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Abstract: The morbidostat is a bacteria culture device that progressively increases antibiotic drug
concentration. It is used to study the evolutionary pathway. In this article, we construct mathematical
models for the morbidostat. First we consider the case of no mutations, we study limiting systems and
obtain criteria for the large time behavior of the solutions. From the theoretical results and numerical
simulations, we conclude that there are two competitive exclusion states of either wild type or mutant
type as the threshold parameter U varies. There are three cases, wild type bacteria excludes all mutants;
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Next we study the systems of forward mutations and forward-backward mutations. Then we apply a
result of pertubation for globally stable state.
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1. Introduction and models

1.1. Introduction

Antibiotic drug resistance is a global health problem [9]. Five years after the clinical application
of penicillin, staphylococcus aureus with penicillin resistance [8] was found in humans, which caused
penicillin to fail in some patients. These years, human beings may face the dilemma of infecting
multiple drug-resistant bacteria (commonly known as superbugs) without any help of antibiotics
because of the antibiotic drug resistance.

In [10, 11] the authors presented a devices for building and operating an automated fluid system for
continuous culture called “morbidostat” (See Figure 1.1). The morbidostat is used to study evolution
of mircobial drug resistance in real time, It constantly measure the growth rates of evoluting mircobial
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populations inside culture in order to maintain a constant drug-induced inhibition. The growth rate
measurements are done by using an optical detection system. Similar to chemostat rate D lower than
the maximal growth rate of population in morbidostat. In contrast to a chemostat in which the bacterial
growth in inherently the cell density is kept low such that the population in not nutrient limited, its
growth rate is also controlled by externally adjusting drug concentration.

In this work, we follow the same mathematical model of morbidostat in [5, 6]. When the total
population of all bacteria are less than a threshold value U, there is no drug injection into the

morbidostat and
dP
dt

= −DP. However if the total population of all bacteria reaches over the threshold
value U, there will be continuous drug injection into morbidostat. The growth rate of species i
will be gi(S ) fi(P) where S is the concentration of nutrient, gi(S ) takes the form of Holling type II

gi(S ) =
miS

ai + S
and P is the concentration of drug, the inhibition fi(P) takes the form of Hill function

fi(P) =
1

1 + ( P
Ki

)L
and

dP
dt

= D
(
P(0) − P

)
.

Remark: We note that in [5, 6], we assume

f0(P)g0(S ) ≤ f1(P)g1(S ) ≤ · · · ≤ fn(P)gn(S ) (H∗)

i.e, the n-th mutant has largest growth rate.
In [6] we consider periodic resetting for nutrient and drug; while in [5] we consider drug on-drug

off mechanism.
In this paper we relax the assumption (H∗) with drug on-drug off dynamics in the morbidostat.

Figure 1. A schematic of morbidostat.

1.2. Description of the models

In this work, we analyze the transition between the population of wild type u and those of mutant
vi (i = 1.2, · · · , n). Consider the drug on-drug off model with forward mutations( see Figure 1.2) and
forward-backward mutations( see Figure 1.3).
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Figure 2. Forward mutations between species.

Figure 3. Forward-backward mutations between species.

The growth dynamics with the nutrient substrate S in a chemostat under the influence of the
drug inhibitor P with forward mutations and forward-backward mutations are given by (1) and (2)
respectively: 

dS
dt

= (S (0) − S )D −
1
γ

g0(S ) f0(P)u −
1
γ

n∑
i=1

gi(S ) fi(P)vi

du
dt

= (g0(S ) f0(P) − D)u − q0u

dvi

dt
= (gi(S ) fi(P) − D)vi + qi−1vi−1 − qivi

dvn

dt
= (gn(S ) fn(P) − D)vn + qn−1vn−1

dP
dt

=

{
−DP, if u +

∑n
j=1 v j < U

(P(0) − P)D, if u +
∑n

j=1 v j ≥ U

(1)



dS
dt

= (S (0) − S )D −
1
γ

g0(S ) f0(P)u −
1
γ

n∑
i=1

gi(S ) fi(P)vi

du
dt

= (g0(S ) f0(P) − D)u − q0u + q̃0v1

dvi

dt
= (gi(S ) fi(P) − D)vi + qi−1vi−1 − qivi − q̃i−1vi + q̃ivi+1

dvn

dt
= (gn(S ) fn(P) − D)vn + qn−1vn−1 − q̃n−1vn

dP
dt

=

{
−DP, if u +

∑n
j=1 v j < U

(P(0) − P)D, if u +
∑n

j=1 v j ≥ U

(2)

where i = 1, 2, 3, · · · , n − 1. Let v0 = u and vi are the volume densities of the wild type and mutant
populations, respectively. γ denotes the yield constant,reflecting the conversion of nutrient to bacteria.
S is the concentration of nutrient, while S (0) is the input concentration of nutrient. D is the dilution rate.
g0(S ) and gi(S ) are the growth rates of the wild type and mutants, which satisfy gi(0) = 0, g′i(S ) > 0
for i = 0, 1, 2, · · · , n. It implies that bacteria grows only when there has nutrient substrate in the device,
and a higher concentration of nutrient leads to the bacteria’s higher growth rates. Here we consider
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the important special case gi(S ) = miS
ai+S . qi denotes the forward mutation from vi to vi+1, and q̃i is the

backward mutation from vi+1 to vi. qi and q̃i are small positive quantities. Besides, the drug inhibitions
for vi are described by fi(P) for i = 0, 1, 2, · · · , n. It is easy to know, the higher concentration of drug
leads to a stronger inhibition to the growth of bacteria. Based on the fact that mutants always have
stronger resistances to the inhibitor than wild-type, and the i-th mutant vi has stronger resistances than
the (i − 1)-th mutant vi−1. So we assume

fi(0) = 1, f ′i (P) < 0, f0(P) ≤ f1(P) ≤ · · · ≤ fn(P) (H1)

for i = 0, 1, 2, · · · , n.
Let gi(λi) = D, i.e. λi = ai

( mi
D −1)

. We also assume that:

λ0 < λ1 < · · · < λn < S (0) (H2)

which implies the wild type u which has smallest break-even concentration, is the most superior species
than the mutants vi in the absence of drug inhibition [1].

The rest of this paper is organized as follows. In Section 2 we study the dynamics of drug on-drug
off models with no mutations, In Section 3 we study the dynamics of drug on-drug off models with
forward mutations. In Section 4 we study the dynamics of drug on-drug off models with forward-
backward mutations. Section 5 is a section of numerical simulations for various threshold parameters
U. Section 6 is the discussion section.

