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1. Introduction

Let D denote the unit disc in the complex plane. Let L2 be the Hilbert space of all Lebesgue square
integral functions with respect to the normalized area measure dA on D. The Bergman space L2

a is
consisting of all holomorphic functions contained in L2. It is well known that L2

a is a closed subspace
of L2 and has an orthogonormal basis {en}

+∞
n=0, where en(w) =

√
n + 1wn. The Bergman space is a

reproducing Hilbert space with the reproducing kernel Kz, which is given explicitly by

Kz(w) =
1

(1 − z̄w)2 , z,w ∈ D.

Let P be the orthogonal projection from L2 onto L2
a, then P is given by

(P f )(w) =

∫
D

f (z)
(1 − z̄w)2 dA(z), f ∈ L2, w ∈ D.

Denote L∞ as the set of all bounded measurable functions on D. For f ∈ L∞, the Toeplitz operator T f

with symbol f is defined by
T f g = P( f g), g ∈ L2

a.

It is easy to see that T f is a bounded operator on the Bergman space.
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Let L2
h be the harmonic Bergman space which is the collection of all harmonic functions in L2.

Define a unitary operator K : L2
a → L2

h by K(e2n) = en and K(e2n+1) = en+1, n = 0, 1, 2, · · · . The
H-Toeplitz operator B f with symbol f ∈ L∞ is defined by

B f g = P( f Kg), g ∈ L2
a.

Obviously B f is a bounded operator on the Bergman space.
Let R be the space of square integrable functions on [0, 1] with respect to the measure rdr. It is

clear that the functions in R are radial functions on D. Since trigonometric polynomials are dense in
L2 and eik1θR is orthogonal to eik2θR for k1 , k2, one can see that

L2 =
⊕
k∈Z

eikθR.

So, for each f ∈ L2, it can be written as (see [4])

f (reiθ) =
∑
k∈Z

eikθϕk(r),

where each ϕk ∈ R is bounded radial function when f ∈ L∞. Each function in eikθR is called a
quasihomogeneous function with degree k.

In 1964, Brown and Halmos [1] showed that for Toeplitz operators on the Hardy space, T f Tg = Th

holds if and only if either f̄ or g is analytic and h = f g. In 1989, Zheng [2] showed that if f , g
are bounded harmonic functions such that T f Tg = Th on the Bergman space, then either f̄ or g is
analytic. The product problem on Toeplitz operators with general symbols turns out to be much more
complicated. In [5] Louhichi and Zakariasy showed that if the product of two Toeplitz operators
with the quasihomogeneous symbols on the Bergman space with the degree p and s respectively
to be another Toeplitz operator, then the symbol functions must be quasihomogeneous with the
degree p + s. In [6] Louhichi, Strouse and Zakariasy showd the relationship between the radial part of
the quasihomogeneous symbols.

In 2007, Arora and Paliwal [7] started to study the H-Toeplitz on the Hardy space. Gupta and Singh
expand this definition for Slant H-Toeplitz operators on the Hardy space [8] and for H-Toeplitz operator
on the Bergman space [9]. In 2022, Liang et al. characterized the commuting of H-Toeplitz operators
with quasihomogeneous symbols on the Bergman space, see [10].

Motivated by the mentioned works, in Section 3 of this paper we will characterize when the product
of two H-Toeplitz operators to be another H-Toeplitz with one general and another quasihomogeneous
symbols, see Theorems 3.1 and 3.3. Also, in Section 4 we will consider the product of Toeplitz
operator and H-Toeplitz operator to be another H-Toeplitz with certain harmonic symbols, that is,
when T f Bg = Bh or B f Tg = Bh holds for certain harmonic symbols f , g, h, see Theorems 4.1 and 4.2
respectively. With non-harmonic symbols, we consider a simple case which tells the answer of when
B f Tg = Bh is not trivial, see Theorem 4.4.

2. Preliminaries

In this section, we will present some lemmas which will be used frequently.
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The Mellin transform ϕ̂ of a function ϕ ∈ L1([0, 1], rdr) which plays an important role is defined by

ϕ̂(w) =

∫ 1

0
ϕ(r)rw−1dr.

