, (3.19)

Cov(
−→
R −
−−−−−−−−−−→
BLUPM (R)) = ΣΣΣ2 ⊗ ([ K, JΣΣΣ1X⊥ ][ X, ΣΣΣ1X⊥ ]+ − J)ΣΣΣ1

× ([ K, JΣΣΣ1X⊥ ][ X, ΣΣΣ1X⊥ ]+ − J)′. (3.20)

(e) BLUPM (R), BLUEM (KΘ) and BLUPM (JΩΩΩ) satisfy

BLUPM (R) = BLUEM (KΘ) + BLUPM (JΩΩΩ), (3.21)

Cov{
−−−−−−−−−−−−→
BLUEM (KΘ),

−−−−−−−−−−−→
BLUPM (JΩΩΩ)} = 0, (3.22)

Cov(
−−−−−−−−−−→
BLUPM (R)) = Cov(

−−−−−−−−−−−−→
BLUEM (KΘ)) + Cov(

−−−−−−−−−−−→
BLUPM (JΩΩΩ)). (3.23)

(f) BLUPM (TR) = TBLUPM (R) holds for any matrix T ∈ Rt×k.

Concerning the BLUE of the mean matrix XΘ and the BLUP of the error matrix ΩΩΩ in (1.1), we have
the following result.

Corollary 3.1. The mean matrix XΘ in (1.1) is always estimable, and the following results hold.
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(a) The general expression of BLUEM (XΘ) can be written as

BLUEM (XΘ) = ([ X, 0 ][ X, ΣΣΣ1X⊥ ]+ + U[ X, ΣΣΣ1X⊥ ]⊥)Y (3.24)

with

E(BLUEM (XΘ)) = XΘ, (3.25)

Cov(
−−−−−−−−−−−−→
BLUEM (XΘ)) = ΣΣΣ2 ⊗ ([ X, 0 ][ X, ΣΣΣ1X⊥ ]+)ΣΣΣ1([ X, 0 ][ X, ΣΣΣ1X⊥ ]+)′, (3.26)

where U ∈ Rn×n is arbitrary.
(b) The general expression of BLUPM (ΩΩΩ) can be written as

BLUPM (ΩΩΩ) = ([ 0, ΣΣΣ1X⊥ ][ X, ΣΣΣ1X⊥ ]+ + U[ X, ΣΣΣ1X⊥ ]⊥)Y
= (ΣΣΣ1(X⊥ΣΣΣ1X⊥)+ + U[ X, ΣΣΣ1X⊥ ]⊥)Y (3.27)

with

Cov{
−−−−−−−−−−→
BLUPM (ΩΩΩ),

−→
ΩΩΩ} = Cov(

−−−−−−−−−−→
BLUPM (ΩΩΩ)) = ΣΣΣ2 ⊗ ΣΣΣ1(X⊥ΣΣΣ1X⊥)+ΣΣΣ1, (3.28)

Cov(
−→
ΩΩΩ −
−−−−−−−−−−→
BLUPM (ΩΩΩ)) = Cov(

−→
ΩΩΩ) − Cov(

−−−−−−−−−−→
BLUPM (ΩΩΩ)) = ΣΣΣ2 ⊗ ΣΣΣ1 − ΣΣΣ2 ⊗ ΣΣΣ1(X⊥ΣΣΣ1X⊥)+ΣΣΣ1,

(3.29)

where U ∈ Rn×n is arbitrary.
(c) The three matrices Y, BLUEM (XΘ), and BLUPM (ΩΩΩ) satisfy

Y = BLUEM (XΘ) + BLUPM (ΩΩΩ), (3.30)

Cov{
−−−−−−−−−−−−→
BLUEM (XΘ),

−−−−−−−−−−→
BLUPM (ΩΩΩ)} = 0, (3.31)

Cov(
−→
Y) = Cov(

−−−−−−−−−−−−→
BLUEM (XΘ)) + Cov(

−−−−−−−−−−→
BLUPM (ΩΩΩ)). (3.32)

Referring to Theorem 3.2, we obtain the BLUP of R0 in (1.8) as follows.

