
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(9): 20892–20913.
DOI: 10.3934/math.20231064
Received: 02 January 2023
Revised: 27 April 2023
Accepted: 03 May 2023
Published: 30 June 2023

Research article

On generalized =b-contractions and related applications

Muhammad Rashid1, Muhammad Sarwar1,*, Muhammad Fawad1, Saber Mansour2 and
Hassen Aydi3,4,5,*

1 Department of Mathematics, University of Malakand, Chakdara Dir(L), Khyber Pakhtunkhwa,
Pakistan, Email: mrashidghani26@gmail.com, muhmmadfawad123@gmail.com

2 Department of Mathematics, Umm Al-Qura University, Faculty of Applied sciences, P.O. Box
14035, Holly Makkah 21955, Saudi Arabia, Email: samansour@uqu.edu.sa
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1. Introduction

Many physical phenomenon can be described by integral equations. Non-linear integral equations
play a vital role to solve many mathematical problems arising in engineering and applied science.
There are various techniques available in the literature for the existence of solutions of these
equations. Many researchers used fixed points techniques to the existence of a unique solution to
non-linear integral equations. For instance, refer to [1–7]. Especially, Shoaib et al. [2] studied fixed
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point results and its applications to the systems of non-linear integral and differential equations of
arbitrary order, while Rashwan and Saleh [8] established fixed point results to find the existence of a
unique common solution to a system of Urysohn integral equations. As opposed to that, Pathak et
al. [9] and Rashwan and saleh [8] ensured the existence of a unique common solution to a system of
Volterra-Hammerstein non-linear integral equations. Additionally, Baklouti and his co-authors have
made significant contributions to related areas, including optimal preventive maintenance policies for
solar photovoltaic systems (c.f, [15]) and quadratic Hom-Lie triple systems (c.f, [16, 17]).

In the current article, existence of solutions for the following systems of Volterra-Hammerstein
integral and the Urysohn integral equations are investigated, respectively:

D(x) = ξi(x) +

∫ b

a
Wi(x, y,D(y))dy,

where x ∈ (a, b) ⊆ R ; D, ξi ∈ C((a, b),Rn) and Wi : (a, b) × (a, b) × Rn → Rn, for i = 1, 2;
and

D(x) = τi(x) + λ

∫ t

0
m(x, y)gi(y,D(y))dy + µ

∫ ∞

0
n(x, y)hi(y,D(y))dy,

where x ∈ (0,∞), λ, µ ∈ R,D,Ti,m(x, y), n(x, y), gi(y,D(y)) and hi(y,D(y)) for i = 1, 2 are measurable
functions with real values both in x and y on (0,∞).

The most elaborated result in this area, known as the Banach fixed point theorem, ensures that a
solution exists. The extensive usage of the fixed point theory, particularly in metric spaces [10,11], has
then had an impact on the study of its evolution over the past few decades.

Due to important applications of the Banach contraction principle, many researchers generalized
this principle by elaborating the underlying spaces or changing the contractive conditions. See [12–14]
for details. In recent decades, scholars concentrated on applying such an aforementioned theorem to
various generalized metric spaces, see [18, 19]. Among these generalized spaces, there is the b-metric
space, where the coefficient of the triangle inequality is s ≥ 1. It was introduced by Bakhtin [20].
Moreover, in [26] Czerwik provided the Banach contraction principle on this space. Recently, Salmi
and Noorani [21] presented several properties in these spaces and established some common fixed
point theorems in ordered cone b-metric spaces. Khojasteh et al. [34] introduced the concept of a
simulation function. This concept has been refined in [22] in order to guarantee the presence of a
unique coincidence point for two non-linear mappings.

Later, the concept of a b-simulation function was introduced to ensure the existence and uniqueness
of a fixed point. In [23], Olgun et al. presented the concept of a generalized =-contraction. In [24],
Jawaher et al. utilized the idea of a b-simulation function and investigated some common fixed points
for two contractive mappings. In the same direction, using the concept of a generalized =b-contraction
with a b-simulation function, Rodjanadid et al. [23] proved some fixed point results in complete b-
metric spaces.

Motivated by the above contributions, using b-simulation functions and =b-contractions, some fixed
point theorems are constructed. As applications of these findings, some examples and existence results
for systems of integral equations are also discussed. We note that by using the presented work, some
well known results can be deduced from the existence literature.
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2. Preliminaries

This section includes all those concepts (definitions, theorems, lemmas, etc.) which will help us to
prove the main results of this manuscript. These concepts are taken from different papers, like [25–27]
etc. Throughout the manuscript, the following notions and symbols will be utilized. z, Ω, i and
= represent a non-empty set, a metric, a simulation function and a family of simulation functions,
respectively. Also, the initials R and N in the sequel stand for the sets of all real and natural numbers,
respectively.

Definition 2.1. [25] (Metric space) Let z , ∅. A function Ω : z × z→ [0,∞) is known as a metric on
z, if for all a, b, c ∈ z the following conditions hold:

m1) Ω(a, b) = 0 if and only if a = b;
m2) Ω(a, b) = Ω(b, a);
m3) Ω(a, b) ≤ Ω(a, c) + Ω(c, b).

The pair (z,Ω) is a metric space.

Definition 2.2. [26] (b-metric space) Let z , ∅ and assume b ≥ 1 . A function Ωb : z × z→ [0,∞) is
called a b-metric on z if for all a, e, c ∈ z, the following requirements are satisfied:

d1) Ωb(a, e) = 0 if and only if a = e;
d2) Ωb(a, e) = Ωb(e, a);
d3) Ωb(a, e) ≤ b[Ωb(a, c) + Ωb(c, e)].

The pair (z,Ωb) is known as a b-metric space, in short (bMS ).