It is clear that ϕ̂ is analytic on {w : Re w > 2}. The following two lemmas have been proved in [10]
which will be used often in the paper.

Lemma 2.1. Let ϕ ∈ L1([0, 1], rdr). If there exist a sequence of positive integers {nk} satisfying that
∞∑

k=1

1
nk

= ∞ and ϕ̂(nk) = 0 for all k, then ϕ = 0.

Lemma 2.2. Let φ be a bounded radial function and p an integer. Then for any nonnegative integer n,

Beipθφ(w2n) =

2

√
n + 1

2n + 1
(n + p + 1)φ̂(2n + p + 2)wn+p, n + p ≥ 0,

0 , n + p < 0,

Beipθφ(w2n+1) =

2

√
n + 2

2n + 2
(p − n)φ̂(p + 2)wp−n−1, n + 1 ≤ p,

0 , n + 1 > p.

By Lemma 2.2, we obtain the following two lemmas immediately.

Lemma 2.3. Let p be a nonnegative integer. Then for each nonnegative integer n,

Bwp(w2n+1) = 0, Bwp(w2n) =

√
n + 1

2n + 1
wn+p,

Bwp(w2n) =


√

n + 1
2n + 1

n − p + 1
n + 1

wn−p, n ≥ p,

0 , n<p,

Bwp(w2n+1) =


√

n + 2
2n + 2

p − n
p + 1

wp−n−1, n ≤ p − 1,

0 , n>p − 1.

Lemma 2.4. Suppose f =
∑

k∈Z eikθϕk(r), h =
∑∞

s=−M eisθψs(r) ∈ L∞, where M is a nonnegative integer.
Then for nonnegative integer n,

B f (w2n) = 2
∞∑

k=−n

√
n + 1

2n + 1
(n + k + 1)ϕ̂k(k + 2n + 2)wn+k,

and for n ≥ M,

Bh(w2n) = 2
∞∑

s=−M

√
n + 1

2n + 1
(n + s + 1)ψ̂s(s + 2n + 2)wn+s.

In [9], it is showed that the map f → B f is one to one, then the following lemma holds.

Lemma 2.5. Suppose f ∈ L∞, then B f = 0 if and only if f = 0.
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3. Product of H-Toeplitz operators

In this section, we focus on the product of two H-Toeplitz operators. Our aim here is to provide a
sufficient and necessary condition for the product of two H-Toeplitz operators to be another H-Toeplitz
operator with more general symbols.

Theorem 3.1. Let p be an integer and M a nonnegative integer. Suppose φ is a bounded radial function
on D and f , h ∈ L∞ with h =

∑∞
s=−M eisθψs(r). Then the following statements are equivalent:

(1) B f Beipθφ = Bh,
(2) BeipθφB f = Bh,
(3) f = h = 0 or φ = h = 0.

Proof. If (3) holds, then (1) and (2) hold clearly. Conversely, suppose one of (1) and (2) holds. If
φ = 0, then by Lemma 2.5 we can obtain φ = h = 0 immediately. So in the following we assume φ , 0
and show that f = h = 0. For this end, we first write

f =
∑
k∈Z

eikθϕk(r),

where each ϕk is bounded radial function. Choose n satisfying 2n ≥ M. By Lemma 2.4,

Bh(w4n) = 2
∞∑

s=−M

√
2n + 1
4n + 1

(2n + s + 1)φ̂s(4n + s + 2)w2n+s, (3.1)

Bh(w4n+2) = 2
∞∑

s=−M

√
2n + 2
4n + 3

(2n + s + 2)φ̂s(4n + s + 4)w2n+s+1. (3.2)

“(1)⇒ (3)”. Suppose B f Beipθφ = Bh and φ , 0. We show the result in the following two cases.
Case 1. p is even. Let n > max{0, p

2 + M + 1}, by Lemmas 2.2 and 2.4, direct computations give that

B f Beipθφ(w4n)

= 2

√
2n + 1
4n + 1

(2n + p + 1)φ̂(4n + p + 2)B f (w2n+p)

= 4

√
2n + 1
4n + 1

(2n + p + 1)φ̂(4n + p + 2)

×

∞∑
k=−n− p

2

√
n +

p
2 + 1

2n + p + 1

(
n +

p
2

+ k + 1
)
ϕ̂k(k + 2n + p + 2)wk+n+

p
2 .

