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Abstract: Simulation software replicates the behavior of real electrical equipment using mathematical
models. This is efficient not only in regard to time savings but also in terms of investment. It, at
large scale for instance airplane pilots, chemical or nuclear plant operators, etc., provides valuable
experiential learning without the risk of a catastrophic outcome. But the selection of a circuit simulator
with effective simulation accuracy poses significant challenges for today’s decision-makers because
of uncertainty and ambiguity. Thus, better judgments with increased productivity and accuracy are
crucial. For this, we developed a complex probabilistic hesitant fuzzy soft set (CPHFSS) to capture
ambiguity and uncertain information with higher accuracy in application scenarios. In this manuscript,
the novel concept of CPHFSS is explored and its fundamental laws are discussed. Additionally, we
investigated several algebraic aspects of CPHESS, including union, intersections, soft max-AND, and
soft min-OR operators, and we provided numerical examples to illustrate these key qualities. The three
decision-making strategies are also constructed using the investigated idea of CPHFSS. Furthermore,
numerical examples related to bridges and circuit simulation are provided in order to assess the validity
and efficacy of the proposed methodologies. The graphical expressions of the acquired results are also
explored. Finally, we conclude the whole work.
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1. Introduction

Due to the rising complexity of current technology and engineering systems, simulation stability is
of the greatest priority. Simulation is quite time-saving and cost-effective [1]. Simulation software is
based on the technique of mathematically simulating real-world phenomena. Essentially, it is a tool
that lets the user see a process via simulation without really conducting it [2]. As a result, engineers
often turn to simulation software to ensure that their machines produce results as near to the intended
specifications as feasible without resorting to costly alterations during production. When engineers get
excellent and precise results from their simulation, they may help decrease the utilization of expensive
hardware resources and only create hardware when strictly essential [3]. Real-time reaction simulation
software is often used in engineering and when the penalty for improper operation is severe, a replica of
the actual control panel is linked to a real-time simulation of the physical response, providing valuable
training without the danger of a disastrous outcome.

A variety of simulators exist with diverse applications and features. The selection of a circuit
simulator with effective simulation accuracy poses significant challenges for today’s decision-makers.
Decision-making procedures encompass crips data, but uncertainty performs a predominant role in
any decisions pertaining to our daily life problems, and the data may not always be in crips form.
To deal with the complications of decision-making and modeling of ambiguous or uncertain data,
our researchers perform a significant role in various fields like process control, artificial intelligence,
environmental sciences, computer vision, economics, medical science, engineering, image analysis,
natural language processing, etc. Standard methods are always not fruitful for dealing with ambiguous
or uncertain data. Throughout the preceding few decades, modeling of the natural world predicated
on fuzzy logic and fuzzy sets has been manifested for explaining practical problems in such types of
fields. Before providing the motivation for this paper, we describe the brief history that our researchers
presented to deal with ambiguous or uncertain data. Lotfi Asker Zadeh in 1965 presented the concept
of a fuzzy set to deal with such types of uncertainty [4]. The researcher is able to conduct a quantitative
analysis of the uncertainty of an event by using this sort of mathematical model [5,6]. Researchers have
defined numerous extensions of this impression [7—12].

One crucial problem shared by those theories is their inadequacy with parametrization tools, such
as the level of the membership determined by the individual depending on the information received by
the individual. For that reason, they are vulnerable to subjective components. Furthermore, distinct
attributes in a single problem require them to be thought about in an integrated way. Molodtsov in 1999
presented the soft set theory to address these limitations [13]. The soft set theory is distinct from
classical methods to deal with vagueness or uncertainties. The benefit of soft set theory is that it
can solve problems that have multiple parameters and perform a very significant role in applications
of numerous fields [14, 15]. This is especially the case in decision-making under an imprecise
environment [16] and in data analysis [17]. Numerous extensions of soft set theory have been defined
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by researchers. For instance, Maji et al. [18] presented a fuzzy soft set by combining a fuzzy set and a
soft set. Maji and Roy presented the impression of a fuzzy soft set and gave its operations, properties,
and applications in decision-making [19-21].

Sometimes randomness and fuzziness related uncertainties occur in the system at the same time.
Meghdadi in 2001 presented probabilistic fuzzy logic [22] to handle both sorts of uncertainties
concurrently in a single framework. Probabilistic modeling is a very significant tool to deal with
random uncertainties, such as power systems [23], robotic control systems [24], signal processing [25],
medical applications [26], and control applications [27]. When there is only limited information about
randomness, probabilistic models can be used by making appropriate assumptions about randomness
statistics [28].

Ramot has examined the presented theories that have evaluated the decision-making problems
under the fuzzy set and its generalizations, which are only capable of dealing with the vagueness
and uncertainty that exist in data. These are not able to describe the fluctuations of data at a given
point in time. Ramot in 2002 presented a complex fuzzy set to address these limitations. In contrast
to a traditional fuzzy membership function, this range is not limited to [0, 1], but extended to the
unit circle in the complex plane [29]. It is unique because it has a complex membership value that
incorporates amplitude and phase terms. The phase term denotes the declaration of a complex fuzzy
set that needs the second dimension of membership, while the amplitude term retains the concept
of fuzziness. The complex fuzzy set offers the ability to resolve temporal issues and combine data
from various aspects into a single, understandable collection. Two different components of the data
are explained, each in its own way. As a result, it is more inclusive than the conventional fuzzy set.
Dick presented a systematic analysis of complex fuzzy sets and logic, and also talked about their
applications [30]. Alkouri presented complex intuitionistic fuzzy sets [31], their composition, relation,
projection [32] and some of its operation [33]. Researchers have also defined numerous extensions of
this impression [34-37].