2. Dynamics of drug on-drug off model with no mutations

Without loss of generality by scaling, we assume the yield constant, γ = 1.

Lemma 2.1. (Conservation Property) S (t) +
∑n

i=0 vi(t)→ S (0) as t → ∞.

Proof. Let M(t) = S (t) +
∑n

i=0 vi(t).
Adding the first n + 2 equations of (1) and (2), yields

dM(t)
dt

= (S (0) − S )D − D
n∑

i=0

vi = (S (0) − M(t))D

So M(t) = S (t) +
∑n

i=0 vi(t)→ S (0) as t → ∞. �

For simplicity in (1) we assume that qi = 0 for all i = 0, 1, 2, · · · , n. Let u = v0, the system (1)
becomes 

dS
dt

= (S (0) − S )D −
n∑

i=0

gi(S ) fi(P)vi

dvi

dt
= (gi(S ) fi(P) − D)vi, i = 0, 1, 2, · · · , n

dP
dt

=

{
−DP, if

∑n
j=0 v j < U

(P(0) − P)D, if
∑n

j=0 v j ≥ U

(3)
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S (0) > 0, vi(0) > 0, i = 0, 1, . . . , n, P(0) > 0.

Next we state two theorems which will be used in Section 2.1 below.
Theorem A (Competitive exclusion in simple chemostat) ([1] p. 30 or p. 35)

Consider the simple chemostat equation

dS
dt

= (S (0) − S )D −
n∑

i=0

gi(S )vi

dvi

dt
= (gi(S ) − D)vi, i = 0, 1, 2, . . . , n,

with S (0) ≥ 0 and vi(0) > 0. Let (H2) hold. Then

lim
t→∞

S (t) = λ0

lim
t→∞

v0(t) = v∗0 = S (0) − λ0

lim
t→∞

vi(t) = 0, i = 1, 2, . . . , n. �

Consider two systems of ordinary differential equations of the form

z′ = Az, y′ = f (y, z) (F.1)

and
x′ = f (x, 0) (F.2)

where
z ∈ Rm, (y, z) ∈ D ⊂ Rn × Rm

x ∈ Ω = {x | (x, 0) ∈ D} ⊆ Rn.

We assume A is an m × m matrix, f is continuous differentiable, D is positively invariant for (F.1) and
(F.2) is dissipative. Let (B1)-(B5) be additional hypothesis:

(B1) All of eigenvalues of A have negative real parts.

(B2) Equation (F.2) has finite number of rest points in Ω, each of which is hyperbolic ([2], p. 88) for
(F.2). Denote these rest points by x1, . . . , xp.

(B3) The dimension of the stable manifold ([2], p. 88) is n for 1 ≤ i ≤ r, and the dimension of the
stable manifold of x j is less than n for j = r + 1, . . . , p. In symbols, dim(M+(x j))= n, i = 1, . . . , r;
dim(M+(x j)) < n for j = r + 1, . . . , p.

(B4) Ω = ∪
p
i=1M+(x j).

(B5) Equation (F.2) does not possess a cycle of rest points.

Theorem B (A convergence theorem)([1], p. 294)
Let (B1)-(B5) hold and (y(t), z(t)) be a solution of (F.1). Then, for some i,

lim
t→∞

(y(t), z(t)) = (xi, 0).
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2.1. The behavior of solutions of the system (3)

For the solution of the system (3), we discuss the following three cases:
Case 1 :

∑n
i=0 vi(t) < U for all t > t0 > 0 for some t0 > 0. Then we have

dP
dt

= −DP, for t ≥ t0

it is obvious that
P(t) −→ 0 as t −→ ∞

Let

Σ1(t) = S (0) − S (t) −
n∑

i=0

vi(t)

Σ2(t) = P(t).

Then by Lemma 2.1, we have
Σ′1(t) = −DΣ1(t)
Σ′2(t) = −DΣ2(t)

and Σ1(t)→ 0 and Σ2(t)→ 0 as t → ∞. Rewrite the system (3) with
dP
dt

= −DP as

Σ′1(t) = −DΣ1(t)
Σ′2(t) = −DΣ2(t)

v′i(t) =

gi

S (0) − Σ1(t) −
n∑

i=0

vi(t)

 fi(Σ2(t)) − D

 vi, i = 0, 1, 2, . . . , n.
(2.1)

D =

(Σ1,Σ2, v0, . . . , vn) : vi > 0, i = 0, 1, . . . , n,
n∑

i=0

vi + Σ1 ≤ S (0),Σ2 > 0

 .
The system corresponding to (F.2) in Theorem B is

v′i(t) =

gi(S (0) −

n∑
i=0

vi(t)) fi(0) − D

 vi

=

gi

S (0) −

n∑
i=0

vi(t)

 − D

 vi, i = 0, 1, 2, . . . , n.

(2.2)

Apply Theorem B with A = diag(−D,−D),m = 2 and

Ω =

(v0, v1, . . . , vn) : vi > 0,
n∑

i=1

vi ≤ S (0)

 .
Under the hypothesis (H2), we apply Theorem A and obtain a result of global stability,

lim
t→∞

v0(t) = v∗0 = S (0) − λ0

lim
t→∞

vi(t) = 0, i = 1, 2, . . . , n.
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Now we verify the hypothesis (B1)-(B5) holds for the systems (2.1) and (2.2). Obviously the 2 × 2
matrix A satisfies hypothesis (B1). For hypothesises (B2), (B3), (B4), equation (2.2) has finite number
of rest points in Ω, namely, O = (0, 0, . . . , 0), E0 = (v∗0, 0, . . . , 0), Ei = (0, . . . , v∗i , . . . , 0), v∗i = S (0) −

λi, i = 1, 2, . . . , n. dim(M+(E0)) = n + 1, dim(M+(Ei)) = n − (i − 1), i = 1, 2, . . . , n. To verify the
cyclic condition (B5), we note that from (H2) E j is chained to Ei, E j → Ei, j > i, i, j = 0, 1, 2, . . . , n if
and only if λ j < λi and Ei → O for all i = 1, 2, . . . , n. Suppose there is a cycle in Ω, Ek(1) → Ek(2) →

· · · → Ek(1) then it follows that λk(1) < λk(2) < · · · < λk(1) which is obviously a contradiction to (H2)
Case 2 :

∑n
i=0 vi(t) ≥ U for all t > t0 > 0 for some t0 ≥ 0. Then we have

dP
dt

= D(P(0) − P)

we have
P(t)→ P(0) as t → ∞.