Theorem 3.3. Assume that R0 is as given in (1.8). Then, the matrix equation

L0[ X0, V1X⊥0 ] = [ K0, J0V1X⊥0 ] (3.33)

is solvable for L0 if and only if R(K′0) ⊆ R(X′0). In this case, the general solution of the equation,
denoted by L0 = PK0; J0;X0;V1 , and the corresponding BLUP of R0 under the misspecified model in (1.2)
are given by

BLUPN (R0) = PK0; J0;X0;V1Y =
(
[ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+ + U0[ X0, V1X⊥0 ]⊥

)
Y, (3.34)

where U0 ∈ R
k×n is arbitrary. In particular,

BLUEN (K0Θ0) =
(
[ K0, 0 ][ X0, V1X⊥0 ]+ + U0[ X0, V1X⊥0 ]⊥

)
Y, (3.35)

BLUPN (J0ΩΩΩ0) =
(
[ 0, J0V1X⊥0 ][ X0, V1X⊥0 ]+ + U0[ X0, V1X⊥0 ]⊥

)
Y, (3.36)
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where U0 ∈ R
k×n is arbitrary. Under the assumptions in (1.1),

E(BLUPN (R0)) = PK0;J0;X0;V1XΘ, (3.37)

Cov(
−−−−−−−−−−−→
BLUPN (R0)) = ΣΣΣ2 ⊗ (PK0;J0;X0;V1ΣΣΣ1P′K0;J0;X0;V1

), (3.38)

where both PK0;J0;X0;V1X and PK0;J0;X0;V1ΣΣΣ1 are not necessarily unique. Further, the following results
hold:

(a) PK0;J0;X0;V1X is unique if and only if R(X) ⊆ R[X0,V1].
(b) PK0;J0;X0;V1ΣΣΣ1 is unique if and only if R(ΣΣΣ1) ⊆ R[X0,V1].
(c) BLUPN (R0) is unique if and only if R(Y) ⊆ R[X0,V1].

4. Comparison results

In this section, we address the following eight problems:

(I) {PK;J;X;ΣΣΣ1} ∩ {PK0;J0;X0;V1} , ∅, so that {BLUPM (R)} ∩ {BLUPN (R0)} , ∅ holds definitely,
(II) {PK;J;X;ΣΣΣ1} ⊆ {PK0;J0;X0;V1}, so that {BLUPM (R)} ⊆ {BLUPN (R0)} holds definitely,

(III) {PK;J;X;ΣΣΣ1} ⊇ {PK0;J0;X0;V1}, so that {BLUPM (R)} ⊇ {BLUPN (R0)} holds definitely,
(IV) {PK;J;X;ΣΣΣ1} = {PK0;J0;X0;V1}, so that {BLUPM (R)} = {BLUPN (R0)} holds definitely,
(V) {BLUPM (R)} ∩ {BLUPN (R0)} , ∅ holds with probability 1,

(VI) {BLUPM (R)} ⊆ {BLUPN (R0)} holds with probability 1,
(VII) {BLUPM (R)} ⊇ {BLUPN (R0)} holds with probability 1,

(VIII) {BLUPM (R)} = {BLUPN (R0)} holds with probability 1,

for the BLUPs defined and obtained in the preceding section.
In order to obtain satisfactory conclusions about the above BLUPs’ equalities problems, we first

present three manifest rules for delineating equalities of different linear statistics under multivariate
linear models, and we then go on to describe some enabling methods to establish equalities between
two linear statistics. Assume that two linear statistics G1Y and G2Y are given under (1.1). When
establishing equalities between two linear statistics, the following three cases should be addressed for
the purpose of delineating equalities of estimators formulated above.

Definition 4.1. Let Y be as given in (1.1), and let G1, G2 ∈ R
k×n.

(I) The equality G1Y = G2Y is said to hold definitely if G1 = G2.
(II) The equality G1Y = G2Y is said to hold with probability 1 if both E(G1Y − G2Y) = 0 and

Cov((Im ⊗G1)
−→
Y − (Im ⊗G2)

−→
Y) = 0.

(III) G1Y and G2Y are said to have the same expectation matrices and dispersion matrices if both
E(G1Y) = E(G2Y) and Cov[(Im ⊗G1)

−→
Y] = Cov((Im ⊗G2)

−→
Y) hold.