Definition 2.3. [27] (Convergence, Cauchyness and Completeness) Let { fn} be a sequence in a b-
metric space (z,Ωb, b).

a) { fn} is called b-convergent if and only if there is f ∈ z such that Ωb( fn, f )→ 0 as n→ ∞.
b) { fn} is a b-Cauchy sequence if and only if Ωb( fn, fm)→ 0 as n,m→ ∞.
c) The b-metric space is complete if every b-Cauchy sequence is b-convergent.

Proposition 2.4. [27] The following assertions hold in a b-metric space (z,Ωb, b):
i) The limit of a b-convergent sequence is unique;
ii) Each b-convergent sequence is b-Cauchy;
iii) A b-metric is not continuous generally.

Definition 2.5. [28] (Simulation function) Let i : [0,∞)× [0,∞)→ R be a function. If i satisfies the
criteria below:

(i1) i(0, 0)=0;
(i2) i(t, s) < s − t for all t, s > 0;
(i3) if {tn},{sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0,

then
lim
n→∞

supi(tn, sn) < 0,

AIMS Mathematics Volume 8, Issue 9, 20892–20913.



20895

then it is referred as a simulation function. The set of all simulation functions is denoted by the symbol
=.

Example 2.6. [28] Let i : [0,∞) × [0,∞) → z be defined by i(t, s) = λs − t for all t, s ∈ [0,∞),
where λ ∈ [0, 1). Then i is a simulation function.

Example 2.7. [28] Let i : [0,∞) × [0,∞)→ z be defined by
i(t, s) = Ψ(s) − Φ(t) for all t, s ∈ [0,∞), where Ψ,Φ : [0,∞)→ [0,∞)
are two continuous functions such that Ψ(t) = Φ(t) = 0 iff t = 0
and Ψ(t) < t ≤ Φ(t) for all t > 0. Here, i is a simulation function.

Definition 2.8. [28] (=-contraction) Let (z,Ω) be a metric space, T : z→ z be a mapping and i ∈ =.
T is called a =-contraction with regard to i if the following condition holds

i(Ω(T x,Ty),Ω(x, y)) ≥ 0 f or all x, y ∈ z.

If T is a =-contraction with respect to i ∈ =, then Ω(T x,Ty) < Ω(x, y) for all distinct x, y ∈ z.

Theorem 2.9. [28] Suppose (z,Ω) is a complete metric space and T : z→ z is a =- contraction with
respect to i ∈ =. Then T has a unique fixed point u in z and for every x0 ∈ z, the Picard sequence {xn}

(where xn = T xn−1 for all n ∈ N) converges to the fixed point of T .

Definition 2.10. [29] (Generalized =-contraction) Suppose (z,Ω) is a metric space, T : z → z is
a mapping and i ∈ =. Then T is referred to as a generalized =-contraction with regard to i If the
following condition is satisfied:

i(Ω(T x,Ty),M(x, y)) ≥ 0 ∀ x, y ∈ z,

where
M(x, y) = max{Ω(x, y),Ω(x,T x),Ω(y,Ty),

1
2

(Ω(x,Ty) + Ω(y,T x))}.

Theorem 2.11. [29] Assume (z,Ω) is a complete metric space and T : z → z is a generalized =-
contraction with respect to i ∈ =, then T has a fixed point in z. Moreover, for every x0 ∈ z, the Picard
sequence {T nx0} converges to this fixed point.

Definition 2.12. [33] (b-simulation function) Let (z,Ωb) be a b-metric space with a constant b ≥ 1.
A b-simulation function is a function i : [0,∞) × [0,∞)→ R satisfying the following conditions: (i1)
i(t, s) < s − t for all t, s > 0;

(i2) If {tn},{sn} are two sequences in (0,∞) such that

0 < lim
n→∞

tn ≤ lim
n→∞

inf sn ≤ lim
n→∞

sup sn ≤ b lim
n→∞

tn < ∞,

then
lim
n→∞

supi(btn, sn) < 0.

We represent the set of all b-simulation functions by the symbol =b.

Some examples of b-simulation functions are as follows.

AIMS Mathematics Volume 8, Issue 9, 20892–20913.



20896

Example 2.13. [33] Let t, s ∈ [0,∞).
(1) i(t, s) = Ψ(s) − Φ(t), where Φ,Ψ : [0,∞) → [0,∞) are two continuous functions such that

Ψ(t) = Φ(t) = 0 ⇐⇒ t = 0 and Ψ(t) < t ≤ Φ(t) for all t > 0;
(2) i(t, s) = s y(t,s)

z(t,s) t, where y, z : [0,∞) × [0,∞) → [0,∞) are two functions which are continuous
respect to each variable, i.e., y(t, s) > z(t, s) for all t, s > 0;

(3) i(t, s)=s − Φ(s) − t, where Φ : [0,∞) → [0,∞) is a lower semi-continuous function such that
Φ(t) = 0⇔ t = 0;

(4) i(t, s) = sΦ(s) − t, where Φ : [0,∞)→ [0,∞) is such that limt→p+Φ(t) < 1 ∀ p > 0;
(5) i(t, s) = λs − t, where λ ∈ [0,∞).

Definition 2.14. [31] Let (z,Ωb, b) be a b-metric and y, z be two self mappings on z. Then the pair
{y, z} is said to be compatible if

lim
n→∞

Ωb(yzxn, zyxn) = 0,

whenever {xn} is a sequence in z such that

lim
n→∞

yxn = lim
n→∞

zxn = p for some p ∈ z.

Lemma 2.15. [24] Let (z,Ωb, b) be a b-metric space. If there exist two sequences { fn} and {rn} such
that

lim
n→∞

Ωb( fn, rn) = 0,

whenever { fn} is a sequence in z such that

lim
n→∞

fn = p for some p ∈ z

then
lim
n→∞

rn = p.