Let

Σ1(t) = S (0) − S (t) −
n∑

i=0

vi(t)

Σ2(t) = P(0) − P(t)

Then we have
Σ′1(t) = −DΣ1(t)
Σ′2(t) = −DΣ2(t)

and Σ1(t)→ 0 and Σ2(t)→ 0 as t → ∞. Rewrite the system (3) with
dP
dt

=
(
P(0) − P

)
,

Σ′1(t) = −DΣ1(t)
Σ′2(t) = −DΣ2(t)

v′i(t) =

gi

S (0) − Σ1(t) −
n∑

i=0

vi(t)

 fi

(
P(0) − Σ2(t)

) vi, i = 0, 1, 2, . . . , n.
(2.3)

D =

(Σ1,Σ2, v0, . . . , vn) : vi > 0, i = 0, . . . , n.
n∑

i=0

vi + Σ1 ≤ S (0),Σ2 > 0

 .
The system corresponding to (F.2) in Theorem B is

v′i(t) =

gi

S (0) −

n∑
i=0

vi(t)

 fi

(
P(0)

)
− D

 vi, i = 0, 1, 2, . . . , n. (2.4)

We may verify the hypothesises (B1)-(B5) as in the Case 1.
If mi fi(P(0)) ≤ D, then it is easy to show limt→∞ vi(t) = 0. Thus we assume that

mi fi(P(0)) > D, i = 0, 1, 2, · · · , n (H3)

Replace mi in gi(S ) by mi fi(P(0)), we have a new simple chemostat equation.
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Let
λ̂k = min

0≤i≤n
λ̂i, where λ̂i =

ai
mi fi(P(0))

D − 1
,

then
S (t)→ λ̂k

vk(t)→ v̂∗k = S (0) − λ̂k

vi(t)→ 0, i , k

(2.5)

as t → ∞ or
lim
t→∞

(v0(t), v1(t), · · · , vn(t)) = (0, · · · , S (0) − λ̂k, · · · , 0)

Case 3 :
∑n

i=0 vi < U at some sequence {tk}, tk → ∞ and
∑n

i=0 vi ≥ U at some other sequence {tl},
tl → ∞, k = 1.2. · · · , l = 1, 2, · · · , k , l,

∑n
i=0 vi oscillates around U.

2.2. The results of the asymptotic behavior of the solutions of model with no mutations

Lemma 2.2. Let vi, i = 0, . . . , n be the solution of system (2.4). Let (H1),(H2),(H3) hold, then v̂∗k < v∗0.

Proof. Since
λ̂k =

ak

mk fk(P(0))
D

− 1
and λk =

ak
mk
D − 1

and 0 < fi(P(0)) < 1 , then λ̂k > λk.
Obviously, we obtain

v̂∗k = S (0) − λ̂k < S (0) − λk < S (0) − λ0 = v∗0

Hence,
v̂∗k < v∗0

�

In the following Theorem 2.3 we shall give sufficient conditions for the Case 1, Case 2 and Case 3
for the solutions of the system (3).
Theorem 2.3. Let (H1), (H2), (H3) hold and vi, i = 0, 1, . . . , n be the solutions of the system (3), then

(I) if U > v∗0, then there exists t0 > 0, such that for all t ≥ t0,
∑n

i=0 vi(t) < U. From Case 1 in section
2.1, lim

t→∞
S (t) = λ0, lim

t→∞
u(t) = S (0) − λ0, lim

t=→∞
vi(t) = 0, i = 1, 2, . . . , n.

(II) Let λ̂l = max0≤i≤n λ̂i and v̂∗l = S (0) − λ̂l < v̂∗k. If U < v̂∗l , then there exists t0 > 0, such that for
all t ≥ t0,

∑n
i=0 vi(t) ≥ U. From Case 2 in section 2.1, lim

t→∞
S (t) = λ̂k, lim

t→∞
vk(t) = v̂∗k = S (0) − λ̂k,

lim
t→∞

vi(t) = 0, i , k, i = 0, 1, 2, . . . , n.

(III) if v̂∗k < U < v∗0, then
∑n

i=0 vi(tk) ≥ U for some {tk}, tk → ∞ and
∑n

i=0 vi(tl) < U for some other
sequence {tl}, tl → ∞. This is Case 3 in section 2.1,

∑n
i=0 vi(t) oscillates around U.

Proof.

1. We shall exclude the following two cases:

AIMS Mathematics Volume 8, Issue 9, 20815–20840.
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(i)
∑n

i=0 vi(t) ≥ U for all t > 0.
From Case 2 in section 2.1, we have vk → v̂∗k, vi → 0, where i , k.
So

∑n
i=0 vi → v̂∗k < U as t → ∞. By Lemma 2.2

∑n
i=1 vi(t) → v̂∗0 < v∗0 < U a contradiction to∑n

i=0 vi(t) ≥ U for all t ≥ 0.

(ii) There exists t̂ > 0, such that

n∑
i=0

vi(t̂) = U, and
d
dt

 n∑
i=0

vi

 ∣∣∣∣∣∣
t=t̂

> 0 (2.6)

In this case, consider the system (2.1),
we obtain that

d
dt

 n∑
i=0

vi

 ∣∣∣∣∣∣
t=t̂

=

n∑
i=0

(gi(S ) fi(P) − D)vi

≤

n∑
i=0

(gi(S ) − D)vi

=

n∑
i=0

(gi(S (0) −
∑

vi) − D)vi

=

n∑
i=0

(gi(S (0) −
∑

vi) − gi(λi))vi

n∑
i=0

vi(t̂) = U > v∗0 = S (0) − λ0

It follows that S (0) −
∑n

i=1 vi(t̂) = S (0) − U < λ0 < λ1 < · · · < λn,
gi(S (0) −

∑n
i=0 vi(t̂)) < gi(λi) for all i = 0, 1, . . . , n.

Hence d
dt (

∑n
i=0 vi)|t=t̂ < 0.

This is a contradiction to (2.6).
Hence, we exclude (i) and (ii). It follows that

∑n
i=0 vi < U for t ≥ t0 for some t0 > 0.