Torra in 2010 presented a hesitant fuzzy set to deal with hesitant situations [38]. In this case, he
regarded the membership function as a set of possible membership values, namely h(x), where h(x)
is a finite subset of [0, 1]. When decision-makers are unable to determine which of many possible
assessment values best reflects their point of view, hesitant fuzzy set may be used to address the
situation by assigning different probabilities to each of the possible assessment values. Often, in
probabilistic fuzzy settings, the probabilistic information is lost. This is why Pang [39] created a new
class of probabilistic fuzzy linguistic objects to address these concerns in the setting of fuzzy language.
An innovative concept known as probabilistic hesitant fuzzy sets was found thanks to the research of Xu
and Zhou [40]. Hesitant fuzzy sets have attracted the concentration of many researchers who presented
multiple extensions and their operators, which also perform a significant role in decision-making [41],
such as in [42] where authors introduced the dual hesitant fuzzy soft set to group forecasting, in which
they presented the example of a pharmaceutical company’s board of directors’ need to decide the
further investment priorities for the subsidiaries based on net income. In [43] they developed the
methods of E-VIKOR and TOPSIS and in [44] the EDAS method to solve multi-criteria decision-
making problems with the hesitant fuzzy set information.

Humans have always struggled to attain a better perception of the developing world in which they
live. In this developing world, we face vagueness and uncertainty created by fuzziness, hesitancy, and
randomness when trying to make optimal decisions. A number of scholars investigated and developed
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distinct approaches for dealing with barriers to decision-making. Practical decision-making involves
a lot of uncertainties, imprecise information and vagueness, whose representations and management
are constantly the main concerns. In some real-world applications of decision theory, decision-makers
deal with situations involving specific attributes in which the values of their membership degree need
to deal with probability, phase of time, and hesitancy collectively. By using these terms, the evaluation
is more precise and accurate as well as beyond one’s preferences, which is the key point during making
decisions. For instance, when treating mental diseases, doctors face many difficulties. A patient with
a mental illness is frequently treated by several doctors, which causes uncertainty, reluctance, and
randomness and makes diagnosis challenging. In such a situation, existing theories are unable to
produce any results that are satisfactory. Thus, we created the concept of a complex probabilistic
hesitant fuzzy soft set to address this issue, which plays a very significant role in making decisions in
a short interval of time and as accurately as possible.

In complex probabilistic hesitant fuzzy soft set, membership grade is probabilistic hesitant and
complex-valued which is illustrated in polar coordinate. The amplitude term of the membership grade
expresses the belongingness of CPHFSS to some extent, and the phase term related to the membership
grade gives additional information relevant to the phase of time and periodicity. This structure serves
a crucial function in achieving more accurate and precise measurements in mechanical and especially
electrical equipment. We consider multiple attributes to more accurately reflect our perceptions and it
performs a very significant role in decision making to make optimal decisions. In the last part, we also
present a real scenario based on numerical examples on decision making problems with the complex
probabilistic hesitant fuzzy information to show the advantages of this methodology and efficacy.

The organization of the rest of the paper is as follows: Section 2 comprises of preliminaries, in which
we recall the concept of a few basic definitions in a precise manner, enabling us to communicate easily
in the rest of the sections. In Section 3, we introduce the model of a complex probabilistic hesitant
fuzzy soft set. We discuss some basic operations (such as extended and restricted union, extended and
restricted intersection, complement) and soft max-AND soft min-OR operators. Also, we verify their
fundamental laws. Further, the numerical examples are solved to manifest the integrity and supremacy
of the explored work. In Section 4, we establish three different algorithms for decision making with
complex probabilistic hesitant fuzzy information under the environment of multiple attributes. In
Section 5, we illustrate applications and case studies to make optimal decisions. In Section 6, we
give the conclusion of this paper.

2. Preliminaries

In this section, a brief review of a few basic definitions which we use to establish the methods
proposed in this paper is presented.

Definition 1. Let M be a universe of discourse, then a fuzzy set A defined on M as

A= {(mi,,ug(mi»lmi € M},
where uz(m;) is a membership grade of m; in A and ur : M — [0,1]. If uz(m;) = 1 then it is full
membership of m;, if uz(m;) = 0 then it is non-membership of m;, and if uz(m;) has a value between 0

and 1 then it is partial membership of m; [4].
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Definition 2. Let M be a universe of discourse, then a hesitant fuzzy set B is in terms of a function h
that when applied to M return a subset of [0,1] which is represented as

B= {<m,-, hg(m,-)>|m,- € M},

where hz(my;) is a set of different finite elements in [0,1], representing the possible membership grades
of the element m; € M to the set B [38].

Definition 3. Let M be a universe of discourse, then a probabilistic hesitant fuzzy set Cis defined as
C= {<ml-,hg(ux<mi)|Pax)>|mi c M},

where hg(,ux(mi)IP@) is the set of different finite elements (px(m,-)|P5X) representing the hesitant fuzzy

information along probabilities to the set C,x =1,2,3,...,n where n is the number of possible elements
in hae(u(m)|Pz ), Pz € [0, 1] is the hesitant probability of m; and 3, Pz =1 [45].

Definition 4. Let M be a universe of discourse, then a complex fuzzy set Dis defined as
5 — {<mi’ rb\(m[)€2ﬂiw5(mi)>|mi € M}’

where r5(m)e*“s"™) is a complex valued membership grade of m; in D and it may receive all values

lie within the unit circle in the complex plane and r5(m;) € [0, 1], ws(m;) € (0,11 and i = V-1 [29].

Definition 5. Let M be a universe of discourse, then a complex probabilistic hesitant fuzzy set
(CPHFS) E is defined as

E = {<m,~, hg(ra(m,-)ez”"‘”ix(m")‘PEX)>|m; S M},

where hg(ra(mi)ez’”""fx(mi)| PE) is the set of a few complex elements representing the complex hesitant
fuzzy information along probabilities to the set E, rEY(mi) € [0,1] and wEX(m,-) € [0,1,x=1,2,....,n
where n is the number of possible elements in hE(rEx(mi)ez”i“’Ex(mi)| PEX) and Pp € [0, 1] is the complex
hesitant probability of rg. (m;)e”™ e and Y Py =1

Definition 6. Let M be a universe of discourse and G be the set of attributes, for any non-empty set
& C G. A pair (F,E) is called the soft set over M if there is a mapping F : & — P(M) where P(M)
denotes the power set of M.