Theorem 2.16. [30] Let T : z → z be a mapping and (z,Ωb) be a complete b-metric space with a
constant b ≥ 1. Assume there is a b-simulation function i such that i(bΩb(T f ,Tr),Ωb( f , r)) ≥ 0 for
all f , r ∈ z, then T has a unique fixed point.

In this work, we introduce generalized =b-contraction pairs of self-mappings on a b-metric space.
We will show that such mappings have a common fixed point. Some examples and applications are
presented making effective the new concepts and obtained results. Well known results in literature are
investigated and compared.

3. Results via generalized =b-contractions

This section includes the main work of this article. We initiate this section with the definition of
generalized =b-contractions and a related example. Before the proof of the main theorem, we prove
some basic lemmas. For the support of the main theorem, some examples are presented. In the last of
this section, some remarks are presented.
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Definition 3.1. Consider a b-metric space (z,Ωb, b) with b ≥ 1, f1, f2 : z → z are two mappings and
i ∈ =b.

Then f1, f2 are called generalized =b-contractions with respect to i if the circumstance listed below
is true
i(bΩb( f1s, f1t),Mb(s, t)) ≥ 0 for all s, t ∈ z,

where
Mb(s, t) = max[Ωb( f2s, f2t),Ωb( f2t, f1t),

1
2b

Ωb( f2s, f1t)].

Example 3.2. Consider the be metric space (z,Ωb, b) with z = [1, 2] and Ωb = (s − t)2 for all s, t ∈ z
(Here, b=2). Then the self-mappings f1, f2 : z→ z defined by

f1(s) = (
s
8

)2 and

f2(s) =
s
8

are generalized =b-contractions with respect to i(s, t) = 1
2 s − t. Indeed,

i(bΩb( f1, f1),Mb(s, t)) ≥ 0.

Lemma 3.3. Suppose (z,Ωb, b) is a b-metric space, and f1, f2 : z → z are two generalized =b-
contractions. Suppose f1(z) ⊆ f2(z) and there is a b-simulation function i such that

i[bΩb( f1t, f1s),Mb(t, s)] ≥ 0 ∀ t, s ∈ z, (3.1)

then there is a sequence {an} in z such that

lim
n→∞

Ωb(an−1, an) = 0.

Proof. Assume t0 is an arbitrary point. Since f1(z) ⊆ f2(z), we can construct two sequences {tn} and
{sn} such that sn = f1(tn) = f2(tn+1) for every n ∈ N. If there is n0 ∈ N such that tn0 = tn0+1, then it
follows from the given inequality (3.1) and from (i1) that for all n ∈ N,

0 ≤ i(bΩb( f1tn0+1, f1tn0+2),Mb( f2tn0+1, f2tn0+2))
0 ≤ Mb( f2tn0+1, f2tn0+2) − bΩb( f1tn0+1, f1tn0+2)

= Mb(sn0 , sn0+1) − bΩb(sn0+1, sn0+2).

That is,

Mb( f2t, f2s) = max[Ωb( f2t, f2s),Ωb( f2s, f1s),
1
2b

Ωb( f2t, f1s)]

Mb( f2tn0+1, f2tn0+2) = max[Ωb( f2tn0+1, f2tn0+2),Ωb( f2tn0+2, f1tn0+2),
1

2b
Ωb( f2tn0+1, f1tn0+2)]

= max[Ωb(sn0 , sn0+1),Ωb(sn0+1, sn0+2),
1

2b
Ωb(sn0 , sn0+2)].
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Therefore, by triangle inequality,

Mb( f2tn0+1, f2tn0+2) = max[Ωb(sn0 , sn0+1),Ωb(sn0+1, sn0+2)]
0 ≤ max[Ωb(sn0 , sn0+1),Ωb(sn0+1, sn0+2)] − bΩb(sn0+1, sn0+2).

Since sn0 = sn0+1 implies that Ωb(sn0+1, sn0) = 0, consider

0 ≤ max[0,Ωb(sn0+1, sn0+2)] − bΩb(sn0+1, sn0+2)
0 < Ωb(sn0+1, sn0+2) − bΩb(sn0+1, sn0+2)
0 < [1 − b]Ωb(sn0+1, sn0+2) ≤ 0

Ωb(sn0+1, sn0+2) = 0

sn0 = sn0+1 = sn0+2 = sn0+3 = · · · ,

which implies that
limn→∞Ωb(sn−1, sn) = 0.

Now, suppose that sn , sn+1 for every n ∈ N. Then, it follows from (3.1) and (i1) that for every n ∈ N,
we have

0 ≤ i[bΩb( f1tn, f1tn+1),Mb( f2tn, f2tn+1)]
= i[bΩb(sn, sn+1),Mb(sn−1, sn)]
< Mb(sn−1, sn) − bΩb(sn, sn+1)
= max[Ωb(sn−1, sn),Ωb(sn, sn+1)] − bΩb(sn, sn+1).

If Ωb(sn, sn+1) ≥ Ωb(sn−1, sn), then 0 < Ωb(sn, sn+1) − bΩb(sn, sn+1). That is,

bΩb(sn, sn+1) < Ωb(sn, sn+1),

which is a contradiction. So we have

Ωb(sn−1, sn) ≥ Ωb(sn, sn+1)
0 < Ωb(sn−1, sn) − bΩb(sn, sn+1)

bΩb(sn, sn+1) = Ωb(sn−1, sn) ∀ n ∈ N.

This implies that {Ωb(sn−1, sn)} is a decreasing sequence of positive real numbers. Thus, there is some
Γ ≥ 0, so that

lim
n→∞

Ωb(sn−1, sn) = Γ.