2. We shall exclude the following two cases:

(i)
∑n

i=0 vi(t) ≤ U for all t > 0.
In this case, we have v0 → v∗0, vi → 0, where i , k.
So

∑n
i=0 vi → v∗0 > U as t → ∞. Since U < v̂∗l < v̂∗k < v∗0, we obtain a contradiction to∑n

i=0 vi(t) ≤ U for all t > 0

(ii) There exists t̄ > 0, such that

n∑
i=0

vi(t̄) = U, and
d
dt

 n∑
i=0

vi

 ∣∣∣∣∣∣
t=t̄

< 0 (2.7)
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In this case, we consider the system (3),
we obtain that

d
dt

 n∑
i=0

vi

 ∣∣∣∣∣∣
t=t̄

=

n∑
i=0

(gi(S ) fi(P) − D)vi

≥

n∑
i=0

(gi(S ) fi(P(0)) − D)vi

=

n∑
i=0

(gi(S (0) −
∑

vi) fi(P(0)) − D)vi

=

n∑
i=0

(gi(S (0) −
∑

vi) fi(P(0)) − gi(λ̂i) fi(P(0)))vi

=

n∑
i=0

(gi(S (0) −
∑

vi) − gi(λ̂i)) fi(P(0))vi

(2.8)

Let
λ̂l = max

0≤i≤n
λ̂i, and v̂∗l = S (0) − λ̂l < v̂∗k

When U ≤ v̂∗l ,
∑n

i=0 vi(t̄) = U ≤ v̂∗l = S (0) − λ̂l

It follows that S (0) −
∑n

i=0 vi(t̄) ≥ λ̂l > λ̂i, i = 0, 1, · · · , n and i , l
The monotonicity of gi(S ) implies that gi(S (0) −

∑
vi) ≥ gi(λ̂i), from (2.8)

d
dt

 n∑
i=0

vi

 ∣∣∣∣∣∣
t=t̄

≥ 0

This is a contradiction to (2.7)
Hence

∑n
i=0 vi(t) ≥ U for all t large.

3. Assume v̂∗k < U < v̂∗0,
∑n

i=0 vi ≥ U for all t > 0.

Then from (H3) and (2.6), vk → v̂∗k, vi → 0, where i , k.

So
∑n

i=0 vi → v̂∗k < U as t → ∞, a contradiction to the assumption
∑n

i=0 vi ≥ U for all t large.

Suppose
∑n

i=0 vi < U for t large.

Then from (H2) v0 −→ v∗0, vi −→ 0, i = 1, 2, · · · , n, as t → ∞.

So
∑n

i=0 vi −→ v∗0 > U as t → ∞, a contradiction.

Hence
∑n

i=0 vi oscillates around U.

�

Remark 2.4. When v̂∗l ≤ U < v̂∗k, from the numerical studies in section 5, we conjecture that the
conclusion in (II) in Theorem 2.3 holds, i.e. lim

t→∞
S (t) = λ̂k, lim

t→∞
ˆvk(t) = v̂∗k = S (0) − λ̂k, lim

t→∞
vi(t) = 0 for

i , k, i = 0, 1, . . . , n.
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Remark 2.5. When the threshold value U satisfies v̂∗k < U < v̂∗0, we conjecture that the competitive
exclusion principle holds. In this case, we conjecture that there exist a bifurcation point U∗ such that
for v̂∗k < U < U∗, species vk wins the competition; for U∗ < U < v∗0 the wild type species u := v0

wins the competition. We note that from (III) of Theorem 2.3 for v̂∗k < U < v̂∗0,
∑n

i=0 vi oscillates
around U. Thus the solution of the system (3) will not tend to equilibrium E0 = (λ0, v̂∗0, 0, . . . , 0) or
E1 = (λ̂0, 0, . . . , 0, v̂∗k, 0, . . . , 0). See Figure 5.3 (a), 5.3 (b), 5.3 (c) and Figure 5.4(a), 5.4(b), 5.4(c) in
Section 5.

3. Dynamics of drug on-drug off model with forward mutations

Consider the following drug on-drug off model with forward mutation:

dS
dt

= (S (0) − S )D −
n∑

i=0

gi(S ) fi(P)vi

du
dt

= (g0(S ) f0(P) − D)u − q0u

dvi

dt
= (gi(S ) fi(P) − D)vi + qi−1vi−1 − qivi, i = 1, . . . , n − 1

dvn

dt
= (gn(S ) fn(P) − D)vn + qn−1vn−1

dP
dt

=

{
−DP, if

∑n
j=0 v j < U

(P(0) − P)D, if
∑n

j=0 v j ≥ U

(1)

3.1. The behavior of the solutions of the system (1)

As we did in Section 2, we discuss three cases.
Case 1 :

∑n
i=0 vi(t) < U for all t > t0 for some t0 > 0. Then we have

dP
dt

= −DP.

It is obvious that
P(t)→ 0 as t → ∞

As we did in case 1 in Section 2.1, it suffices to consider the limiting system of (1)

S = S (0) −

n∑
i=0

vi

dv0

dt
= (g0(S ) − D − q0)v0

dvi

dt
= (gi(S ) − D − qi)vi + qi−1vi−1, i = 1, 2, · · · , n − 1

dvn

dt
= (gn(S ) − D)vn + qn−1vn−1

(3.1)
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Theorem 3.1. Let q = (q0, q1, · · · , qn), then (3.1) has a unique positive equilibrium E(q) =

(v∗0(q), · · · , v∗n(q)) satisfying

S ∗ = g−1
0 (D + q0)

(gi(S ∗) − D − qi)v∗i + qi−1v∗i−1 = 0, i = 1, 2, · · · , n − 1
(gn(S ∗) − D)v∗n + qn−1v∗n−1 = 0

n∑
i=0

gi(S ∗)v∗i = (S (0) − S ∗)D

(3.2)

Proof. Consider the first equation of (3.1) :

dv0

dt
= (g0(S ) − D − q0)v0.

Then the positive equilibrium, v0 = v∗0(q) > 0, satisfies

g0(S ) − D − q0 = 0.

The monotocity of g0(S ) implies that S ∗ = g−1
0 (D + q0) is unique.

Since q0 is close to 0, we have S ∗ is close to g−1
0 (D) = λ0.

Let S ∗ = λ0 + ε, ε > 0 is small enough.
From (H2), it follows that gi(S ∗) = gi(λ0 + ε) < gi(λi) = D, i = 1, 2, . . . , n − 1.
Then we have for i = 1, 2, . . . , n − 1,

gi(S ∗) − D − qi < 0 and gn(S ∗) − D < 0 (3.3)

Consider the n + 1 equations in (3.2), we denote them in the form of Ax = y as following,
q0 g1(S ∗) − D − q1 0 · · · 0 0
0 q1 g2(S ∗) − D − q2 · · · 0 0
0 0 q2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · qn−1 gn(S ∗) − D

g0(S ∗) g1(S ∗) g2(S ∗) · · · gn−1(S ∗) gn(S ∗)




v0

v1

v2
...

vn−1

vn

 =


0
0
0
...
0

D(S (0) − S ∗)


Let A(0) =

q0 g1(S ∗) − D − q1 0 · · · 0 0 0
0 q1 g2(S ∗) − D − q2 · · · 0 0 0
0 0 q2 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · qn−1 gn(S ∗) − D 0
g0(S ∗) g1(S ∗) g2(S ∗) · · · gn−1(S ∗) gn(S ∗) D(S (0) − S ∗)


We apply the following elementary transformations on A(0).