Thus, the soft set is a parametric family of the subsets of the universe of discourse. For each e; € G, we
can interpret F(e;) as a subset of the universe of discourse M. We can also consider F(e;) as a mapping
F(ej) : M — {0, 1} and then F(e;)(m;) = 1 is equivalent to m; € F(e;), otherwise F(e;)(m;) = 0 [46].
Molodtsov considered many examples in [13] to illustrate the soft set.

Definition 7. Let M be a universe of discourse and G be the set of attributes, for any non-empty set
E C G. A pair (H,E) is called the fuzzy soft set over M if there is a mapping H : & — F (M) where
F (M) denotes the fuzzy power set of M (all possible fuzzy subsets of M) [47].
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3. Complex probabilistic hesitant fuzzy soft set

In this section, we develope the model of complex probabilistic hesitant fuzzy soft set and numerical
example to illustrate this model. We discuss some basic operations and soft max-AND soft min-OR
operators. Also, we verify their fundamental laws. Further, the numerical examples are solved to
manifest the integrity and supremacy of the explored work.

Definition 8. [48] Let M be a universe of discourse and G be the set of attributes, for any non-empty
set & € G. A pair (E ,&) is called the complex probabilistic hesitant fuzzy soft set over M if there is
a mapping K:&-> F(M) where E(M) denotes the all possible complex probabilistic hesitant fuzzy
subset of M. It is represented as

k\(e]) — {<mi, hk\(rk\x(mi)eZHiwfx(mi)‘Pk\x)>|ml’ € M}, ve] S 8 c G,

where hg(rgx(m,-)ez”"‘”l?x(m")|ng) is the set of a few complex elements representing the complex hesitant
fuzzy information along probabilities to the set E, rgx(m,-) € [0,1] and ng(m,-) e[0,1],x=1,2,...,n
where n is the number of possible elements in hg(rix(mi)eZ”i“’Er(’"f) | Pk}) and Py € [0, 1] is the complex
hesitant probability of rl?x(mi)ez’ri“’fx(m") and 3, P = 1.

Example 1. Let M = {m;, my, m3} be the set of energy projects, & C G be the set of attributes, such
that & = {e; = environmental,e, = economical,e; = technological}. Then, (K,E) is the complex
probabilistic hesitant fuzzy soft set over M as follows:

K(e) = {<m1, {0.6627090.2,0.7¢*73(0.3,0.8¢2%(0.5}). (my. {0.9¢203|1}), (ms, {0.5e2m'0-3|1}>},
K(er) = {<m1 [0.262703)1}), (m5, {0.4¢275(0.5,0.5¢27°4]0.5}). (m3. {0.3¢270%]0.1, 0.9 |o.9}>},
Ries) = {{m {0.5¢703]1)), (2, [0.16702]0.8,0.26703]0.2)), (ms, 0.7 1)}

We can write complex probabilistic hesitant fuzzy soft set in a tabular form as represented in Table 1.

Table 1. Tabular representation of CPHFSS.

(K,8) e € €3
0. 6eZmO 6|O 2
O7e2mO 5|O 3 { 0.2€2ni0.3|1 } { O.5€2ﬂi0‘8|1 }
0. 8€2mO 6|0 5
. 0.4¢>705|0.5, 0.1¢>702|0.8,
my 0.9 | { 0.56704)0.5 } { 0.26203]0.2
i 0.3¢27030.1, ;
ms { 0562031 { 0.967010.9 { 0.7e>%7)1 }

Definition 9. Let M be a universe of discourse and G be the set of attributes, for any non-empty set
& C G. A pair (K,E) is called the empty complex probabilistic hesitant fuzzy soft set over M If
K(ej) = ¢ forall e; € E.
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Definition 10. Let M be a universe of discourse and G be the set of attributes, for any non-empty set
&E C G. Apair (K, E) is called the full complex probabilistic hesitant fuzzy soft set over M. If K(e;) = 1
foralle; € &.

3.1. Operations of CPHFSS

Definition 11. Let M be a universe of discourse. If (7(7, &) and (7(;, &») are two CPHFSS over M
then their restricted union is defined as

(0,0) = (K1, &) Ug (K2, &),

where Q K, Ug K,0O=8nN& # ¢ ; Yo; € Oandm; € M, <m,, ( (m; )emeQ‘_(mi)‘P@» c

O(o j) = r@(m,)ez’”“’ (i) ‘PQ

X

2rivg (m
ri (m)e™ 5" | P if x€hg — hg;

dricog, (m
=] g (m)e gy ) Pg if x€hg —hg

K>\’

Ky,

27rimax{wk—l~x (m,'),a)l’éx (mi)} 'P"

max{r;;lx(mi), rKAzx(m,')}e 5. szx, if xe hax N h;;zx

Example 2. Let (K1,E)) and (7(;, &,) be the two complex probabilistic hesitant fuzzy softs represented
in Tables 2 and 3 respectively.

Table 2. CPHFSS (K, &)).

(Ki,&1) e e e
0.3¢708(0 1, 0.6>79(0.2,
m, { 0.6e2’"'0~5|1 0.2¢%705(0.2, 0.9¢%705|0.3,
0.1¢2703|0.7 0.5¢2709|0.5
. 0.8¢2705|0.2, 072706 1 0.8¢2707|0.2,
2 0.32703|().8 0.3¢%710:3|0.8
2mi0.4
. 8 giZMOS:gi { 7 27i0. 3|0 1 } { 0.462m’0.6|0.3’ }
3 27i0.7 27i0.7
0.8¢7102/0 4 0.4¢207/0.9 0.4¢2707)0.7
Table 3. CPHFSS (K>, &)).
(K>, &) e e
0.3¢7707|0.1, 02
m, 0.6240.3, b | 0.8¢204|1 | { 8;227”08:82 }
0.4¢2703|0.6
0.5¢2702|0.1, 203
m { 0.6e2911 | 0.2¢27105]0.4, { gizzﬂm:g; }
0.8¢2709|0.5
. 0.3¢2703|0.1 .
27i0.4 H 27i0.3
ms { 0.6¢41 | 036270410, { 0.5e>31
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Then their restricted union is represented in Table 4.