Assume Γ > 0, so from the condition (i2), with an = Ωb(sn, sn+1) and bn = Ωb(sn−1, sn), one writes

0 ≤ lim
n→∞

supi[bΩb(sn, sn+1),Mb(sn−1, sn)] < 0,

which is a contradiction. Hence, we get that Γ = 0. It ends the proof. �
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Remark 3.4. Let (z,Ωb, b) be a b-metric space and assume f1, f2 : z → z are two generalized =b-
contractions. Assume that f1(z) ⊆ f2(z) and there is a b-simulation function i such that

0 ≤ i[bΩb( f1t, f1s),Mb( f2t, f2s)] ∀ t, s ∈ z.

Then there is a sequence {sn} in z such that

bΩb(sm, sn) ≤ Mb(sm−1, sn−1) ∀ m, n ∈ N.

Proof. By a similar argument of Lemma 3.3 for every n ∈ N, we have sn = f1(tn) = f2(tn+1). Hence,
from (3.1) and (i1), we have for all m, n ∈ N,

0 ≤ i[bΩb( f1tm, f1tn),Mb( f2tm, f2tn)]
0 ≤ i[bΩb(sm, sn),Mb(sm−1, sn−1)]
0 < Mb(sm−1, sn−1) − bΩb(sm, sn)

bΩb(sm, sn) < Mb(sm−1, sn−1).

�

Lemma 3.5. Let (z,Ωb, b) be a b-metric space and assume f1, f2 : z → z be two generalized =b-
contractions. Assume that f1(z) ⊆ f2(z) and there is a b-simulation function i such that the
inequality (3.1) holds. Then there exists a sequence {sn} in z, such that {sn} is a bounded sequence.

Proof. By a similar argument of Lemma 3.3, when for some n0 sn0 = sn0+1 we have Ωb(si, s j) ≤ M for
all i, j = 0, 1, 2, · · · , where

M = max{Ωb(si, s j) : i, j ≤ n0}.

Let us assume that sn , sn+1 for each n ∈ N and suppose {sn} is a sequence which is not bounded.
Then there is a subsequence {s}nk of {sn} such that for n1 = 1 and for each k ∈ N, nk+1 is the minimum
integer such that Ωb(snk+1 , snk) > 1 and Ωb(sm, snk) ≤ 1 for nk ≤ m ≤ nk+1 − 1. By triangular inequality,
we obtain

1 < Ωb(snk+1 , snk)
≤ b[Ωb(snk+1 , snk+1−1) + Ωb(snk+1−1, snk)]
≤ b[Ωb(snk+1 , snk+1−1) + 1)]
= bΩb(snk+1 , snk+1−1) + b).

Letting k → ∞ in the above inequality and using Lemma 3.3, we get

1 ≤ lim
k→∞

inf Ωb(snk+1 , snk) ≤ lim
k→∞

sup Ωb(snk+1 , snk) ≤ b.

Again from Remark 3.4 we have

bΩb(snk+1 , snk) ≤ Mb(snk+1−1, snk−1)

= max[Ωb(snk+1−1, snk−1),Ωb(snk−1, snk),
1
2b

Ωb(snk+1−1, snk)]
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≤ max[b[Ωb(snk+1−1, snk) + Ωb(snk , snk−1)],Ωb(snk−1, snk),
1

2b
Ωb(snk+1−1, snk)]

≤ max[b[1 + Ωb(snk , snk−1)],Ωb(snk−1, snk),
1
2b

(1)]

≤ max[b[1 + Ωb(snk , snk−1)],Ωb(snk−1, snk),
1
2b

(b)]

= max[b(1 + Ωb(snk , snk−1),Ωb(snk−1, snk),
1
2

)].

Now, as

1 < Ωb(snk+1 , snk)
b ≤ bΩb(snk+1 , snk)

< Mb(snk+1−1, sn−k−1)

≤ max[b[1 + Ωb(snk , snk−1)],Ωb(snk−1, snk),
1
2

],

then taking k → ∞, one gets

b ≤ lim
k→∞

Mb(snk+1−1, snk)

≤ lim
k→∞

max[b[1 + Ωb(snk , snk−1)],Ωb(snk−1, snk),
1
2

]

= max[b(1 + 0), 0,
1
2

]

= max[b] = b,

i.e.,
lim
k→∞

Ωb(snk−1, snk) = 0.

That is,
lim
k→∞

Mb(snk+1−1, snk−1) = b.

Using the inequality (3.1) and (i2) with ak = Ωb(snk+1 , snk) and ck = Mb(snk+1−1, snk−1), we have

0 ≤ lim
k→∞

supi[bΩb(snk+1 , snk),Mb(snk+1−1, snk−1)] < 0,

which is a contradiction. Hence, {sn} is a bounded sequence. �

Lemma 3.6. Suppose (z,Ωb, b) is a b-metric space and assume f1, f2 : z → z are two generalized
=b-contractions. Assume that f1(z) ⊆ f2(z) and there is a b-simulation function i such that the
inequality (3.1) holds. Then there is a sequence {sn} in z, such that {sn} is a Cauchy sequence.

Proof. Using a similar argument as in Lemma 3.3, we have for every n ∈ N, sn = f1(tn) = f2(tn+1). If
there is no ∈ N such that sn0 = sn0+1, then we have {sn} is a cauchy sequence. Let us sn , sn+1 for every
n ∈ N and let

Cn = sup{Ωb(si, s j) : i, j ≥ n}.
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Now, from Lemma 3.3, Cn < ∞ for every n ∈ N. Since Cn is a positive decreasing sequence, there
is some c ≥ 0 such that

lim
n→∞

Cn = c.

Let us consider that c > 0. Then by the definition of Cn, for every k ∈ N there are nk,mk ∈ N such
that mk > nk ≥ k and

Ck −
1
k
< Ωb(smk , snk) ≤ Ck.