(Step 1) Consider the (n + 1)-th row in A(0), multiplying g0(S ∗)
q0

to 1st row and subtracting it from
(n + 1)-th row, and we have
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A(1) =

q0 g1(S ∗) − D − q1 0 · · · 0 0 0
0 q1 g2(S ∗) − D − q2 · · · 0 0 0
0 0 q2 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · qn−1 gn(S ∗) − D 0
0 m1 g2(S ∗) · · · gn−1(S ∗) gn(S ∗) D(S (0) − S ∗)


where m1 = g1(S ∗) − g0(S ∗)

q0
· (g1(S ∗) − D − q1)

Since g1(S ∗) > 0, g0(S ∗) > 0, q0 > 0, we have m1 > 0.
After n elementary transformations, we get an upper triangular matrix
A(n) = 

q0 g1(S ∗) − D − q1 0 · · · 0 0 0
0 q1 g2(S ∗) − D − q2 · · · 0 0 0
0 0 q2 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · qn−1 gn(S ∗) − D 0
0 0 · · · 0 mn D(S (0) − S ∗)


(3.4)

So the solution (v∗0, v
∗
1, v
∗
2, · · · , v

∗
n) exists and is unique.

By mathematical induction, we can show that, mn in A(n) is positive.
From (3.4), we have

mnv∗n = D(S (0) − S ∗)

and it follows that v∗n > 0
From (3.2), we obtain

v∗n−1 =
−(gn(S ∗) − D)v∗n

qn−1
> 0.

For each 1 ≤ i ≤ n − 1,
v∗i

v∗i−1
=

qi−1

−gi(S ∗) + D + qi
> 0.

Hence v∗i > 0 for all 0 ≤ i ≤ n.
and the equilibrium E(q) = (v∗0(q), v∗1(q), v∗2(q), · · · , v∗n(q)) is positive.

�

Since q ≈ 0, E(q) is closed to E0, so we use the following perturbation theory to discuss the local
and global stability of E(q).

Theorem 3.2. [4] Let A, B ∈ Cn×n, with A simple. If A has eigenvalues λ1, λ2, · · · , λn and µ is
an eigenvalue of A + B, and if for a matrix norm induced by an absolute vector norm ‖‖v, we have
r = ‖B‖‖A‖v, then µ lies in at least one of the disks z : |z − λ j| ≤ r, j = 1, 2, · · · , n, of the complex
z-plane.
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Theorem 3.3. [7] Assume that (x0, λ0) ∈ U × Λ, x0 ∈ IntU, f (x0, λ0) = 0, all eigenvalues of
Dx f (x0, λ0) have negative real part, and x0 is globally attracting for solutions of x′ = f (x, λ) with
λ = λ0. If there exists a compact set D ⊂ U such that for each λ ∈ Λ and each z ∈ U, x(t, z, λ) ∈ D for
all large t, then there exists ε > 0,and a unique point ˆx(λ) ∈ U for λ ∈ BΛ(λ0, ε) such that f (x̂(λ), λ) = 0
and x(t, z, λ) −→ x̂(λ) as t −→ ∞ for all z ∈ U.

Theorem 3.4. E(q) is locally stable.

Proof. From (2.2) in Section 2, E0 is a stable equilibrium where E0 = (v∗0, 0, . . . , 0), v∗0 = S (0) − λ0. The
Jacobi matrix of system (2.2) evaluated at E0, is

J(E0) =


−v∗0g′0(λ0) −v∗0g′0(λ0) · · · · · · −v∗0g′0(λ0)

0 g1(λ0) − D 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · gn(λ0) − D

 (3.5)

The eigenvalues µ0, µ2, · · · , µn+1 of J(E0) are µ0 = −v∗0g′0(λ0) < 0, µ1 = g1(λ0) − D < 0, . . . , µn =

gn(λ0) − D < 0.
From (3.2) ,we have the Jacobi matrix of system (3.1) evaluated at E(q),

J(E(q)) = 

−g′0(S ∗)v∗0 · · · · · · · · · −g′0(S ∗)v∗0

−g′1(S ∗)v∗1 + q0
(g1(S ∗) − D − q1)

− g′1(S ∗)v∗1
· · · · · · −g′1(S ∗)v∗1

−g′2(S ∗)v∗2 −g′2(S ∗)v∗2 + q1
(g2(S ∗) − D − q2)

− g′2(S ∗)v∗2
· · · −g′2(S ∗)v∗2

...
...

...
...

...

−g′n(S ∗)v∗n −g′n(S ∗)v∗n · · · −g′n(S ∗) + qn−1
(gn(S ∗) − D)

+ (−g′n(S ∗))v∗n


(3.6)

Since qi is sufficiently small,
we have gi(S ∗) ≈ gi(λ0) and g′i(S

∗) ≈ g′i(λ0).
Let J(E(q)) = J(E0) + B, then |B| ≈ 0.
From Theorem 3.2, the eigenvalues of J(E(q)) lies in at least one of the disks z : |z − µi| ≤ ε, i =

0, 1, · · · , n (ε is small enough).
Since µi < 0 for all i = 0, 1, · · · , n, all eigenvalues of J(E(q)) have negative real part.
Hence E(q) is locally stable. �

Theorem 3.5. E(q) is globally stable.

Proof. Write (3.2) as dx
dt = f (x, q), when x = (S , u, v1, · · · , vn) and q = (q0, q1, · · · , qn−1).

Take U = R+ ∪ Bε(E0), and Λ(q) = [0, δ]n−1.
when q = 0, i.e. all the qi = 0 for each 0 ≤ i ≤ n, f (E0, 0) = 0, and Dx f (E0, 0) has all negative

eigenvalues.
Take D = [0, S (0)]n+2, then D is compact.
when qi ≈ 0, and x = E(q), we have f (E(q), q) = 0.
By Theorem 3.3, x(t, z, q)→ E(q) as t → ∞ for all z ∈ U.
This concludes that E(q) is globally stable. �

AIMS Mathematics Volume 8, Issue 9, 20815–20840.