(3.3)

Since (3.1) equals to (3.3), we obtain that

φ̂(4n + p + 2)ϕ̂k(k + 2n + p + 2) = 0

for any k = −n − p
2 , · · · , n −

p
2 − M − 1. In other words, the above holds when n > Nk = max{0, p

2 +

M + 1, p
2 + M + 1 + k,− p

2 − k} for each integer k. Set

Ek =
{
n > Nk : φ̂(4n + p + 2) , 0

}
.
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By Lemma 2.1 and φ , 0, we have
∑

n∈Ek
1
n = ∞. For each fixed k, choose n ∈ Ek, then ϕ̂k(k + 2n + p +

2) = 0 with
∑

n∈Ek
1

k+2n+p+2 = ∞. By Lemma 2.1 we get ϕk = 0 for each integer k. So we obtain f = 0
and hence h = 0.
Case 2. p is odd. Let n > max{0,M +

p+1
2 }, by Lemmas 2.2 and 2.4 again, we have

B f Beipθφ(w4n+2)

= 2

√
2n + 2
4n + 3

(2n + p + 2)φ̂(4n + p + 4)B f (w2n+p+1)

= 4

√
2n + 2
4n + 3

(2n + p + 2)φ̂(4n + p + 4)

×

∞∑
k=−n− p+1

2

√
n +

p+1
2 + 1

2n + p + 2

(
n +

p + 1
2

+ k + 1
)
ϕ̂k(k + 2n + p + 3)wk+n+

p+1
2 .

(3.4)

Because (3.2) equals to (3.4), it follows that

φ̂(4n + p + 4)ϕ̂k(k + 2n + p + 3) = 0,

where k = −n − p+1
2 , · · · , n − M − p+1

2 . With the similar arguments as done in Case 1, we can obtain
f = 0 and then h = 0. Therefore, (3) holds.

“(2)⇒ (3)”. Suppose BeipθφB f = Bh and φ , 0. Let the integer n > |p| + M + 1, we deduce (3) by
the following two cases.
Case 1. p ≤ 0. By Lemmas 2.2 and 2.4, we may obtain that

BeipθφB f (w4n)

= 4
∞∑

k=−n−p

√
2n + 1
4n + 1

(2n + 2k + 1)ϕ̂2k(4n + 2k + 2)

×

√
n + k + 1

2n + 2k + 1
(n + k + p + 1)φ̂(2n + 2k + p + 2)wn+k+p.

(3.5)

Since (3.1) equals to (3.5), then we have ϕ̂2k(4n + 2k + 2)φ̂(2n + 2k + p + 2) = 0 for k = −n− p, . . . , n−
p − M − 1, where n > |p| + M + 1. As done in Case 1 of “(1)⇒ (3)”, one may obtain ϕ2k = 0 for any
integer k. Also, by Lemmas 2.2 and 2.4 again, we get

BeipθφB f (w4n+2)

= 4
∞∑

k=−n−p−1

√
2n + 2
4n + 3

(2n + 2k + 3)ϕ̂2k+1(4n + 2k + 5)

×

√
n + k + 2

2n + 2k + 3
(n + k + p + 2)φ̂(2n + 2k + p + 4)wn+k+p+1.

(3.6)

Because (3.2) equals to (3.6), we have ϕ̂2k+1(4n + 2k + 5)φ̂(2n + 2k + p + 4) = 0 for k = −n − p −
1, . . . , n− p−M − 1, where n > |p|+ M + 1. As done before, we then obtain ϕ2k+1 = 0 for each integer
k. Thus we get f = 0, and hence h = 0. So (3) holds.

AIMS Mathematics Volume 8, Issue 9, 20790–20801.