These three types of equalities are not necessarily equivalent since they are defined from different
criteria for purposes of comparison and contrast. These facts show that equalities of linear statistics
under (1.1) can all be characterized by the corresponding linear and quadratic matrix equations. In
particular, under the assumption in (1.1),

E( G1Y −G2Y ) = 0 and Cov((Im ⊗G1)
−→
Y − (Im ⊗G2)

−→
Y) = 0
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⇔ G1X −G2X = 0 and [(Im ⊗G1) − (Im ⊗G2)](ΣΣΣ2 ⊗ ΣΣΣ1)[(Im ⊗G1) − (Im ⊗G2)]′ = 0
⇔ G1X = G2X and [(Im ⊗G1) − (Im ⊗G2)](ΣΣΣ2 ⊗ ΣΣΣ1) = 0
⇔ G1X = G2X and ΣΣΣ2 ⊗ (G1 −G2)ΣΣΣ1 = 0. (4.1)

Because ΣΣΣ2 is a non-zero matrix, the equality (G1 − G2)ΣΣΣ1 = 0 holds. Combining the two equalities
in (4.1), obtain

( G1 −G2 )[ X, ΣΣΣ1 ] = 0. (4.2)

Applying Lemma 2.6 to it yields the following result.

Lemma 4.1. Let Y be as given in (1.1), and let G1, G2 ∈ R
k×n. Then,

G1Y = G2Y holds with probability 1
⇔( G1 −G2 )[ X, ΣΣΣ1 ] = 0⇔ ( G1 −G2 )[ X, ΣΣΣ1X⊥ ] = 0. (4.3)

Further, let {G1} and {G2} be two sets of matrices of the same size. Then, the following results hold.

(a) {G1Y} ∩ {G2Y} , ∅ holds with probability 1 if and only if

min
G1∈{G1},G2∈{G2}

r(( G1 −G2 )[ X, ΣΣΣ1X⊥ ]) = 0. (4.4)

(b) {G1Y} ⊆ {G2Y} holds with probability 1 if and only if

max
G1∈{G1}

min
G2∈{G2}

r(( G1 −G2 )[ X, ΣΣΣ1X⊥ ]) = 0. (4.5)

Because the coefficient matrices PK;J;X;ΣΣΣ1 and PK0;J0;X0;V1 in (3.13) and (3.34) are not necessarily
unique, we use

{PK;J;X;ΣΣΣ1}, {PK0;J0;X0;V1}, (4.6)
{BLUPM (R)} = {PK;J;X;ΣΣΣ1Y}, {BLUPN (R0)} = {PK0;J0;X0;V1Y} (4.7)

to denote the collections of all coefficient matrices and the corresponding BLUPs. Under the
assumption that (1.1) is a true model, the predictor BLUPN (R0) in (3.34) is not necessarily unbiased
for R. Concerning the expectation of BLUPN (R0), we have the following result.

Theorem 4.1. Let BLUPM (R) and PK;J;X;ΣΣΣ1 be as given in (3.13), let BLUPN (R0) and PK0;J0;X0;V1 be
as given in (3.34), and define

M1 =

[
X X0 V1

0 0 X′0

]
and N1 = [ K, K0, J0V1 ].

Then, we have the following results:

(a) The following two statements are equivalent:

(i) There exists a PK0;J0;X0;V1 such that PK0;J0;X0;V1X = K.
(ii) R(N′1) ⊆ R(M′

1).
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In this case, the general expression of PK0;J0;X0;V1 of PK0;J0;X0;V1X = K is

PK0;J0;X0;V1 = [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+

+ ( K − [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+X )([ X0, V1X⊥0 ]⊥X)+[ X0, V1X⊥0 ]⊥

+ W( In − ([ X0, V1X⊥0 ]⊥X)([ X0, V1X⊥0 ]⊥X)+ )[ X0, V1X⊥0 ]⊥, (4.8)

where the matrix W is arbitrary. Correspondingly, BLUPN (R0) = PK0;J0;X0;V1Y satisfies
E(BLUPN (R0) − BLUPM (R)) = 0, namely, BLUPN (R0) and BLUPM (R) have the same
expectation.

(b) The following two statements are equivalent:

(i) All PK0;J0;X0;V1 satisfy PK0;J0;X0;V1X = K.
(ii) R(N′1) ⊆ R(M′

1) and R(X) ⊆ R[ X0, V1 ].

Correspondingly, all BLUPN (R0) = PK0;J0;X0;V1Y satisfy E(BLUPN (R0) − BLUPM (R)) = 0.

Theorem 4.2. Let BLUPM (R) and PK;J;X;ΣΣΣ1 be as given in (3.13), let BLUPN (R0) and PK0;J0;X0;V1 be
as given in (3.34), and define

M2 =


X X0 ΣΣΣ1 V1

0 0 X′ 0
0 0 0 X′0

 and N2 = [ K, K0, JΣΣΣ1, J0V1 ]. (4.9)

Then, the following results hold.

(a) There exist PK0;J0;X0;V1 and PK;J;X;ΣΣΣ1 such that PK0;J0;X0;V1 = PK;J;X;ΣΣΣ1 if and only if R(M′
2) ⊇ R(N′2).