20829

Next we discuss Case 2.
Case 2 :

∑n
i=0 vi(t) ≥ U for all t > t0 for some t0 > 0.

Then
dP
dt

= D(P(0) − P),

and hence
P(t) −→ P(0) as t → ∞.

As we did in Case 2 in Section 2.1, it suffice to consider the limiting system of (1)

S = S (0) −

n∑
i=0

vi

dv0

dt
= (g0(S ) f0(P(0)) − D − q0)v0

dvi

dt
= (gi(S ) fi(P(0)) − D − qi)vi + qi−1vi−1

dvn

dt
= (gn(S ) fn(P(0)) − D)vn + qn−1vn−1

(3.7)

We shall study (3.7) by using the same method for the system (2.4) in section 2.1,
Suppose (H3) holds, let

λ̂i =
ai

mi fi(P(0))
D − 1

> 0, i = 0, 1, 2, · · · , n.

Theorem 3.6.

1. System (3.7) has an equilibrium E∗ = (v0∗, · · · , vn∗).

(i) If λ̂0 = min0≤i≤n λ̂i, then vi∗ > 0 for all i = 0, 1, · · · , n. Write E∗ = (v̄0, v̄1, · · · , v̄n) satisfying

S̄ = g−1
0

(
D + q0

f0(P(0))

)
(gi(S̄ ) fi(P(0)) − D − qi)v̄i + qi−1v̄i−1 = 0, i = 1, . . . , n − 1
(gn(S̄ ) fn(P(0)) − D)v̄n + qn−1v̄n−1 = 0

n∑
i=0

gi(S̄ ) fi(P(0))v̄i = (S (0) − S̄ )D

(3.8)

(ii) If λ̂k = min0≤i≤n λ̂i for some k, 0 < k < n, then vi∗ = 0 for i = 0, 1, · · · , k − 1 and v j∗ > 0 for
k ≤ j ≤ n. Write E∗ = (0, · · · , ṽk, · · · , ṽn) satisfying

S̃ = g−1
k (

D + qk

fk(P(0))
)

ṽi = 0 (0 ≤ i < k)

(gi(S̃ ) fi(P(0)) − D − qi)ṽi + qi−1ṽi−1 = 0 (k ≤ i ≤ n − 1)

(gn(S̃ ) fn(P(0)) − D)ṽn + qn−1ṽn−1 = 0
n∑

i=0

gi(S̃ ) fi(P(0))ṽi = (S (0) − S̃ )D

(3.9)
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(iii) If λ̂n = min0≤i≤n λ̂i, then vi∗ = 0 for all i = 0, 1, · · · , n − 1 and vn∗ > 0. Write E∗ =

(0, 0, · · · , 0, vn∗), vn∗ = S (0) − λ̂n.

2. For the system (3.7), E∗ is global stable.

Proof.

1.

(i) Since λ̂0 < λ̂i, i = 1, 2, . . . , n, replacing gi(S ) by fi(P(0))gi(S ) in Theorem 3.1, we complete
the proof of (i).

(ii) Consider the steady state of the first equation in (3.7),

(g0(S ∗) f0(P(0)) − D − q0)v∗0 = 0.

Claim: v∗0 = 0
if not, v∗0 > 0 then g0(S ∗) f0(P(0)) − D − q0 = 0. Since the mutation rate qi, i = 0, 1, . . . , n are
sufficiently small, g0(S ∗) ≈ g0(λ̂k).

g0(S ∗) f0(P(0)) − D − q0 ≈ g0(λ̂k) f0(P(0)) − D − q0

< g0(λ̂0) f0(P(0)) − D − q0 = −q0 < 0.

This leads to a contradiction g0(S ∗) f0(P(0)) − D − q0 = 0. Hence we have v∗0 = 0.
Similarly from the steady state equation of (3.7)(

gi(S ∗) fi(P(0)) − D − qi

)
vi∗ + qi−1v(i−1)∗ = 0, i = 1, 2, . . . , k − 1,

we obtain vi∗ = 0, i = 1, 2, . . . , k − 1. Thus E∗ = (0, . . . , 0, v̂k, . . . , v̂n) satisfies (3.9).
Consider the n− k + 1 equations in (3.9), we denote them in the form of Ax = y as following,

qk
gk+1(S̃ ) fk+1(P(0))
− D − qk+1

· · · 0 0

0 qk+1
gk+1(S̃ ) fk+2(P(0))
− D − qk+2

· · · 0

...
...

...
...

...

0 0 · · · qn−1 gn(S̃ ) fn(P(0)) − D
gk(S̃ ) fk(P(0)) gk+1(S̃ ) fk+1(P(0)) · · · gn−1(S̃ ) fn−1(P(0)) gn(S̃ ) fn(P(0))





ṽk

ṽk+1
...

ṽn−1

ṽn



=



0
0
...
0

D(S (0) − S̃ )



(3.10)

Since qk is close to 0, we have S̃ is close to g−1
k ( D

fk(P(0)) ) = λ̂k.

Let S̃ = λ̂k + ε, ε is small enough,
From (H2), get gi(S̃ ) fi(P(0)) = gi(λ̂k + ε) fi(P(0)) < gi(λ̂i) fi(P(0)) = D.
It follows that gi(S̃ ) fi(P(0)) − D − qi < 0, and gn(S̃ ) − D < 0.
Use the same method as Theorem 3.1, we have ṽi > 0 when k ≤ i ≤ n.
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(iii) Particularly, when λ̂n = min0≤i≤n λ̂i,
Let gn(S ) fn(P(0)) − D = 0, we can get S = λ̂n.
Similarly, we can use mathematical induction as the second part of Theorem 3.6 to prove that
vi∗ = 0 for all 0 ≤ i ≤ n − 1, and then vn∗ = S (0) − λn.

2. Since qi is small enough and close to 0, E∗ is close to E1.

We can also use the perturbation theory (Theorem 3.2 and Theorem 3.3) to prove the local and
global stability of E∗. The proof is similar to Theorem 3.4 and Theorem 3.5.

�

Case 3 :
If

∑n
i=0 vi(tk) < U at some sequence {tk}, tk → ∞ and

∑n
i=0 vi(tl) ≥ U at some other sequence {tl},

tl → ∞, k = 1.2. · · · , l = 1, 2, · · · , k , l,
∑n

i=0 vi oscillates around U.