20795

Case 2. p > 0. By Lemma 2.2 and (2.4), we have

BeipθφB f (w4n) = 4
∞∑

k=−n

√
2n + 1
4n + 1

(2n + 2k + 1)ϕ̂2k(4n + 2k + 2)

×

√
n + k + 1

2n + 2k + 1
(n + k + p + 1)φ̂(2n + 2k + p + 2)wn+k+p

+ 4
p−n−1∑
k=−n

√
2n + 1
4n + 1

(2n + 2k + 2)ϕ̂2k+1(4n + 2k + 3)

×

√
n + k + 2

2n + 2k + 2
(p − n − k)φ̂(p + 2)wp−n−k−1,

(3.7)

Comparing (3.1) with (3.7), it gives that ϕ̂2k(4n+2k+2)φ̂(2n+2k+p+2) = 0 for k = −n, . . . , n−p−M−1,
where n > p + M + 1. By using the same arguments as done in Case 1, we have ϕ̂2k = 0 for any integer
k. Also, by Lemma 2.2 and (2.4),

BeipθφB f (w4n+2) = 4
p−n−1∑
k=−n

√
2n + 2
4n + 3

(2n + 2k + 2)ϕ̂2k(4n + 2k + 4)

×

√
n + k + 2

2n + 2k + 2
(p − n − k)φ̂(p + 2)wp−n−k−1

+

∞∑
k=−n−1

√
2n + 2
4n + 3

(2n + 2k + 3)ϕ̂2k+1(4n + 2k + 5)

×

√
n + k + 2

2n + 2k + 3
(n + k + p + 2)φ̂(2n + 2k + p + 3)wn+k+p+1.

(3.8)

By comparing (3.2) with (3.8), it follows that ϕ̂2k+1(4n + 2k + 5)φ̂(2n + 2k + p + 4) = 0 for k =

−n − 1, . . . , n − p − M − 1, where n > p + M + 1. Similarly we have ϕ̂2k+1 = 0 for any integer k.
Above all, f = 0. Hence h = 0, so (3) holds. �

The following zero product problem holds immediately.

Corollary 3.2. Suppose f ∈ L∞ and φ is a bounded radial function. Let p be an integer. Then the
following statements are equivalent:

(1) B f Beipθφ = 0,
(2) BeipθφB f = 0,
(3) f = 0 or φ = 0.

Now we are ready to characterize the product of two H-Toeplitz operators to be another H-Toeplitz
operator with harmonic and radial symbols.

Theorem 3.3. Suppose f and h are bounded harmonic functions on D, φ is a bounded radial function.
Then B f Bφ = Bh if and only if f = h = 0 or φ = h = 0.
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Proof. The sufficiency is obvious, now we prove the necessity. First we write f = f+ + f− and h =

h+ + h−, where f+ =
∑∞

j=0 a jw j, f− =
∑∞

s=1 bsws, h+ =
∑∞

t=0 ctwt and h− =
∑∞

m=1 dmwm.
If φ = 0, then the necessity holds. In the following we assume φ , 0. By Lemma 2.3,

Bh(w) =

∞∑
t=1

t
t + 1

ctwt−1, (3.9)

and by Lemma 2.2,

B f Bφ(w) = 0. (3.10)

Since (3.9) equals to (3.10), we have ct = 0, t ≥ 1. Hence h = c0 + h−. For the nonnegative integer n,
direct calculations show that

B f Bφ(w4n) = 2

√
2n + 1
4n + 1

(2n + 2)φ̂(4n + 2)

√
n + 1

2n + 1

×
( ∞∑

j=0

a jw j+n +

n∑
s=0

bs
n − s + 1

n + 1
wn−s

) (3.11)

and

Bh(w4n) =

√
2n + 1
4n + 1

2n∑
m=0

dm
2n − m + 1

2n + 1
w2n−m, (3.12)

where d0 = c0. By comparing (3.11) with (3.12), we then get φ̂(4n+2)a j = 0 for j ≥ 2n. As we assume
φ , 0, there must be a positive integer n0 such that φ̂(4n0 + 2) , 0. Thus a j = 0 for any integer j ≥ 2n0.
Then (3.11) becomes

B f Bφ(w4n) = 2

√
2n + 1
4n + 1

(2n + 1)φ̂(4n + 2)

√
n + 1

2n + 1

×
( 2n0−1∑

j=0

a jw j+n +

n∑
s=0

bs
n − s + 1

n + 1
wn−s

)
.