In this case, {BLUPM (R)} ∩ {BLUPN (R0)} , ∅ holds definitely.
(b) {PK;J;X;ΣΣΣ1} ⊇ {PK0;J0;X0;V1} if and only if R(M′

2) ⊇ R(N′2) and R[ X, ΣΣΣ1 ] ⊆ R[ X0, V1 ]. In this
case, {BLUPM (R)} ⊇ {BLUPN (R0)} holds definitely.

(c) {PK;J;X;ΣΣΣ1} ⊆ {PK0;J0;X0;V1} if and only if R(M′
2) ⊇ R(N′2) and R[ X, ΣΣΣ1 ] ⊇ R[ X0, V1 ]. In this

case, {BLUPM (R)} ⊆ {BLUPN (R0)} holds definitely.
(d) {PK;J;X;ΣΣΣ1} = {PK0;J0;X0;V1} if and only if R(M′

2) ⊇ R(N′2) and R[ X, ΣΣΣ1 ] = R[ X0, V1 ]. In this
case, {BLUPM (R)} = {BLUPN (R0)} holds definitely.

Theorem 4.3. Let BLUPM (R) and PK;J;X;ΣΣΣ1 be as given in (3.13), let BLUPN (R0) and PK0;J0;X0;V1 be
as given in (3.34), and let M2 and N2 be as given in (4.9). Then, the following three statements are
equivalent:

(a) {BLUPM (R)} ∩ {BLUPN (R0)} , ∅ holds with probability 1.
(b) {BLUPM (R)} ⊆ {BLUPN (R0)} holds with probability 1.
(c) R(M′

2) ⊇ R(N′2).

Combining Theorems 4.2 and 4.3, we obtain the following result.

Corollary 4.1. Let BLUPM (R) and PK;J;X;ΣΣΣ1 be as given in (3.13), let BLUPN (R0) and PK0;J0;X0;V1

be as given in (3.34), and let M2 and N2 be as given in (4.9). Then, the following five statements are
equivalent:

(a) There exist PK0;J0;X0;V1 and PK;J;X;ΣΣΣ1 such that PK0;J0;X0;V1 = PK;J;X;ΣΣΣ1 .
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(b) {BLUPM (R)} ∩ {BLUPN (R0)} , ∅ holds definitely.
(c) {BLUPM (R)} ∩ {BLUPN (R0)} , ∅ holds with probability 1.
(d) {BLUPM (R)} ⊆ {BLUPN (R0)} holds with probability 1.
(e) R(M′

2) ⊇ R(N′2).

Theorem 4.4. Let BLUPM (R) and PK;J;X;ΣΣΣ1 be as given in (3.13), let BLUPN (R0) and PK0;J0;X0;V1 be
as given in (3.34), and let M2 and N2 be as given in (4.9). Then, the following three statements are
equivalent:

(a) {BLUPM (R)} ⊇ {BLUPN (R0)} holds with probability 1.
(b) {BLUPM (R)} = {BLUPN (R0)} holds with probability 1.
(c) R(M′

2) ⊇ R(N′2) and R[ X, ΣΣΣ1 ] ⊆ R[ X0, V1 ].

Combining Theorems 4.2 and 4.4, we obtain the following result.

Corollary 4.2. Let BLUPM (R) and PK;J;X;ΣΣΣ1 let be as given in (3.13), let BLUPN (R0) and PK0;J0;X0;V1

be as given in (3.34), and let M2 and N2 be as given in (4.9). Then, the following four statements are
equivalent:

(a) {BLUPM (R)} ⊇ {BLUPN (R0)} holds definitely.
(b) {BLUPM (R)} ⊇ {BLUPN (R0)} holds with probability 1.
(c) {BLUPM (R)} = {BLUPN (R0)} holds with probability 1.
(d) R(M′

2) ⊇ R(N′2) and R[ X, ΣΣΣ1 ] ⊆ R[ X0, V1 ].

5. Conclusions

The problems on misspecifications and comparisons of linear statistical models are certain specific
subjects in the estimation and inference theory of regression models, which include a diversity of
concrete issues for discrimination and consideration. As one such problem, we offered in the preceding
sections an overview and analysis of the equivalence problems of BLUPs/BLUEs under a pair of true
and misspecified MGLMs through the effective uses of various precise and analytical methods and
techniques in linear algebra and matrix theory. It is not difficult to understand the resulting facts
from mathematical and statistical aspects, and thereby we can take them as a group of theoretical
contributions in the statistical inference under certain general model assumptions. This specific study
also shows that there are many deep and connotative problems in the classic regression frameworks
that we can put forward from theoretical and applied points of view and can reasonably solve them by
various known and novel ideas, methods and techniques in different branches of mathematical theory.
Specifically, the resulting facts once again illustrate the crucial role and influence of the matrix algebra
in dealing with statistical inference problems with regard to parametric models.