Table 4. Tabular representation of restricted union.

(Q.0) e €
0.6¢>07]0.1 0.8¢>0]0 1,
m 0.6¢27104]0.3 0.2¢27105]0.2,
0.4¢27103]0.6 0.1¢27103]0.7
0.8609(0.2, o.7ezzz~2|o.1
my { 0.3¢703(0.8 } 0.2e N |0.4
0.8¢27109]0.5
27i0.4
0.6e™ " 10:2, 0.7¢2193)0.01,
ms 0.3e . |0.4, {04627”.0.”0 31 }
0.8¢>1020 4 ' '

Definition 12. Let M be a universe of discourse. If (E, &) and (7(;, &») are two CPHFSS over M,
then their restricted intersection is defined as

(R, 0) = (K1, &) Ng (K2.82),
whereE:Eﬂgkz,O:& NE, #¢;Voj €0 andm; € M,
<mi, h;,;(r;gx(mi)em‘”ﬁx(m")’PEX)> € R(0)) &= rﬁx(mi)ez”"‘“ﬁx(ml’)‘Pﬁx
rax (mi)ehriwl?]x(mi)

(mi)eZHia)@x(m,‘)

PT(\IX, l‘f‘ X e hk\l,\ - hk-;x,

Pf(;x’ lf X € hg){ - hf(\lx’

=1 'K,
min{rA (m) — (m.)}ezmmin{w,?lx(mi),wiix(m;)} P— . P— lf x € h— Nh—
Ky N Ty AT Kiy 7 Kay? Ky, Koy

Example 3. Consider (7(\1, &) and (7(\2, &») as described in Example 2. Then their restricted
intersection is represented in Table 5.

Table 5. Tabular representation of restricted intersection.

(R,0) e e
0.3¢27103]0.1 0.3¢704)0.1,
my 0.6*™04|0.3 0.2¢70310.2,
0.4¢73|0.6 0.1e703|0.7
27i0.2
0.6605(0.2. 0.5¢7[0.1
my {O.3ez”i0'3|0.8 } 0.2e . |0.4
0.8¢*0210.5
27i0.4
0.5¢° " 10.2, 0.3¢2103)0.01,
ms 0.3e . 0.4, {0362”i0'4|081 }
0.8¢*02|0.4 ' '

Definition 13. Let M be a universe of discourse. If (E, &) and (7(;, &») are two CPHFSS over M,
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then their extended union is defined as
(5, P) = (K1, &) Uy (K2, &),

whereszU{E,P:&U&; Vp; € Pand m; € M, withp}. €& andp?e&.

R Ki(p), if pj €& - &,
S(pj) = Kz(P?), if pje& -&,

T{T(pi) U§ E(Pf), lf RS ENE,.

Example 4. Consider (T{\], &) and (7(;, &) as described in Example 2.
Then their extended union is represented in Table 6.

Table 6. Tabular representation of extended union.

(§,P) e €2 e;3 ey
0.6e>70.1 0.86>79(0.1, 0.6e>79]0.2, 0.7692/0.4

m 0.6¢>104/0.3 0.2>105)0.2, 0.9¢>105)0.3, { 0.7627030.6 }
0.4¢>103)0.6 0.1e203)0.7 0.5¢2109)0.5 ' '

27i0.6
. 0.8¢20910.2, 8222”1'0-6:8?11 0.8¢207|0.2, 0.3¢2703|0.3,
2 0.3¢>03]0.8 0.8099(0.5 0.3¢>103)0.8 0.4¢>10710.7
0.6e204)0.2 | .
s 0.7¢213)0.01 0.4¢2109)0.3 .

ms 0.3627”0'8'0.4, { 2i0.7 ’ } { ri07 ’ { 0.5627”0‘3“ }

0.80792(0.4 0.4€>07|0.81 0.4€207|0.7

Definition 14. Let M be a universe of discourse. If (7(\1, &) and (7(\2, &,) are two CPHFSS over M,
then their extended intersection is defined as

(T,P) = (K1, &) N (K2, &),

whereT:Eﬁ{E,P:& U&E,,; Vp;j€ Pandm; € M, withp}.e& andp?eag.

R Ki(p)). if pj €& -&n
T(pp) =1 K(p)), if pje&-8&i,

Ki(p) e Ka(pd)., if pj€E NG,

Example 5. Consider (7(\1, &) and (7(;, &) as described in Example 2. Then their extended union is
represented in Table 7.
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Table 7. Tabular representation of extended intersection.

(T,P) e € €3 ey
27i0.5 27i0.4 27i0.6
O.3e2 _04|O.1 O.3e2 105|O.1, 0. 662 05|O 2, O.7e2”i0'2|0.4,
m 0.6e%0.3 0.2¢°10.2, 0.9¢°10.3, 0 7e2”i0'8|0 6
0.4¢*"030.6 0.1€*310.7 0.5¢*910.5 ’ '
27i0.2
i { 0.6¢213(0.2, } 83;06:81 { 0.8107]0.2, } { 031030 3, }
2 27i0.3 . . 27i0.3 27i0.7
0.3¢ |0.8 0.862”i0'9|0.5 0.3¢ |0.8 0.4e |0.7
0.5¢*704|0.2 ‘
. ’ 0.3¢703|0.01 0.4¢>706|0.3, .
ms 0.3¢*08]0.4, { oiD A ’ } { 207 { 0.5¢2703|] }
0.862”i0'2|0.4 0.3¢ |0.81 0.4e |0.7

Definition 15. Let M be a universe of discourse. If (K, &) is the CPHFSS over M, then its complement

is defined as

k\c(ej) — {<mz,h1?¢((1 _ rEY(mi))eZNi(l—w@(mi))‘1 - PI?X)>’WZ, S M}, Vej €e&ECG.