3.2. The results of the asymptotic behavior of the solutions of model with forward mutations

From Lemma 2.1, we have S (t) +
∑n

i=0 vi(t) −→ S (0) as t → ∞.
In case 1, S (t)→ S ∗ = g−1

0 (D + q0), which is close to λ0.
So

∑n
i=0 vi(t) is close to S (0) − λ0 (= v∗0) as t → ∞.

In case 2, S → S ∗ = g−1
k (D + qk), which is approximately equal to λ̂k, but a little greater than λ̂k.

So
∑n

i=0 vi(t) is close to S (0) − λ̂k (= v̂∗k) as t → ∞.
By the theory of perturbation, we can get the same relation between

∑n
i=0 vi and U as Theorem 2.3

in Section 2.
Theorem 3.7. Let (H1), (H2), (H3) hold, then

(I) if U > v∗0, then there exists t0, such that for all t ≥ t0,
∑n

i=0 vi(t) < U

(II) Let λ̂l = max0≤i≤n λ̂i and v̂∗l = S (0) − λ̂l < v̂∗k. If U < v̂∗l , then there exists t0 > 0, such that for all
t ≥ t0,

∑n
i=0 vi(t) ≥ U.

(III) if v̂∗k < U < v∗0, then
∑n

i=0 vi(tk) ≥ U for some sequence {tk}, tk → ∞ and
∑n

i=0 vi(tl) < U for some
other sequence {tl}, tl → ∞.

Proof.

(I) Assume U > v∗0, we shall exclude the following two cases.

(i)
∑n

i=0 vi(t) ≥ U for t > 0. Then P(t) → P(0) as t → ∞. Consider the limiting system (3.7). By
perturbation method in Theorem 3.3 and the result in Case 2 of section 2.1, we have

vk(t)→ v∗k + c1(q), vi(t)→ ci(q)

where i , k, c1(q) and ci(q) are small, q = (q1, . . . , qn). Then

n∑
i=0

vi → v∗k + c1(q) +
∑
i,1

ci(q)
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and it follows that

n∑
i=0

vi(t) < v∗k + c1(q) +
∑
i,1

ci(q) < v∗0 < U, for t large.

This is a contradiction to the assumption (i):

n∑
i−0

vi(t) ≥ U for t ≥ 0.

(ii) There exists t̂ > 0 such that

n∑
i=0

vi(t̂) = U and
d
dt

 n∑
i=0

vi(t)

 ∣∣∣∣∣∣
t=t̂

> 0.

From the system (1),

d
dt

(∑
vi

) ∣∣∣∣∣∣
t=t̂

=

n∑
i=0

(gi(S ) fi(P) − D) vi

≤
∑

(gi(S ) − D) vi

=
∑(

gi

(
S (0) −

∑
vi

)
− D

)
=

∑(
gi

(
S (0) −

∑
vi

)
− gi(λi)

)
,

n∑
i=0

vi(t̂) = U > v∗0 = S (0) − λ0.

It follows that
S (0) −

∑
vi(t̂) < λ0 < λ1 < · · · < λn

gi

S (0) −

n∑
i=0

vi(t̂)

 < gi(λi), i = 0, 1, . . . , n.

Hence
d
dt

 n∑
i=0

vi

 ∣∣∣∣∣∣
t=t̂

< 0.

This is a contradiction. Excluding (i) and (ii), we obtain
∑n

i=0 vi < U for t large.

(II) Assume U < v̂∗l . Then
∑n

i=0 vi(t) ≥ U for t ≥ t0. Applying the perturbation method and the method
in Theorem 2.3 (II), we finish the proof of (II).

(III) Assume v∗k < U < v∗0. Suppose
∑n

i=0 vi ≥ U for t large. Then by perturbation method in Theorem
3.3 and the results in Case 2 of section 2.1,

vk(t)→ v∗k + c1(q), vi(t)→ ci(q), i , k,
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vi → v∗k + c1(q) +

∑
i,k

ci(q) < U,

a contradiction.

Suppose
∑n

i=0 vi < U for t large. Then

v0(t)→ v∗0 + c0(q), vi(t)→ ci(q), i = 1, 2, . . . , n as t → ∞.

Hence
∑

vi → v∗0 + c0(q) +
∑n

i=1 ci(q) > U, a contradiction.

Hence
∑n

i=0 vi oscillates around U.

�

4. Dynamics of drug on-drug off model with forward-backward mutations

Consider the model

dS
dt

= (S (0) − S )D −
n∑

i=0

gi(S ) fi(P)vi

du
dt

= (g0(S ) f0(P) − D)u − q0u + q̃0v1

dvi

dt
= (gi(S ) fi(P) − D)vi + qi−1vi−1 − qivi − q̃i−1vi + q̃ivi+1, 1 ≤ i ≤ n − 1

dvn

dt
= (gn(S ) fn(P) − D)vn + qn−1vn−1 − q̃n−1vn

dP
dt

=

{
−DP, if

∑n
j=0 v j < U

(P(0) − P)D, if
∑n

j=0 v j ≥ U

(2)

Lemma 4.1. ([3], p. 141) If y(t) has a finite limit as t → ∞ and y(n) is bounded for t ≥ t0, then
y(k)(t)→ 0 as t → ∞ for 0 < k < n.

In this section we only consider Case 1 and Case 2, i.e. we assume either U > v∗0 or U < v̂∗l . Then
the solutions of (2) are smooth.
Lemma 4.2. In (2), if vm(t) → 0 as t → ∞ for some m, 0 ≤ m ≤ n, then we can get vk(t) → 0 as
t → ∞, for all k , m and 0 ≤ k ≤ n.That means all the species will go extinction as long as one of
them goes extinction when time is long enough. Otherwise, all species coexists.

Proof. We just prove the cases when 0 < m < n, since m = 0 and m = n are similar.
Consider the model (2), we have

dvm

dt
= (gm(S ) fm(P) − D − qm − q̃m−1)vm + qm−1vm−1 + q̃mvm+1.

d2vm

dt2 = (gm(S ) fm(P) − D − qm − q̃m−1)vm
′ + (gm

′(S )S ′ fm(P) + gm(S ) fm
′(P)P′)vm

+ qm−1vm−1
′ + q̃mv′m+1

(4.1)
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From Lemma 2.1, we have

S (t) +

n∑
i=0

vi(t)→ S (0) as t → ∞, (4.2)

and 0 < S ≤ S (0) and 0 < P ≤ P(0).
From the first equation in (2),

|S ′| ≤ S (0)D + max
0≤ j≤n

{
g j

(
S (0)

)}
·

n∑
i=1

vi

≤ S (0)D + MsS (0).