(3.13)

Let n ≥ 2n0. Observe that the biggest degree of w is 2n − 1 in (3.12), and n + 2n0 − 1 in (3.13), so we
may obtain that dm = 0 for m = n−2n0, · · · , n + 1. Note that n is any nonnegative integer with n ≥ 2n0,
hence dm = 0 for any integer m ≥ 0. It follows that h = 0. By Corollary 3.2, we then obtain f = 0. �

4. Product of Toeplitz operator and H-Toeplitz operator

In this section, we focus on the product of Toeplitz operator and H-Toeplitz operator to be another
H-Toeplitz operator. First, we discuss the case of T f Bg = Bh with bounded harmonic symbols f , g, h.
For this case we can apply the known result used for the product of two Toeplitz operators case on the
Bergman space (see [3]).

Theorem 4.1. Suppose f , g and h are bounded harmonic functions. Then T f Bg = Bh if and only if one
of the following statements holds:

AIMS Mathematics Volume 8, Issue 9, 20790–20801.



20797

(1) f is a constant and f g = h.
(2) f and g are co-analytic and f g = h.

Proof. We notice a fact: for any nonnegative integer n, it has that

T f Bg(w2n) = Bh(w2n)⇐⇒ T f Tg(wn) = Th(wn). (4.1)

So by Corollary 1 in [3], we see that the above holds if and only if

f g = h (4.2)

with f , g are both analytic or f , g are both co-analytic or one of f and g is constant.
We first show the sufficiency. If (1) holds, then it is clear that T f Bg = Bh. If (2) holds, then h is also

co-analytic, and so by Lemma 2.1, we have T f Bg(w2n+1) = 0 = Bh(w2n+1) for any integer n ≥ 0; on
the other hand, by (4.1), we see that T f Bg(w2n) = Bh(w2n) holds for each nonnegative integer n. Thus
T f Bg = Bh.

Now we show the necessity. As discussed before, when T f Bg = Bh, then (4.2) holds and f and g
are analytic, or f and g are co-analytic, or one of f and g is constant.
Case 1. Suppose f , g are analytic. Then h is also analytic by (4.2). We write f =

∑∞
j=0 a jw j, g =∑∞

s=0 bsws and h =
∑∞

t=0 ctwt, then by Lemma 2.3, T f Bg(w2n+1) = Bh(w2n+1) gives that

∞∑
j=0

∞∑
s=n+1

s − n
s + 1

a jbsw j+s−n−1 =

∞∑
t=n+1

t − n
t + 1

ctwt−n−1. (4.3)

On comparing the coefficient of w0 of both sides of (4.3), we get cn+1 = a0bn+1 for any nonnegative
integer n. Therefore,

f (0)(g − g(0)) = h − h(0). (4.4)

If f (0) , 0, then puting the above into (4.2) to get h(0) = f (0)g(0), so f (0)g = h. By (4.2) again we
obtain that f is constant. If f (0) = 0, then (4.4) gives that h is a constant. By (4.2) we see that f and g
both are constants. Hence (1) holds.
Case 2. f and g are co-analytic and f g = h, this is (2).
Case 3. If g is constant, then for any nonnegative integer n, 0 = T f Bg(w2n+1) = Bh(w2n+1). It follows
from the right side of (4.3) that h = h(0). Thus by (4.2), we see that f is constant. This is a special case
of (1).
Case 4. If f is constant, then it is easy to see that (1) holds. �

Now we discuss the case of B f Tg = Bh with bounded harmonic symbols f , g, h. Although we only
prove the case when g = wp, the obtained result tells us that it may hold only in the trivial case.

Theorem 4.2. Suppose f and h are bounded harmonic functions on D. Let p be a nonnegative integer.
Then B f Twp = Bh if and only if one of the following statements holds:

(1) p = 0, f = h.
(2) p , 0, f = h = 0.
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Proof. The sufficiency is obvious, now we prove the necessity. Suppose B f Twp = Bh. If p = 0, we
obtain f = h immediately. In the following we suppose p , 0.

Write f and h as f+ + f− and h+ + h− respectively, where f+ =
∑∞

j=0 a jw j, f− =
∑∞

s=1 bsws, h+ =∑∞
t=0 ctwt and h− =

∑∞
m=1 dmwm. We show the result by two cases.