Letting k → ∞ in the inequality above, we have

lim
k→∞

Ωb(smk , snk) = c

and
lim
k→∞

Ωb(smk−1, snk−1) = c.

By the inequality 3.1 and property (i1), we have

0 ≤ i[bΩb(smk , snk),Mb(smk−1, snk−1)]
< Mb(smk−1, snk−1) − bΩb(smk , snk)

bΩb(smk , snk) < Mb(smk−1, snk−1)

= max[Ωb( f2tmk , f2tnk),Ωb( f2tnk , f1tnk),
1

2b
Ωb( f2tmk , f1tnk)]

= max[Ωb(smk−1, snk−1),Ωb(snk−1, snk),
1

2b
Ωb(smk−1, snk)]

≤ max[Ωb(smk−1, snk−1),Ωb(snk−1, snk),
1

2b
[b(Ωb(smk−1, smk) + Ωb(smk , snk))]]

= max[Ωb(smk−1, snk−1),Ωb(snk−1, snk),
1
2

(Ωb(smk−1, smk) + Ωb(smk , snk))].

Letting limk→∞ in the above inequality using Lemma 3.3,

lim
k→∞

Ωb(smk , snk) = c

and
lim
k→∞

Ωb(smk−1, snk−1) = c.

We have

bc = lim
k→∞

bΩb(smk , snk)

≤ Mb(smk−1, snk−1)

≤ lim
k→∞

max[Ωb(smk−1, snk−1),Ωb(snk−1, snk),
1
2

(Ωb(smk−1, smk) + Ωb(smk , snk))]

= max[c, 0,
1
2

(0 + c)]
= c.
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Then
bc ≤ lim

k→∞
inf Mb(smk−1, snk−1) ≤ lim

k→∞
sup Mb(smk−1, snk−1) ≤ c.

From the above inequality and since c > 0 that is b = 1, then by the property (i2) with

ak = Ωb(smk , snk)

and
qk = Mb(smk−1, snk−1)

we get
0 ≤ lim

k→∞
supi[bΩb(smk , snk),Mb(smk−1, snk−1)] < 0

which is a contradiction, thus c = 0, i.e.,

lim
n→∞

cn = 0 ∀ b ≥ 1.

This proves that {sn} is a Cauchy sequence. �

We are now going to present our main result.

Theorem 3.7. Consider (z,Ωb, b) be a complete b-metric space, and f1, f2 : z→ z be two generalized
=b-contractions with f1(z) ⊆ f2(z) and the pair ( f1, f2) is compatible. Assume that ∃ a b-simulation
function i such that 3.1 holds, that is,

i[bΩb( f1t, f1s),Mb( f2t, f2s)] ≥ 0 ∀ t, s ∈ z.

If f2 is continuous, then there is a coincidence point of f1 and f2 , that is, there exists t ∈ z such that
f1(t) = f2(t). Moreover, if f2 is one to one, then f1 and f2 have a unique common fixed point.

Proof. Consider x0 ∈ z. Since f1(z) ⊆ f2(z), we have for every n ∈ N, sn = f1(tn) = f2(tn+1). Now,
from Lemma 3.6, the sequence {sn} is Cauchy and since (z,Ωb, b) is a complete b-metric space, there
is some s ∈ z such that

lim
n→∞

sn = s,

that is,
s = lim

n→∞
f1(tn) = lim

n→∞
f2(tn).

We claim that s is a coincidence point of f1 and f2. Since f2 is continuous, we have

lim
n→∞

f2 f1(tn) = f2 f2(tn) = f2(s).

Also, since { f1, f2} is compatible, we have

lim
n→∞

Ωb( f1 f2(tn), f2 f1(tn)) = 0.

Hence, by Lemma 2.15 we deduce
lim
n→∞

f1 f2(tn) = f2(s).
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Using (3.1), we have
0 ≤ i[bΩb( f1s, f1 f2(tn)),Mb( f2s, f2 f2(tn))].

That is,
< Mb( f2s, f2 f2(tn)) − bΩb( f1s, f1 f2(tn)).

Letting n→ ∞,
0 < lim

n→∞
inf Mb( f2s, f2 f2(tn)) − b lim

n→∞
sup Ωb( f1s, f1 f2(tn)).

But

Mb( f2s, f2 f2(tn)) = max[Ωb( f2s, f2 f2(tn)),Ωb( f2s, f1 f2(tn)),
1
2b

Ωb( f2s, f1 f2(tn))]

lim
n→∞

inf Mb( f2s, f2 f2(tn)) = lim
n→∞

inf max[Ωb( f2s, f2 f2(tn)),Ωb( f2s, f1 f2(tn)),
1

2b
Ωb( f2s, f1 f2(tn))]

= max[Ωb( f2s, f2s),Ωb( f2s, f2s),
1
2b

Ωb( f2s, f2s)]

= 0

which implies that

0 < Mb( f2s, f2 f2(tn)) − bΩb( f1s, f1 f2(tn))
0 < lim

n→∞
inf Mb( f2s, f2 f2(tn)) − b lim

n→∞
sup Ωb( f1s, f1 f2(tn))

= −b lim
n→∞

sup Ωb( f1s, f1 f2(tn)) ≤ 0.