For 1 ≤ i ≤ n − 1,

|v′i | ≤ |(gi(S ) fi(D) − D − qi − q̃i−1)vi| + qi−1vi−1 + q̃ivi+1

≤ max
{
gi

(
S (0)

)
+ D + gi + g̃i−1, qi−1, g̃i

} n∑
i=0

vi
,

from (4.2),

n∑
i=0

vi ≤ S (0), 0 < S < S (0), 0 < P < P(0),

it is easy to see that |v′i | , |P
′| ≤ DP(0), |S ′|, | f ′m(P)|, |g′m(S )| are bounded.

It follows from (4.1), we conclude that | d
2vm
dt2 | is bounded.

Since vm → 0 as t → ∞, and |d
2vm
dt2 | is bounded.

From Lemma 4.1, we have dvm
dt → 0 as t → ∞.

It implies that qm−1vm−1 + q̃mvm+1 → 0 as t → ∞, vm−1 → 0, vm+1 → 0 as t → ∞.
Hence vk → 0 as t → ∞ for k , m. �

From Lemma 4.2, there are two cases: Either all the bacteria vi (0 ≤ i ≤ n) go extinction or all of
them coexist. In the drug on-drug off model with forward-backward mutations, we get the next results.

Theorem 4.3. Let the hypothesis (H1) and (H2) hold and vi (0 ≤ i ≤ n) be the solutions of
system (2), then the species vi (0 ≤ i ≤ n) coexists.

Proof. If all the species vi (i = 0, 1, · · · , n) go extinction, then
∑n

i=0 vi → 0 < U as t → ∞.
We have

S → S (0) and P→ 0.

Consider the second equation of the system (2):

du
dt

= (g0(S (0)) − D − q0)u + q̃0v1

Since g0(S (0)) − D = g0(S (0)) − g0(λ0) > 0 and qi, q̃i are sufficiently small.
du
dt > 0 as t → ∞, which contradicts to u→ 0 as t → ∞.
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Hence all the species vi (i = 0, 1, · · · , n) coexist for t large in the system (2) with forward-backward
mutation.

�

Remark 4.4. We note that since the mutant rates q̃i are quite small, the most resistant vk whose
λ̂k = min0≤i≤n λ̂i, where λ̂i = ai

mi fi(P)
D −1

dominates the rest species.

5. Numerical simulations

In this numerical simulation, we consider the case n = 2 and verify the conjecture in Remark 2.4
and Remark 2.5.

For simplicity, we assume S (0) = 10, D = 0.9 and

gi(S ) =
miS

ai + S
for i = 0, 1, · · · , n

where a0 = 2, a1 = 2, a2 = 3, m0 = 3, m1 = 2, m2 = 1.5.

Since gi(λi) = D, we have λ0 ≈ 0.86, λ1 ≈ 2.44 and λ2 = 4.5.

Hence v∗0 = S (0) − λ0 ≈ 9.14.

Let P(0) = 10 and

fi(P) =
1

1 + ( P
Ki

)L
for i = 0, 1, 2

where L = 1, K0 = 6, K1 = 15, K2 = 40.

After calculations, we have λ̂0 = 8, λ̂1 = 6, λ̂2 = 9, Then λ̂1 = min(λ̂0, λ̂1, λ̂2), λ̂2 = max(λ̂0, λ̂1, ˆλ2),
and

v̂∗k = v̂∗1 = 4, and v̂∗l = v̂∗2 = 1.

Take U = 3, then v̂∗2 ≤ U < v̂∗1.

1. When there is no mutation, under the assumption (H3), (2.5), the mutant v2 survives, but the wide
type v0 and the other mutant v1 go extinct. V :=

∑2
i=0 vi(t) ≥ U for time t large, satisfying the

conjecture in Remark 2.4.

In Figure 5.1 (a), (b), (c) we verify the conjecture that if v̂∗l < U < v̂∗k then vk(t) → v̂∗k, vi → 0 for
i , k.
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Figure 5.1 (a). Shows the prediction V :=
∑n

i=0 vi > U for t large. The numerical data is
U = 3, v̂∗l = 1 < U = 3 < v̂∗k = 4.

Figure 5.1 (b). Shows the prediction P(t)→ P(0) for t large, P(0) = 10.

Figure 5.1 (c). Shows vk(t) → v̂∗k as t → ∞ and vi(t) → 0, i , k as t → ∞, where k = 1,
v∗k = v∗1 = 4.

In the following Figure 5.2 and Figure 5.3, U satisfies v̂∗k < U < v∗0. Thus the total population
V =

∑n
i=0 vi oscillates around U. We conjecture that there exists U∗ between v̂∗k and v∗0 such that
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species vk win the competition when v̂∗k < U < U∗ and species v0 (wild Type) win the competition
when U∗ < U < v∗0, For the numerical data is n = 2, v̂∗k = 4, v∗0 = 9.14, we compute the value U∗,
U∗ ≈ 5.846.

2. Let U = 5.5, v̂∗k < U < U∗, v̂∗k = 4, U∗ ≈ 5.846 and the initial data (9.2, 0.3, 0.3, 0.2) near
equilibrium E0 = (v∗0, 0, 0, 0) = (9.14, 0, 0, 0), then the trajectories of the system (3) are shown in
Figure 5.2 (a), 5.2 (b), 5.2 (c).

Figure 5.2 (a). V =

2∑
i=0

vi is the total population of the bacteria. Since v̂∗k = 4 < U = 5.5 <

v∗0 = 9.14, from (III) of Theorem 2.3, V oscillates around U.

Figure 5.2 (b). The drug concentration P(t) oscillates between 0 and P(0) = 10.
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Figure 5.2 (c). The population v1 wins the competition however v1 oscillates, not tends to v∗1.

3. Let U = 6.5, U∗ < U < v∗0, U∗ ≈ 5.846, v∗0 = 9.14, and the initial data (6.2, 0.2, 4.3, 0.3, 9.5) near
equilibrium E1 = (0, v∗1, 0, P

(0)) = (0, 4, 0, 10), then the trajectories of the system (3) are shown in
Figure 5.3 (a), 5.3 (b), and 5.3 (c).

Figure 5.3 (a). The total population V oscillates around U = 6.5.

Figure 5.3 (b). The drug concentration P(t) oscillates between 0 and P(0) = 10.
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Figure 5.3 (c). The population v0 wins the competition however v0 oscillates, not tends to v∗0,
v∗0 = 9.14.
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