Case 1. p is even. For any nonnegative integer n, by Lemma 2.3, we have

B f Twp(w2n) =

√
n +

p
2 + 1

2n + p + 1

(
f+ · wn+

p
2 +

n+
p
2∑

s=1

bs
n +

p
2 − s + 1

n +
p
2 + 1

wn+
p
2−s

)
(4.5)

and

Bh(w2n) =

√
n + 1
2n + 1

(
h+ · wn +

n∑
m=1

dm
n − m + 1

n + 1
wn−m

)
. (4.6)

Write h1
+ =

∑∞
t= p

2
ctwt and h2

+ =
∑ p

2−1
t=0 ctwt, then h+ = h1

+ + h2
+. Because (4.5) equals to (4.6), so for each

nonnegative integer n, we have√
n +

p
2 + 1

2n + p + 1
f+ · wn+

p
2 =

√
n + 1

2n + 1
h1

+ · w
n,

that is,

f+ =

√
(2n + p + 1)(n + 1)
(n +

p
2 + 1)(2n + 1)

·
h1

+

wp/2 , n ≥ 0.

Hence f+ = h1
+ = 0. Also we have

B f Twp(w) = B f (wp+1) = 0, (4.7)

Bh(w) =

√
n + 1

2n + 1

p
2−1∑
t=1

ct
t

t + 1
wt. (4.8)

Since (4.7) equals to (4.8), we get ct = 0 for t = 1, 2, · · · , p
2 − 1. Now h = c0 + h−. Putting f+ = 0 and

h = c0 + h− into (4.5) and (4.6) respectively, we then get√
n +

p
2 + 1

2n + p + 1

n+
p
2∑

s=1

bs
n +

p
2 − s + 1

n +
p
2 + 1

wn+
p
2−s

=

√
n + 1
2n + 1

(
c0wn +

n∑
m=1

dm
n − m + 1

n + 1
wn−m

)
,

(4.9)

which shows that bs = 0 for s = 1, 2, · · · , p
2 − 1. For any nonnegative integer n, the coefficients of wn

in the above equation gives that√
n + 1

2n + 1
c0 =

√
n +

p
2 + 1

2n + p + 1
n + 1

n +
p
2 + 1

b p
2
.
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Hence c0 = b p
2

= 0. Now h+ = 0 and (4.9) can be rewritten as√
n +

p
2 + 1

2n + p + 1

n+
p
2∑

s= p
2 +1

bs
n +

p
2 − s + 1

n +
p
2 + 1

wn+
p
2−s =

√
n + 1

2n + 1

n∑
m=1

dm
n − m + 1

n + 1
wn−m

for any integer n ≥ 1. Now for fixed integer m : 1 ≤ m ≤ n, comparing the coefficients of wn−m, we get√
n +

p
2 + 1

2n + p + 1

b p
2 +m

n +
p
2 + 1

=

√
n + 1
2n + 1

dm

n + 1
, ∀n ≥ m.

Similarly we may get dm = b p
2 +m = 0 for 1 ≤ m ≤ n. Since n is any nonnegative integer, so we obtain

that dm = b p
2 +m = 0 for any integer m ≥ 1. Therefore h− = f− = 0 and then it follows that f = h = 0.

Case 2. p is odd. By Lemma 2.3, for any nonnegative integer n, B f Twp(w2n+1) = Bh(w2n+1) gives that√
n +

p+1
2 + 1

2n + p + 2

(
f+ · wn+

p+1
2 +

n+
p+1

2∑
s=1

bs
n +

p+1
2 − s + 1

n +
p+1

2 + 1
wn+

p+1
2 −s

)
=

√
n + 2

2n + 2

∞∑
t=n+1

ct
t − n
t + 1

wt−n−1.

(4.10)

For fixed s : 1 ≤ s ≤ n +
p+1

2 , comparing the coefficients of wn+
p+1

2 −s in the above induces√
n +

p+1
2 + 1

2n + p + 2
·

bs

n +
p+1

2 + 1
=

√
n + 2

2n + 2
·

c2n+
p+1

2 −s+1

2n +
p+1

2 + 1
.