Example 6. Consider (K, E) as described in Example 1. Then its complement is represented in Table 8.

Table 8. Tabular representation of CPHFSS.

(K, 5) e e e

0. 4627”0 4|O 2

0362n105|03 { 0.8€2m0'7|1 } { 0‘562ni0.2|1 }

0. 2eZmO 4|O 5

. 0.6¢2703(0.5, 0.9¢27080.8,
2 { 01021 { 0.5¢>05]0.5 } 0.8¢207)0.2
0.7¢*02|0.1, :

my { 05711 | { 0 162”1.0,9: 09 } { 03e21 |

Deﬁl/li\tion 16. Soft max-AND operation of two CPHFSS (7(\1,
and K, : & — F(M)) defined as

(K1,

&N A (K2, &) = (O, L),

&) and (7(;, &,) (where K,

. 81 — F(M)

where Q : L — F(M) such that Q = K; UK, and L = & X &, ; ¥(I;, 1)) € (8, X &), 1,1, € A.

<mi,h@(l’@x(mz')ezm‘“@x(m")'P@» € é(li, lj)) = I’Qx(mi)ez’“““@x(’”")'P@

2w (m-)
rg; (mj)e”

me (m,)

pA
Py

= ”'E;X (ml)

27rimax{wk—~ (m),wg (mz)
maX{rax(mi),rfzx(mi)}e SR U o
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Deﬁrfli\tion 17. Soft min-OR operation of two CPHFSS (7(\1, &) and (7(;, &,) (Where 7(\1 :E > FM)
and K, : & — F(M)) defined as

(K1, &)V (K2, &) = R, L),
where R : L — F(M) such that R = K, N K, and L = & x Ey; V(1 1)) € (& X &), 1, 1; € A.
<mi, hE(rﬁx(mi)eZ”inX(mi)‘Pk;X)> € E(li, lj) — rﬁ\_(mi)€2ﬂiwl7x(mi)|P§X

2miwe (m;
rig, (m)e™ R
1x

Pe if x€hg —h
PT(\’ leEh" —l’l

Koy
27riw7{§x (m;)

= ri(;x (mi)e

. 2mmm{w (m;),w (m,)} .
mm{’”ﬁx(mi), rf(zx(mi)} K, Ko x |Ple PEX, lf X € hi(\lx N ]’lEr

3.2. Fundamental laws

Proposition 1. Given that (E,Sl), (E, &) and (7(\3, &E3) are any three CPHFSS on M, then the
following holds:
Idempotent laws.
(i). (K1, &) U (K1, &) = (K1, &),
(ii). (K1,E1) Ny (K1, E1) = (K, E1),
(iii). (K1.&) Vg (K1, &) = (K1, E1),
(iv). (Ki,E1) N (K1, E1) = (K1, E),
Commutative laws.
(v). (K1, &) U, (Kz, &) = (K2, &) U (K1, &),
(vi). (K1, E1) Ng (K2, E2) = (Kz, &) Ny (K1, E1),
(vii). (K1, &1) Vg (K2, &) = (K0, &) Vg (K1, &),
(viii). (Ki,E1) N (K7, E)) = (K3, &) Ng (K1, &),

Associative laws.

(ix). (K1, &) Uy (Kz. &) U, (K3, 83)) = (K1, 1) U, (K2, 8)) Uy (K3, E3),
(x). (E,al)m(« &) e (K, 89) = (K1 &) 0 (K2, &) 0y (K5, ),
(xi). (K1,E1) Ug ((Kz, &) Vs (K3, &) = (K1, 1) Ug (K2, &) U (K, E3),

(xii). (K1, &) N (K2, &) N (K3, E3)) = (K1, E1) N (K2, &) N (K3, Es).

Proof. (1)—(viii) laws are straight-forward and follow from their definition.
(ix) L.H.S: Let (K;, &) and (K3, E3) (where K, : &, — F(M) and K5 : & — F(M)) be two
CPHFSS on M. By definition of extended union we have (W, M) (where W : M — F(M)) such that

(W, M) = (K2, &) U; (K3, &),
where W = K, U; K3, M = &, U E3; Vm; € M and m; € M, with m' € & and m? € &;.

E(m}), if mje& —8&s,
W(m]) = E(m?)’ if m; e 83 - 82,

Ky(mb) Ug Kx(m?),  if m; € & N&Es.
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As, (K1,E1) Uy (K2, &) U (K3, 3)) = (K7, E1) Ug (W, M). Suppose that (K1, &) Uy (W, M) = (X, N)

such that X : N — F(M), where X = (K; U; W), N = & UM = & U8, U&y; Vn; € N withn} € &y,
nf € &, and nj € &,

Ki(n)). if nje& —& &,
&(n?), if n;€& —& -&,
N {(E(ni), . if nje&—E —&Ey,
X(nj) = E(n}) Ng E(n?), if nje& NE —Es,
E(n?) Ne ﬁ(n;), if n;€e&NE &,
Kx(m) N Ki(n), if n;e&NE - &,
Ki(n!) N Kx(n2) N K3(nd),  if nj € & N&ENEs.

R.HLS: Let (K1, &) and (K3, &) (where K; : & — F(M) and K, : &, — F(M)) be two CPHFSS over
M. By definition of extended union we have (S, P) (where S : P — F(M)) such that

(S,P) = (K., &) U; (K3, ),

Where/S\:f(Tugf(z,P:& U82;ij€Pandm,-€M,withp} € & andp?eé)z.

R Ki(p). if pje& -6,
S(p)) = Kz(P?), if pje& &,

Ki(ph Ue Kx(pd), if pje & N&,.