Finally, we would like to point out that more intriguing and sophisticated formulas, equalities, and
inequalities associated with predictions/estimations, as demonstrated in the preceding sections, can be
derived with some efforts under multivariate linear models with various specified assumptions, which
will help in building a more solid theoretical and methodological foundation in the framework of
parametric regressions.
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Appendix

Proof of Theorem 2.6. It follows from Lemma 2.5 that R(A) = R(B) implies AA+B = B and BB+A =

A. Therefore,

XA = 0⇒ XAA+B = 0⇒ XB = 0,
XB = 0⇒ XBB+A = 0⇒ XA = 0,

as required for (2.11). �

Proof of Theorem 4.1. From (3.34), the equation PK0;J0;X0;V1X = K can be written as

[ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+X + U0[ X0, V1X⊥0 ]⊥X = K. (A.1)

By Lemma 2.5, the equation is solvable for U0 if and only if

r
[
K − [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+X

[ X0, V1X⊥0 ]⊥X

]
= r( [ X0, V1X⊥0 ]⊥X ). (A.2)

It is necessary to simplify the rank equality by the formulas in Section 2, and there will be reasonable
and detailed calculation steps needed to remove the generalized inverses on both sides of (A.2). We
proceed to this goal by applying (2.3), (2.4) and then simplifying by elementary block matrix operations
to both sides of (A.2):

r
[
K − [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+X

[ X0, V1X⊥0 ]⊥X

]
= r

[
K − [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+X 0

X [ X0, V1X⊥0 ]

]
− r[ X0, V1X⊥0 ]

= r
[
K − [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+X 0

X [ X0, V1X⊥0 ]

]
− r[ X0, V1 ]

= r
[
K [ K0, J0V1X⊥0 ]
X [ X0, V1X⊥0 ]

]
− r[ X0, V1 ]

= r


X X0 V1

0 0 X′0
K K0 J0V1

 − r(X0) − r[ X0, V1 ]
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= r
[
M1

N1

]
− r(X0) − r[ X0, V1 ],

and

r( [ X0, V1X⊥0 ]⊥X ) = r[ X, X0, V1X⊥0 ] − r[ X0, V1X⊥0 ] = r[ X, X0, V1 ] − r[ X0, V1 ].

Substituting the rank equalities into (A.2) and then simplifying, we obtain r
[
M1

N1

]
= r(M1), that is,

R(N′1) ⊆ R(M′
1) holds by Lemma 2.2(b), thus establishing the equivalence of (i) and (ii) in (a). In this

case, the general solution of (A.1) by Lemma 2.5 is

U0 =
(
K − [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+X

)
([ X0, V1X⊥0 ]⊥X)+

+ W[ In − ([ X0, V1X⊥0 ]⊥X)([ X0, V1X⊥0 ]⊥X)+ ], (A.3)

where W is arbitrary. Substitution of (A.3) into PK0;J0;X0;V1 in (3.34) gives (4.8).

Equation (A.1) holds for all U0 if and only if
[
K − [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+X

[ X0, V1X⊥0 ]⊥X

]
= 0, that is,

r
[
M1

N1

]
= r[ X0, V1 ] + r(X0). (A.4)

Also note from (2.3) and (2.6) that

r(M1) = r[X, X0, V1] + r(X0) > r[X0, V1] + r(X0), (A.5)

r
[
M1

N1

]
> r(M1) > r[ X0, V1 ] + r(X0). (A.6)

Combining (A.4) and (A.6) yields

r
[
M1

N1

]
= r(M1) = r[ X0, V1 ] + r(X0),

or equivalently, R(N′1) ⊆ R(M′
1) and R(X) ⊆ R[ X0, V1 ] hold, thus establishing the equivalence of

(i) and (ii) in (b). �

Proof of Theorem 4.2. From (3.13) and (3.34), the general expression of the difference PK;J;X;ΣΣΣ1 −

PK0;J0;X0;V1 can be written as

PK;J;X;ΣΣΣ1 − PK0;J0;X0;V1 = G + U[ X, ΣΣΣ1X⊥ ]⊥ − U0[ X0, V1X⊥0 ]⊥, (A.7)

where G = [ K, JΣΣΣ1X⊥ ][ X, ΣΣΣ1X⊥ ]+ − [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+, and U, U0 ∈ R
k×n are arbitrary.