Since lim
n→∞

c2n+
p+1

2 −s+1 = 0, then bs = 0. Because s is any term of 1, 2, · · · , n +
p+1

2 and n is any
nonnegative integer, it implies that bs = 0 for any s ≥ 1. Hence, f− = 0. By (4.10), one can get that√

n +
p+1

2 + 1
2n + p + 2

f+ · wn+
p+1

2 =

√
n + 2

2n + 2

∞∑
t=n+1

ct
t − n
t + 1

wt−n−1. (4.11)

So, cn+1 = · · · = c2n+
p+1

2 +1 = 0. Because n is any nonnegative integer, thus ct = 0 for t ≥ 1. Now we
obtain that the left side of (4.11) is also zero. Therefore f+ = 0. Above all, f = 0. By Lemma 2.5, we
have h = 0. �

For the case of B f Tg = Bh with non-harmonic symbols, it becomes much complicated. So we only
focus on the simple case with f and g both are radial functions and h is a general one. Even for such
simple case, the obtained relation of f , g and h is not explicit, but it still tells that B f Tg = Bh holds with
nontrivial case which is different from the previous result.

We need the following lemma which is proved in [5].

Lemma 4.3. Let p be an integer and ψ a bounded radial function on D. Then for any nonnegative
integer n,

Teipθψ(wn) =

2(n + p + 1)ψ̂(2n + p + 2)wn+p, n + p ≥ 0,
0 , n + p < 0.
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Theorem 4.4. Suppose φ and ψ are bounded radial functions on D, h ∈ L∞. Then BφTψ = Bh if and
only if h is a radial function and a solution of the equation

2wψ̂(2w)φ̂(w + 1) = ĥ(w + 1), Re w > 1. (4.12)

Proof. We first show the necessity. Write h as h =
∑

k∈Z eikθϕk(r), where each ϕk is bounded radial
function. For any nonnegative integer n, by Lemmas 2.2 and 4.3, it follows from BφTψ(w2n) = Bh(w2n)
that

4(2n + 1)ψ̂(4n + 2)

√
n + 1

2n + 1
(n + 1)φ̂(2n + 2)wn

= 2
∞∑

k=−n

√
n + 1

2n + 1
(n + k + 1)ϕ̂k(k + 2n + 2)wn+k.

(4.13)

Hence for n ≥ 0, we have ϕ̂k(k + 2n + 2) = 0, k , 0. Note that
∑∞

n=0
1

k+2n+2 = ∞, so by Lemma 2.1,
we get ϕk = 0 for all k , 0, which means that h is a radial function. Furthermore, we see that
BφTψ(w2n+1) = 0 = Bh(w2n+1), so (4.13) becomes

2(2n + 1)ψ̂(4n + 2)φ̂(2n + 2) = ĥ(2n + 2).

It implies that h is a solution of the equation

2wψ̂(2w)φ̂(w + 1) = ĥ(w + 1), Re w > 1.

The sufficiency is obvious by the above arguments. �

We note that the Eq (4.12) has a nontrivial solution

ψ = ar2 + c, φ = r, h = (2a + c)r − a,

where a and c are any constants.

5. Conclusions

In this research, it obtains the following characterizations for the product of H-Toeplitz operators
and Toeplitz operators with certain symbols on the Bergman space.

(1) Let p be an integer and M a nonnegative integer. Suppose φ is a bounded radial function on D
and f , h ∈ L∞ with h =

∑∞
s=−M eisθψs(r). Then B f Beipθφ = Bh if and only if BeipθφB f = Bh, and if and

only if f = h = 0 or φ = h = 0.
(2) Suppose f and h are bounded harmonic functions on D, φ is a bounded radial function. Then

B f Bφ = Bh if and only if f = h = 0 or φ = h = 0.
(3) Suppose f , g and h are bounded harmonic functions. Then T f Bg = Bh if and only if f is a

constant and f g = h, or, f and g are co-analytic and f g = h.
(4) Suppose f and h are bounded harmonic functions on D. Let p be a nonnegative integer. Then

B f Twp = Bh if and only if p = 0 and f = h, or, p , 0 and f = h = 0.
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