Thus,
lim
n→∞

sup Ωb( f1s, f1 f2(tn)) = 0

that is
lim
n→∞

f1 f2(tn) = f1(s)

therefore f1(s) = f2(s).
Now, assume there is p ∈ z such that f1(p) = f2(p) then the inequality (3.1) and (i2) imply that

0 ≤ i[bΩb( f1s, f1 p),Mb( f2s, f2 p)]

= Mb( f2s, f2 p) − bΩb( f1s, f1 p),

where

Mb( f2s, f2 p) = max[Ωb( f2s, f2 p),Ωb( f2 p, f1 p),
1
2b

Ωb( f2s, f1 p)]

= max[Ωb( f2s, f1 p),
1

2b
Ωb( f2s, f1 p)]

Mb( f2s, f2 p) = Ωb( f2s, f1 p)
0 < Ωb( f2s, f1 p) − bΩb( f1s, f1 p)
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= Ωb( f2s, f1 p) − bΩb( f2s, f1 p)
= [1 − b]Ωb( f2s, f1 p)
≤ 0

Ωb( f2s, f1 p) = 0.

Hence,
bΩb( f1s, f1 p) ≤ Ωb( f1s, f1 p).

If b > 1 then f1(s) = f1(p). If b = 1, by the condition (i2) with

ak = Ωb( f1s, f1 p)

and
vk = Mb( f2s, f2 p)

we get
0 ≤ lim

k→∞
supi[bΩb( f1s, f1 p),Mb( f2s, f2 p)] < 0

which is a contradiction. Therefore,

f1(p) = f1(s) = f2(p) = f2(s).

Now, suppose that f2 is one to one. If s, p are two coincidence points of f1 and f2, In this case, by the
above argument we have

f1(s) = f2(s) = f1(p) = f2(p).

Since f2 is one to one, it follows that p = s. Also, since f2(s) = f1(s) and the pair { f1, f2} is compatible
we have

f1 f2(s) = f2 f1(s).

Therefore,
f2 f1(s) = f1 f2(s) = f1 f1(s).

That is, f1(s) is a coincidence point of f1 and f2. Therefore, f1(s) = s and hence

f1(s) = f2(s) = s.

That is, f1 and f2 have a unique common fixed point s ∈ z. �

Corollary 3.8. Let (z,Ωb, b) be a complete b-metric space and f1, f2 : z → z be two generalized
=b-contractions with f1(z) ⊆ f2(z) and the pair ( f1, f2) is compatible. Suppose that there is λ ∈ (0, 1)
such that

bΩb( f1s, f1t) ≤ λMb(s, t) ∀ s, t ∈ z.

If f2 is continuous, then there is a coincidence point of f1 and f2, that is, there is t ∈ z such that
f1(t) = f2(t). Moreover, if f2 is one to one, then f1 and f2 have a unique common fixed point.
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Proof. By taking the b-simulation function

i(x, y) = λy − x ∀ x, y ≥ 0.

The result follows from Theorem 3.7.
�

Example 3.9. Let X = [0,∞) and d : X × X → X be defined by

d(s, t) =


0 if s=t;
8 if s, t ∈ [0, 1);
3 + 1

s+t if s, t ∈ [1,∞);
33
25 otherwise.

Then, clearly d is a b-metric on X with b = 5
4 .

Here, we observe that when s = 3
2 and u = 2 (both belong to [1,∞) and t ∈ [0,∞)), we have

d(s, u) = 3 +
1

3
2 + 2

=
23
7

and
d(s, t) + d(t, u) =

33
25

+
33
25

=
66
25
.

Hence, d(s, u) , d(s, t) + d(t, u). Hence, d is a b-metric with b = 5
4 (> 1), but it is not a metric. We now

define f , g : X → X by

f (s) =

{ s
4 + 2 if s ∈ [0, 1);
3s − 2 if s ∈ [1,∞)

and

g(s) =

{
s if s ∈ [0, 1);
1
s if s ∈ [1,∞).

Clearly, f and g are b-continuous functions. Now, we define i : [0,∞) × [0,∞)→ [0,∞) by i(x, y) =
4
5y − x. We have the following possible cases:

Case 1: s, t ∈ [0, 1).
In this case , d( f s, f t) = 3 + 1

s+t and Mb(s, t) = 8

i(bd( f s, f t),Mb(s, t)) =
4
5

(8) −
5
4

(3 +
1

s + t
) > 0.

Case 2: s, t ∈ [1,∞).
Here, d( f s, f t) = 3 + 1

s+t and Mb = 8. We have

i(bd( f s, f t),Mb(s, t)) =
4
5

(8) −
5
4

(3 +
1

s + t
) > 0.

Case 3: s ∈ [0, 1) and t ∈ [1,∞).
Here, d( f s, f t) = 3 + 1

s+t and Mb = 8. Also,
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i(bd( f s, f t),Mb(s, t)) =
4
5

(8) −
5
4

(3 +
1

s + t
) > 0.

Case 4: s ∈ [1,∞) and t ∈ [0, 1).
In this case d( f s, f t) = 3 + 1

s+t and Mb = 8. Also,

i(bd( f s, f t),Mb(s, t)) =
4
5

(8) −
5
4

(3 +
1

s + t
) > 0.

So the pair { f , g} is a generalized =b-contraction. It satisfies all the conditions of Theorem 3.7.
Hence, f and g have a common unique fixed point.

Example 3.10. Let z = [0, 1] be endowed with the b-metric Ωb(s, t) = (s − t)2, where b = 2. Define f1

and f2 on z by

f1(s) = (
s
4

)2

and

f2(s) = (
s
4

).

Obviously f1(z) ⊆ f2(z) and furthermore the pair { f1, f2} is compatible. Consider the b-simulation
function given as

i(r, q) =
1
2

q − r ∀ r, q ≥ 0.

For all s, t ∈ z we have

0 ≤ i[2Ωb( f1s, f1t),Mb(s, t)]

0 <
1
2

Mb(s, t) − 2Ωb( f1s, f1t)

Ωb( f1s, f1t) <
1
4

Mb(s, t).