Applying (2.9) to (A.7), we obtain

min
PK;J;X;ΣΣΣ1 ,PK0;J0;X0;V1

r( PK;J;X;ΣΣΣ1 − PK0;J0;X0;V1 ) = min
U,U0

r( G + U[ X, ΣΣΣ1X⊥ ]⊥ − U0[ X0, V1X⊥0 ]⊥ )

= r


G

[ X, ΣΣΣ1X⊥ ]⊥

[ X0, V1X⊥0 ]⊥

 − r
[

[ X, ΣΣΣ1X⊥ ]⊥

[ X0, V1X⊥0 ]⊥

]
. (A.8)
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It is easy to show by (2.3), (2.4) and elementary block matrix operations that

r


G

[ X, ΣΣΣ1X⊥ ]⊥

[ X0, V1X⊥0 ]⊥


=r


[ K, JΣΣΣ1X⊥ ][ X, ΣΣΣ1X⊥ ]+ − [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+ 0 0

In [ X, ΣΣΣ1X⊥ ] 0
In 0 [ X0, V1X⊥0 ]


− r[ X, ΣΣΣ1X⊥ ] − r[ X0, V1X⊥0 ]

=r


0 −[ K, JΣΣΣ1X⊥ ] [ K0, J0V1X⊥0 ]
In [ X, ΣΣΣ1X⊥ ] 0
In 0 [ X0, V1X⊥0 ]

 − r[ X, ΣΣΣ1 ] − r[ X0, V1 ]

=r


0 −[ K, JΣΣΣ1X⊥ ] [ K0, J0V1X⊥0 ]
0 [ X, ΣΣΣ1X⊥ ] −[ X0, V1X⊥0 ]
In 0 0

 − r[ X, ΣΣΣ1 ] − r[ X0, V1 ]

=r
[
[ K, JΣΣΣ1X⊥ ] [ K0, J0V1X⊥0 ]
[ X, ΣΣΣ1X⊥ ] [ X0, V1X⊥0 ]

]
+ n − r[ X, ΣΣΣ1 ] − r[ X0, V1 ]

=r


X X0 ΣΣΣ1 V1

0 0 X′ 0
0 0 0 X′0
K K0 JΣΣΣ1 J0V1

 + n − r(X) − r(X0) − r[ X, ΣΣΣ1 ] − r[ X0, V1 ]

=r
[
M2

N2

]
+ n − r(X) − r(X0) − r[ X, ΣΣΣ1 ] − r[ X0, V1 ], (A.9)

and

r
[

[ X, ΣΣΣ1X⊥ ]⊥

[ X0, V1X⊥0 ]⊥

]
= r

[
In [ X, ΣΣΣ1X⊥ ] 0
In 0 [ X0, V1X⊥0 ]

]
− r[ X, ΣΣΣ1 ] − r[ X0, V1 ]

= r
[
0 [ X, ΣΣΣ1X⊥ ] −[ X0, V1X⊥0 ]
In 0 0

]
− r[ X, ΣΣΣ1 ] − r[ X0, V1 ]

= r


X X0 ΣΣΣ1 V1

0 0 X′ 0
0 0 0 X′0

 + n − r(X) − r(X0) − r[ X, ΣΣΣ1 ] − r[ X0, V1 ]

= r(M2) + n − r(X) − r(X0) − r[ X, ΣΣΣ1 ] − r[ X0, V1 ]. (A.10)

Substitution of (A.9) and (A.10) into (A.8) gives

min
PK;J;X;ΣΣΣ1 ,PK0;J0;X0;V1

r( PK;J;X;ΣΣΣ1 − PK0;J0;X0;V1 ) = r
[
M2

N2

]
− r(M2). (A.11)

Setting the right-hand side of (A.11) equal to zero and applying Lemma 2.2(b) yields the first statement
in (a). Applying (2.9) to (A.7) gives rise to

min
PK;J;X;ΣΣΣ1

r( PK;J;X;ΣΣΣ1 − PK0;J0;X0;V1 ) = min
U

r( G + U[ X, ΣΣΣ1X⊥ ]⊥ − U0[ X0, V1X⊥0 ]⊥ )
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= r
[
G − U0[ X0, V1X⊥0 ]⊥