As, ((K1,8)U; (K2, 82)) Uy (K3,83) = (S, P)U, (K3, E3). Suppose that (S, P) Uy (K3, E3) = (Y, N) such

that Y : N — F(M), where ¥ = (S U; K3), N = PUE; =& U& U & Vnj € N withnl € &, n2 € &,
andn? € &;,

Ki(n}), if nje& —& -8&;,
K ). if nje& -8 -8,
Ks(nd), if n;e8& -8 -8&,
Y(n)) = Z(:l(n;.) Ne E(r@), if ;€& NE - &,
{(\2(115) Ne E(n?), if nje&NE-&y,
Ez(n?) Ne E(n}), . if nje&NE -&,
Kl(n}) Ne K2(n§) Ne K3(n;), if nje&NENGE;.

Then X(n;) = Y(n;), ¥n; € N.
Thus L.H.S = R.H.S.
Hence, (ix) is hold. d

Proof. (xi) L.H.S: Let (K5, &) and (K3,&3) (where K, : & — F(M) and K3 : & — F(M)) be two
CPHFSS on M. By definition of restricted union we have (U, M") (where U : M’ — F(M)) such that

(U, M) = (K3, &) Ug (K3, E3),
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where U = 7(; Uscf(;, M =& NE;s; Vm;. € M’ and m; € M,
<mi, hﬁ(ra(m,.)ez’ffwax(mﬂ'P@» e Um') == rg (m)e*™ | Py,

2riwz (m;)
_ . & M) p__
g, (m;)e 200 P 5o

2riwz (m;
=] g (mpe™ 5" Py
3x

max{rfzx(mi), re; (mp)pe

} 27rimax{w7<§x (mi),a)l’(gx (mi)} ‘ -

if xe€ hzx - hf(;x’

if x€hg —he

Ksy?

if th;{; ﬂhk‘},

As, (K1, &1) Uz (Kz, &) Ug (K3, E3)) = (K1, &) Ug (U, M"). Suppose that (K7, &) Ug (U, M) = (V,N')

such that V : N’ — F(M), where V= (7(\1 Ug ﬁ), N’

2riwe (m;)
rg; (mpe” Fu P

re. (me

2riwg; (m;)
g, (m;)e 3x PK3X,

Z”iwl’(ar(mi) P—

27rimax{wA (m;),w (m»)}
max{rA (m), re (mi)}e AR
K Ko

m _ 2rimax\we (m;),wz (m;)}
m . m Koy K3,
ax{erx( l)’ rK’;A( l)}e 2x 3x

= 81 NnM
<mi, h"}(rvx(mi)€2ﬂiw‘7x(mi)'P"7x)> eVin) = rvX(m,‘)ez”"‘”Vx(""')'PVX

Pea
7)9’

PA7

27rimax{w’\ (m;),w (m~)}
max{r;; (m;), rg; (mi)}e R R
3x 1x

max{re: (my), rg (o), rg: (my))e

where Pe = Py, - Pg; ,P5 = Pg; - PEX’PA = Pg;

} 2m'max{wk~2 . (mi),wl(Azx (m,-),w;(gx (mi)} ’?)
i Vs

P;g and Py = PA

:81 082083;Vn;€N’,

ifth;(‘l ﬂhk\z N

P+

Ko PK3)L

R.HLS: Let (K, &) and (K, &) (where K : & — ., F(M) and d K, : &, — F(M)) be two CPHFSS over
M. By definition of restricted union we have (Q O) (where Q O — F(M)) such that

(0,0) = (K1, &) Ur (K2, &),

whereng(\luff(;, O0=EN&E;Yoj€Oandm; € M,
<ml,h ( (m; )ez”i“’ﬁr(m")'PQ_» € @\(0/‘) = Qy(mi)ezm“@(m")‘PQx

2riwz (m;)
K 1
g (m))e Y P Ko

2riwz (m;)
. . Ko P—
= er;c (”ll)e 2x )

max{rflx(m,-), e, (m)je

} 27rimax{wKAlx ('ni)’w@x (mi)} ‘PA

1fx€h — h=
if xehgx—h

K>,

le’

if xe hKAH N h@x,

As, (K1, &) Ug (K2, £))) Ug (K3, E3) = (S, P) Ug (K3, E3). Suppose that (0, 0) U (K3.E3) = (Z,N")

such that Z : N’ — F(M), where 7= (@ Ug 7(;), N =
<mi, hg(rfx(mi)ez”i“’?x(mi)|PZ)> € Z(n}) = rfx(mi)eh"‘“ix(mi)'PZ
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2riwz- (m;) 1
Vf(‘lx(mi)e K1 x pax’ if xe hk\u - hjgzx - /’ljgx,
2riwz (m;) 1
I”Ex(mi)e Koy PEX, if xe hzx - hf(;x - h;{l){,
2riwz (m;) 1
ri (me” T P it x€hg —hg —hg
27rlmax{w1’q (m)wis _(mi)} if
— { (mz) er (m )} * ! PE’ I xe hk\n N hk\z,\ - hk;x,
27rzmax{wk~2 (m,'),w;(; (mi)} if
2rimax wgs (m,-),w,’;l (mi)} .
max{rK3 (m,), g (m; )} x x P, if xe hﬁx N h;glx - h@x,
27rimax{w1/6 (m;),w@ (mi),wg; (mi)} .
ma-x{rax(ml)a rf(zx(mi)7 rﬂx(ml)}e X X 3x PV’ lf X € hKv\]x ﬂ h@x m hax’

where Pe = P;ax . Pk;_x’pa = Pk;_x . PEX’PA = P;{;x . Pk\lx and pv = Pk\lx . Pk;x . PEX'

Then V(1) = Z(n), ¥n', € N

Thus L.H.S = R.H.S.

Hence, (xi) is hold. O

The proof of (x) is similar to (ix) and (xii) is similar to (xi).

Proposition 2. Given that (7(7, &E1) and (7(;, &) are any two CPHFSS on M, then the following holds:
Involution law.

i (K7).&) = &:.&,

De-Morgan’s law.