Now,

Ωb( f1s, f1t) = ( f1s − f1t)2

= ((
s
4

)2 − (
t
4

)2)2

= (
s
4

+
t
4

)2(
s
4
−

t
4

)2

≤ (
1
4

+
1
4

)2(
s
4
−

t
4

)2

= (
2
4

)2Ωb( f2s, f2t)

≤
1
4

Mb(s, t)

=
1
4

max[Ωb( f2s, f2t),Ωb( f2t, f1t),
1

2b
Ωb( f2s, f1t)].

As all the requirements of Theorem 3.7 are satisfied, so f1 and f2 have a unique common fixed point,
which is 0.

AIMS Mathematics Volume 8, Issue 9, 20892–20913.



20907

Example 3.11. Take z = [0, 1]. Define Ωb : z × z → R by Ωb(s, t) = (s − t)2. Clearly, (z,Ωb) is a
complete b-metric with b = 2.

Now, we define the functions f1, f2 : [0, 1]→ [0, 1] by

f1s =
as

1 + s
∀ s ∈ z, a ∈ (0,

1
√

2
]

and
f2t =

t
1 + t

∀ t ∈ z.

Clearly,
f1(s) ⊆ f2(t)

and furthermore the pair is [ f1, f2] is compatible. Now, consider the b-simulation function i : [0,∞)×
[0,∞)→ R defined by

i(x, y) =
f1

f1 + 1
− x.

We have
i(2Ωb( f1s, f1t),Mb(s, t)) =

Mb(s, t)
Mb(s, t) + 1

− 2Ωb( f1s, f1t)

≥
Ωb(s, t)

Ωb(s, t) + 1
− 2Ωb( f1s, f1t)

=
(s − t)2

(s − t)2 + 1
− 2[

as
1 + s

−
at

1 + t
]2

=
(s − t)2

(s − t)2 + 1
− 2

a2(s − t)2

[(1 + s)(1 + t)]2

≥
(s − t)2

(s − t)2 + 1
− 2

a2(s − t)2

(s − t)2 + 1

=
(s − t)2 − 2a2(s − t)2

(s − t)2 + 1

=
(1 − 2a2)(s − t)2

(s − t)2 + 1
≥ 0 ∀ s, t ∈ z.

Thus, all the assumption are satisfied of Theorem 3.7, and hence f1 and f2 have a unique common fixed
point, which is 0.

Remark 3.12. If in Lemma 3.3, Mb = Ωb( f2t, f2s) in inequality (3.1), then we will get Lemma 3.1
of [24].

Remark 3.13. If in Remark 3.4, Mb = Ωb( f2t, f2s) in inequality (3.1), then we will get Remark 3.2
of [24].

Remark 3.14. If in Lemma 3.5, Mb = Ωb( f2t, f2s) in inequality (3.1), then we will get Lemma 3.3
of [24].
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Remark 3.15. If in Lemma 3.6, Mb = Ωb( f2t, f2s) in inequality (3.1), then we will get Lemma 3.4
of [24].

Remark 3.16. If in Theorem 3.7, Mb = Ωb( f2t, f2s) in inequality (3.1), then we will get Theorem 3.5
of [24].

4. A system of non linear Urysohn integral equations

In this section, we present an application of our result to integral equations. Namely, we study the
existence of the unique common solution of a system of non linear Urysohn integral equations.

Let us consider the integral equations

f (x) = r1(x) +

∫ b

a
k1(x, t, f (t))dt (4.1)

and

g(x) = r2(x) +

∫ b

a
k2(x, t, g(t))dt (4.2)

where (i) f , r1,r2 and g are unknown functions for each x ∈ [a, b].
(ii) k1 and k2 are kernels defined for x, t ∈ [a, b].
Let us denote

ϑ1 f (x) =

∫ b

a
k1(x, t, f (t))dt

and

ϑ2g(x) =

∫ b

a
k2(x, t, g(t))dt.

Assume that

• (A1) ϑ1 f (x) + r1(x) + r2(x) − ϑ2(ϑ1 f (x) + r1(x)) + r2(x) = 0
• (A2) r1(x) − r2(x) + ϑ1 f (x) − ϑ1g(x) = 0.

We will ensure the existence of a unique common solution of (4.1) and (4.2) that belong to
G = (C[a, b],Rn) (the set of continuous mappings defined on [a, b]). For this, define the continuous
mappings T1,T2 : G → G by

T1 f (x) = r1(x) + ϑ1 f (x)

and
T2g(x) = 2 f (x) − ϑ2 f (x) − r2(x)

where f , g, r1, r2 ∈ G. We claim T1 ⊆ T2.

Proof. If we show that T2(T1 f (x) + r2(x)) = T1 f (x), then it is conformed that T1 ⊆ T2. Hence,

T2(T1 f (x) + r2(x)) = 2[T1 f (x) + r2(x)] − ϑ2[T1 f (x) + r2(x)] − r2(x)
= 2T1 f (x) + 2r2(x) − ϑ2[T1 f (x) + r2(x)] − r2(x)
= T1 f (x) + r1(x) + r2(x) + ϑ1 f (x) − ϑ2[T1 f (x) + r2(x)]
= T1 f (x) + [r1(x) + r2(x) + ϑ1 f (x) − ϑ2[T1 f (x) + r2(x)]].

AIMS Mathematics Volume 8, Issue 9, 20892–20913.



20909

Using (A1),
T2[T1 f (x) + r2(x)] = T1 f (x).

It shows that
T1 f (x) ⊆ T2 f (x).

We endow on G the b-metric (with b = 2) given as Ωb(x, y) = |x − y|2. Here, (G,Ωb) is complete.
Further, let us suppose that k1, k2 : [a, b] × [a, b] × Rn → Rn are continuous functions satisfying

|k1(x, t, f (t)) − k2(x, t, f (t))| ≤

√
Mb( f , g)
√

2(b − a)
, (4.3)

where

Mb( f , g) = max{Ωb(T2( f ),T2(g)),Ωb(T2(g),T1(g)),
1
4

Ωb(T2( f ),T1(g))}.