[ X, ΣΣΣ1X⊥ ]⊥

]
− r([ X, ΣΣΣ1X⊥ ]⊥)

= r
[
G − U0[ X0, V1X⊥0 ]⊥

[ X, ΣΣΣ1X⊥ ]⊥

]
+ r[ X, ΣΣΣ1 ] − n. (A.12)

Further by (2.10),

max
U0

r
[
G − U0[ X0, V1X⊥0 ]⊥

[ X, ΣΣΣ1X⊥ ]⊥

]
= max

U0
r
([

G
[ X, ΣΣΣ1X⊥ ]⊥

]
−

[
Ik

0

]
U0[ X0, V1X⊥0 ]⊥

)

= min

r


G

[ X, ΣΣΣ1X⊥ ]⊥

[ X0, V1X⊥0 ]⊥

, r
[

G Ik

[ X, ΣΣΣ1X⊥ ]⊥ 0

]
= min

r


G

[ X, ΣΣΣ1X⊥ ]⊥

[ X0, V1X⊥0 ]⊥

, k + n − r[ X, ΣΣΣ1 ]


= min

{
r
[
M2

N2

]
+ n − r(X) − r(X0) − r[ X, ΣΣΣ1 ] − r[ X0, V1 ], k + n − r[ X, ΣΣΣ1 ]

}
= min

{
k, r

[
M2

N2

]
− r(X) − r(X0) − r[ X0, V1 ]

}
+ n − r[ X, ΣΣΣ1 ]. (A.13)

Combining (A.12) and (A.13) yields

max
PK0;J0;X0;V1

min
PK;J;X;ΣΣΣ1

r( PK;J;X;ΣΣΣ1 − PK0;J0;X0;V1 )

= min
{

k, r
[
M2

N2

]
− r(X) − r(X0) − r[ X0, V1 ]

}
= min

{
k, r

[
M2

N2

]
− r(M2) + ( r[ X, X0, ΣΣΣ1, V1 ] − r[ X0, V1 ] )

}
(by (2.7)). (A.14)

Setting the right-hand side of (A.14) equal to zero yields r
[
M2

N2

]
= r(M2) and r[ X, X0, ΣΣΣ1, V1 ] =

r[ X0, V1 ], or equivalently, R(M′
2) ⊇ R(N′2) and R[ X, ΣΣΣ1 ] ⊆ R[ X0, V1 ] hold by Lemma 2.2(a)

and (b). Combining this fact with (2.2) yields the first statement in (b).
By the structural symmetry of PK;J;X;ΣΣΣ1 and PK0;J0;X0;V1 , we obtain

max
PK;J;X;ΣΣΣ1

min
PK0;J0;X0;V1

r( PK;J;X;ΣΣΣ1 − PK0;J0;X0;V1 )

= min
{

k, r
[
M2

N2

]
− r(M2) + ( r[ X, X0, ΣΣΣ1, V1 ] − r[ X, ΣΣΣ1 ] )

}
. (A.15)

Setting the right-hand side of (A.15) equal to zero and applying Lemma 2.2(a) and (b) yields the first
statement in (c). Combining (b) and (c) yields (d). �
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Proof of Theorem 4.3. From Definition 4.1(II) and (4.4), that result (a) is equivalent to

(PK;J;X;ΣΣΣ1 − PK0;J0;X0;V1)[ X, ΣΣΣ1X⊥ ] = 0. (A.16)

Substituting (3.13) and (3.34) into (A.16) and then simplifying, we obtain

U0[ X0, V1X⊥0 ]⊥[ X, ΣΣΣ1X⊥ ] = G, (A.17)

where G = [ K, JΣΣΣ1X⊥ ] − [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+[ X, ΣΣΣ1X⊥ ] and U0 ∈ R
k×n is arbitrary. From

Lemma 2.5, the matrix equation is solvable for U0 if and only if

r
[

G
[ X0, V1X⊥0 ]⊥[ X, ΣΣΣ1X⊥ ]

]
= r([ X0, V1X⊥0 ]⊥[ X, ΣΣΣ1X⊥ ]). (A.18)

Applying (2.3) and (2.4) to both sides and then simplifying, we obtain

r
[

G
[ X0, V1X⊥0 ]⊥[ X, ΣΣΣ1X⊥ ]

]
=r

[
[ K, JΣΣΣ1X⊥ ] − [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+[ X, ΣΣΣ1X⊥ ] 0

[ X, ΣΣΣ1X⊥ ] [ X0, V1X⊥0 ]