(i) (K7, &) e (K2, 80) = ((Kr U Ko, (61 0 &2),
(iii). (Ki'. &) U (K2, &) = (K1 n: o). (61 N &)
(iv). (K. &) (K. &) = (K U K. (61 U &)
v (K. &) u; (K, 8:) = ((Ki 0 Ko (61 U &)
i) (K. &) A (K. &) = (Kl V). (& x &),

ii). (K. &)V (K .&) = (K A K. (& x &),
Proof. (1) is stralght -forward.

(i) L.H.S: Let (K}, &) and (K2, &) (where K| : & — F(M) and K> : & — F(M)) be two
CPHEFSS on M. Then by definition of complement and restricted intersection we have

(K1".&) e (K2'.&) = T.0),
where T = (EL Ne Ec) and O = & N&Ey; Yo € 0,
<ml~, h;(r,: (m,-)eZ""“’a("’”'PTX )> €l(o) = r (ml-)ez”i“@(m")'PTX

2miw—-c (m;) .
(. K . e — N
rKli(ml)e Lx PKI;, if xe hKl; thi’
2miw—-c (m;) .
(. o . e —he
_ rKZ;(ml)e 2% Psz’ if xe thl hKl;,
. 27rimin{wAc(m,-),wAr(m, .
. . . . K K3, C — .
mm{rKli(ml), eri(m,)}e x x PKIX PEX’ if xe hK.i N thi‘
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R.H.S: By the definition of restricted union we have (@, 0) = (7(\1, E1)Ue (7(;, &,) where Q = 7(\1 Uge 7(;,
O0=ENE #¢;Yo;€0Oand m; € M,

<ml’ h~ ( (m )eZNIwQ,((ml)'P )> e Q(Oj) — ”Q‘X(mi)ezmw@(mi)‘P@
- 2m'w;(~| (m;) P— if h — h—
rKlX(ml')e * le’ I x € Kz
2niwz (m; .
— r@,r(mi)e g (i) PT(ZX’ if xe h;(; hax,

2rimax (m,)w (m,) .
max{rflx(mi), rgx(m,-)}e { }‘P;gu . PEX, if xe hﬂx N hEx'

Now, by the definition of complement (mi)ez”lwﬁi(mi)|P§c»
2miw—c (m;) .
rai(mi)e Kix Pai, if xe hi(\l; — hi{zi’

2miw—c (m;) .
. . K . —c — h—
_ eri(ml)e 2x PKzi’ if xe thi hKli’

. 27rimin{w1?<r'(m,-),wl?c(m,-)} c
mm{r;;l;(m,-), rgi(m,-)}e Lx 2x PKI‘ PKzX if xe h ﬂ hK/;;

Then, 1(0;) = Q%(0;,); Yo, € O.
Thus L.H.S = R.H.S.

Hence, (i1) is hold. d

Proof. (iv) L.H.S: Let (K}, &) and (K>, &) (where K, : & — F(M) and K, : & — F(M)) be two
CPHFSS on M. Then by definition of complement and extended intersection we have

(1. &) n (K. &) = (J. P),

where J = (EC Ng EC) and P = & U&,; Vp; € Pand m; € M, with p} € & and p? €&,.

K (p)). if p; €& —&,
J(p)) =4 K (P?), if pje& -&,

K (phn: Ky (p?), if p;e&nén.

R.H.S: By the definition of extended union we have (§, P) = (7(\1, S Y, (7(;, &,) where S = 7(\1 U, 7(;,
P=8 U&E,;Yp;e Pandm; € M, Withp} €& andp? €&,.

Ki(p), if pje& -6,
S(pj) = Kz(P?), if pje& —-&y,

Ki(ph) Us Kx(p?),  if pje & Né&,.

Now, by the definition of complement we have

K, (Pj) if p;e& -&,
S“pp =4 K (pi) if pje& &,
Kl (pj) mf K> (Pf), if Dj € 81 N 82.
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Then, J(p;) = S(p;); Vp; € P.
Thus L.H.S = R.H.S.
Hence, (iv) is hold. O

Proof. (vi) L.H.S: Let (K, &) and (K2, &) (where K, : & — F(M) and K, : & — F(M)) be two
CPHFSS on M. Then by definition of complement and soft max-AND operation we have

K1 .&) A K, &) =, L),

where J'= (K" UK, ) and L = & x &, 1 V(1. 1)) € (& X &), I1.1; € A,
<ml~, hj{rjx(m,-)ez’ri“’ﬁ(mi)'Pfx)> e J(l;, [})) = ”fx(mi)ezniwﬂ(m")‘Pfx

2miw—-c (m;) .
SN . K —c e — h—t
rKl;(ml)e X PKI;’ if xe hKI; th‘X’
21iw—c (m;) .
S . K: o e — h—t
— erl(ml)e 2x Psz.’ if xe hK2: hKI;’

wWc(m;),w—c(m;
Kli( i) sz( i)

max{re<(m), ree(mp)e wrinr [P - Pee, i x € hgs N B,

X

R.H.S: By the definition of soft min-OR we have
(K, &) V (K2, &) = R L),

where R : L — F(M) such that R = K, N K, and L = &, x E; V(1. 1)) € (§1 X &), I, 1; € A.
<m,~, hk\(rk‘x(mi)€2ﬂiwkx(mi)‘PEX)> S E(li, l]) — I’Ex(m,‘)ezmwﬁr(mi)|Pk‘x

2riwz (m;)
re; (mpe” T P if x€hg —hg,
2miw- (m;)
= rgx(mi)e Ky P;; , if xe h hKl
. 27r1mzn{a)f—~ (ml)u) (m,
mm{r;glx(mi), r;gzx(m,-)} Pz - Py, if xe€ h th,\-‘

.. Dtitrse (m;
Now, by the definition of complement we have rg (m;)e”™ %" P
2miw—-c (m;) .
¢ . Ky ¢ —c — Nl—c
rle(m,)e 1) Ple’ if xe hle thx,
2wz (m;) .
SN . Ky _—c — — h—c
— erx(ml)e PKzX’ if xe thx hle,

27rimax{wAc (m;),wz—c(m;) } .
S ) p— . Kix K> ¢ . — —c
max{rle(ml), rKZ;(m,)}e x x Ple PKzi’ if xe hKli N thA

Then, J(i;, I = R(l, [)); Vi, 1)) € (& X &).
Thus L.H.S = R.H.S.
Hence, (vi) is hold. a

The proof of (iii) is similar to (ii), (v) is similar to (iv) and (vii) is similar to (vi).