�

Theorem 4.1. Under the conditions (A1) , (A2) and (4.3), the Eqs (4.1) and (4.2) have a unique common
solution.

Proof. For f , g ∈ (G,Rn) and x ∈ [a, b], we define the continuous mappings T1,T2 : G → G by

T1 f (x) = r1(x) + ϑ1 f (x)

and
T2 f (x) = 2 f (x) − ϑ2 f (x) − r2(x).

Then we have

2Ωb(T1( f ),T1(g)) = 2|T1( f ) − T2(g)|2

≤ 2|T2 f (x) − T1g(x)|2

= 2|2 f (x) − ϑ2 f (x) − r2(x) − r1(x) − ϑ1g(x)|2

= 2|[r1(x) − r2(x) + ϑ1 f (x) − ϑ1g(x)] + ϑ1 f (x) − ϑ2 f (x)|2

= 2|ϑ1 f (x) − ϑ2 f (x)|2

≤ 2(
∫ b

a
|k1 − k2|)2dt ≤ 2(

∫ b

a

√
Mb( f , g)
√

2(b − a)
dt)

= Mb( f , g).

This shows that all the requirements of our main theorem are satisfied, i.e.,
2Ωb(T1( f ),T1(g)) ≤ Mb( f , g). Therefore, the integral equations (4.1) and (4.2) have a unique common
solution.

�
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5. A system of non linear Volterra-Hammerstein integral equations

In this section, we give a second application and we ensure the existence of the unique common
solution of a system of non linear Volterra-Hammerstein integral equations.

Let us take z = (L(0,∞),R) the space of real-valued measurable functions on (0,∞). Consider

D(x) = τ1(x) + λ

∫ t

0
m(x, y)g1(y,D(y))dy + µ

∫ ∞

0
n(x, y)h1(y,D(y))dy (5.1)

and

D(x) = τ2(x) + λ

∫ t

0
m(x, y)g2(y,D(y))dy + µ

∫ ∞

0
n(x, y)h2(y,D(y))dy (5.2)

for all x, y ∈ (0,∞), where λ, µ ∈ R, and D, τ1, τ2,m(x, y), n(x, y), g1, g2, h1, and h2 are measurable
functions with real values in S and r on (0,∞),

$i =

∫ t

0
m(x, y)gi(y,D(y))dy

ψi =

∫ ∞

0
n(x, y)hi(y,D(y))dy

for i = 1, 2

f1D(x) = $1D(x) + ψ1D(x) + τ1(x)

f2D(x) = 2D(x) −$2D(x) − ψ2D(x) − τ2(x)

with

f1(D(x)) ⊆ f2(v(x)). (5.3)

Assume that

(c1) : $1D(x) + ψ1D(x) + τ1(x) + τ2(x) −$2($1D(x) + ψ1D(x) + τ1(x) + τ2(x))

−ψ2($1D(x) + ψ1D(x) + τ1(x) + τ2(x)) = 0.

We consider the b-metric space Ωb(x, y) = |x − y|2.

Theorem 5.1. Under the assumption (c1) and the condition (5.3), the system of non linear Volterra-
Hammerstein integral equations has a unique common solution.

Proof. Note that the system of non linear Volterra-Hammerstein integral equations (5.1) and (5.2) has
a unique common solution if and only if the system of operator f1 and f2 has a unique common fixed
point.

Now,
Ωb( f1D(x), f1v(x)) = |( f1D(x) − f1v(x))|2

≤ |( f2v(x) − f1v(x))|2
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= Ωb( f2(v(x)), f1(v(x)))

≤ Mb(D(x), v(x)) = max Ωb( f2D(x), f2v(x)),Ωb( f2v(x), f1v(x)),
1
4

Ωb( f2D(x), f1v(x))

Ωb( f1D(x), f1v(x)) ≤ Mb(D(x), v(x)).

This shows that all the requirements of our main theorem are satisfied, and therefore the integral
equations (5.1) and (5.2) have a unique common solution. �

6. Conclusions

Rodjanadid et al. [23] used the idea of generalized =b-contractions with b-simulation functions and
proved some fixed point results in complete b-metric spaces. Jawaher et al. [24] utilized the idea of b-
simulation functions and investigated some common fixed points for two contractive mappings. In this
manuscript, we combined these two ideas and proved some common fixed points for two contractive
mappings using the idea of generalized=b-contractions with b-simulation functions in b-metric spaces.
Different examples and applications are given to demonstrate the validity of the concept and the degree
of applicability of our findings. Many applied problems can be described by systems of Fredholm
and Volterra integral equations. The presented results can be utilized to study the existence of unique
common solutions of these systems.
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28. F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for
simulation functions, Filomat, 29 (2015), 1189–1194. https://doi.org/10.2298/FIL1506189K

29. M. Olgun, O. Bicer, T. Alyildiz, A new aspect to Picard operators with simulation functions, Turk.
J. Math., 40 (2016), 832–837. https://doi.org/10.3906/mat-1505-26

30. M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard
sequences and b-simulation functions, Iran. J. Math. Sci. Info., 11 (2016), 123–136.
https://doi.org/10.3917/top.136.0123

31. G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9 (1986),
771–779. https://doi.org/10.1155/S0161171286000935

32. V. Ozturk, D. Turkoglu, Common fixed point theorems for mappings satisfying
(E.A) property in b-metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 1127–1133.
https://doi.org/10.22436/jnsa.008.06.21

33. M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and
b-simulation functions, Iran. J. Math. Sci. Info., 11 (2016), 123–136.
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