]
− r[ X0, V1X⊥0 ]

=r
[
[ K, JΣΣΣ1X⊥ ] [ K0, J0V1X⊥0 ]
[ X, ΣΣΣ1X⊥ ] [ X0, V1X⊥0 ]

]
− r[ X0, V1 ]

=r


X X0 ΣΣΣ1 V1

0 0 X′ 0
0 0 0 X′0
K K0 JΣΣΣ1 J0V1

 − r(X) − r(X0) − r[ X0, V1 ]

=r
[
M2

N2

]
− r(X) − r(X0) − r[ X0, V1 ], (A.19)

and

r([ X0, V1X⊥0 ]⊥[ X, ΣΣΣ1X⊥ ]) = r[ X, ΣΣΣ1, X0, V1 ] − r[ X0, V1 ]
= r(M2) − r(X) − r(X0) − r[ X0, V1 ]. (A.20)

Substitution of (A.19) and (A.20) into (A.18) leads to r
[
M2

N2

]
= r(M2), or equivalently, R(M′

2) ⊇

R(N′2) by Lemma 2.2(b), thus establishing the equivalence of (a) and (c).
It follows from Lemma 4.1(b) that the statement in (b) holds if and only if

max
PK;J;X;ΣΣΣ1

min
PK0;J0;X0;V1

r(( PK;J;X;ΣΣΣ1 − PK0;J0;X0;V1 )[ X, ΣΣΣ1X⊥ ]) = 0. (A.21)

By (2.9), (3.11), (A.19) and (A.20),

max
PK;J;X;ΣΣΣ1

min
PK0;J0;X0;V1

r(( PK;J;X;ΣΣΣ1 − PK0;J0;X0;V1 )[ X, ΣΣΣ1X⊥ ])
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= min
U0

r(G − U0[ X0, V1X⊥0 ]⊥[ X, ΣΣΣ1X⊥ ])

= r
[

G
[ X0, V1X⊥0 ]⊥[ X, ΣΣΣ1X⊥ ]

]
− r([ X0, V1X⊥0 ]⊥[ X, ΣΣΣ1X⊥ ])

= r
[
M2

N2

]
− r(M2). (A.22)

Equation (A.21) thereby is equivalent to r
[
M′

2,N
′
2

]
= r(M2), that is, R(M′

2) ⊇ R(N′2) holds by
Lemma 2.2(b). Combining the fact with (2.2) leads to the equivalence of (b) and (c). �

Proof of Theorem 4.4. It follows from Lemma 4.1(b) that the statement in (a) holds if and only if

max
PK0;J0;X0;V1

min
PK;J;X;ΣΣΣ1

r
(
( PK;J;X;ΣΣΣ1 − PK0;J0;X0;V1 )[ X, ΣΣΣ1X⊥ ]

)
= 0. (A.23)

From (2.7), (2.8), (3.11), (3.13), (3.34) and (A.19), we obtain

max
PK0;J0;X0;V1

min
PK;J;X;ΣΣΣ1

r(( PK;J;X;ΣΣΣ1 − PK0;J0;X0;V1 )[ X, ΣΣΣ1X⊥ ])

= max
U0

r
(
G − U0[ X0, V1X⊥0 ]⊥[ X, ΣΣΣ1X⊥ ]

)
= min

{
r
[

G
[ X0, V1X⊥0 ]⊥[ X, ΣΣΣ1X⊥ ]

]
, k

}
= min

{
r
[
M2

N2

]
− r(X) − r(X0) − r[ X0, V1 ], k

}
= min

{
r
[
M2

N2

]
− r(M2) + ( r[ X, X0, ΣΣΣ1, V1 ] − r[ X0, V1 ] ), k

}
, (A.24)

where G = [ K, JΣΣΣ1X⊥ ] − [ K0, J0V1X⊥0 ][ X0, V1X⊥0 ]+[ X, ΣΣΣ1X⊥ ], and U0 ∈ R
k×n is arbitrary.

Setting the right-hand side of (A.24) equal to zero yields r
[
M2

N2

]
= r(M2) and r[ X, X0, ΣΣΣ1, V1 ] =

r[ X0, V1 ], or equivalently, R(M′
2) ⊇ R(N′2) and R[ X, ΣΣΣ1 ] ⊆ R[ X0, V1 ] hold by Lemma 2.2(a)

and (b). Combining this fact with (2.2) leads to the equivalence of (a) and (c). Combining these facts
with Theorem 4.3 yields the equivalence of (b) and (c). �
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