AIMS Mathematics Volume 8, Issue 8, 17765-17802.



17781

4. Algorithms

In this section, we will present the algorithms by comparison method, soft max-AND operation
and soft min-OR operation on one and two complex probabilistic hesitant fuzzy soft sets for decision
making. If the evaluation is done by single expert then we use Algorithm 1. If the evaluation is done
by two experts and the person wants the decision based on supreme quality of parameters then we
use Algorithm 2 and if the evaluation is done by two experts and the person wants the decision based
on lowest quality of parameters then we use Algorithm 3. If the experts are more than two then the
Algorithms 2 and 3 can also be used with the same working policy except where we use two sets in
Step 2 we will use more than two sets with the same selection.

Definition 18. In the comparison algorithm the score function S is defined as
S = (8(rp) + S(wp)) x S(Pp).

where S(r,?) is obtained by subtracting the column sum from the row sum of amplitude terms in the
comparison table, §(a)g) is obtained by subtracting the column sum from the row sum of phase terms
in the comparison table, and S(Pg) is obtained by taking the product of probability choice values.

Algorithm 1: Proposed Algorithm-1
Step 1: Input universal set N = {m,, my, ms, ..., my} and set of attributes & where & C G.
Step 2: Design CPHESS (K, &) where K : & — F(M) on M.

Step 3: Design tables for complex valued membership hl?(r,? (m,-)ez’ri“’l?x(mi)‘PEX) of CPHFSS (E ,E)

separately for rgz, wg and Pz.

Step 4: Compute the choice value C in the tabular form for amplitude term Cv’(rg) and phase term
C‘(a);g) by taking average of hesitant fuzzy set and for probability C’(PE) by taking their product.
Step 5: Compute the comparison tables for amplitude term @(71?) and phase term @(w,?), where

C(m;,m;) = Y (if m; w.r.t e; > m; w.r.t e; then 1 otherwise 0) where i,i ={1,2,3,..., no. of the
EjE(S

universal elements}.

Step 6: Calculate the S(ri), S(wg) and S(PE) by using Definition 18.

Step 7: Evaluate the final score S by using Definition 18.

Step 8: Any of the alternative is selected as optimal decision with the highest score value.

The flow chart of Algorithm 1 is given in Figure 1.
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Universal set l (Bt e ‘ CPHFSS
—

Score values

¢

Optimal decision
- =

Figure 1. Flow chart of Algorithm 1.

Algorithm 2: Proposed Algorithm-2
Step 1: Input universal set M = {m;, m,, ms, ..., m;} and set of attributes & where & C G.
Step 2: Design two CPHFSSs (7(\1, &) and (7(\2, &,) (where K :& > F(M) and K, : & — F(M))
on universal set M.
Step 3: Evaluate

(0.L) = (K1.&)) A (K2, &),

where 0 : L — FM); Y(I,, 1)) € (&1 X &), I,1; € A.
Step 4: Figure out the choice value Cau, [)(m;); Y m; € M, (l;,1;) € (& X &,) defined as
% (rg.(m) x wg, (my))

C(li’l')( i): .
o 3 (rg.(m)

X

X

where x = 1,2, 3, ...,n and n is the number of possible elements in ha(r@(m,-)ez”"‘”@x(mf)' P@)'

Step 5: Figure out the score values 5(/;, [;)(m;) by product of the maximum of Ca,1 ;) against each
m; with corresponding probability.
Step 6: The weighted value for each S(/;, [;)(m;) is:

Somy= > S L)m).
(i,lj)e(E1xE2)

Step 7: Any of the alternative is selected as optimal decision for which:

¥ = max {S(ml), S(my), ..., S(ml)}.

The flow chart of Algorithm 2 is given in Figure 2.

AIMS Mathematics Volume 8, Issue 8, 17765-17802.



17783

Soft max-
AND

Universal set ql Set of attributes
operation

Choice

values

)
| Weighted values Score values |
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Figure 2. Flow chart of Algorithm 2.

Algorithm 3: Proposed Algorithm-3
Step 1: Input universal set M = {m;, m,, ms, ..., m;} and set of attributes & where & C G.
Step 2: Design two CPHFSSs (7(\1, &p) and (7(;, &,) (where 7(\1 : & — F(M) and 7(; : & — F(M))
on universal set M.
Step 3: Evaluate

R.L) = (K1,&) V (K3, &),

where R : L — F(M); V(1 1)) € (61 X &), 1,1, € A.
Step 4: Figure out the choice value Ca, [j)(m); ¥ m; € M,(l;,1;) € (& X &) defined as
% (rg.(m) x wg,(my))

Cllin L)) = =
o % (rg.m0)

X

where x = 1,2, 3, ...,n and n is the number of possible elements in ha(réx(mi)ez”iwéx(’"f)' P@),

Step S: Figure out the score values 5(/;, [;)(m;) by product of the maximum of Ca,1 ;) against each
m; with corresponding probability.
Step 6: The weighted value for each 5(/;, [;)(m;) is

Somy= > S L)m).
Uil )e(E1xEr)

Step 7: Any of the alternative is selected as optimal decision for which

¥ = max {S(ml), S(my), ..., S(ml)}.
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The flow chart of Algorithm 3 is given in Figure 3.

CPHFSS by

‘ expert 1 |
| /" Soft min-

Universal set ‘l Set of attributes ‘ OR

L | ’
;"\CPHFSS by ,

o Choice

values

)
Weighted values ‘ Score values |

4

Optimal decision

Figure 3. Flow chart of Algorithm 3.

5. Applications using multi-parameter group decision making

In this section, we illustrate applications and case studies of our proposed sets to manifest the
integrity and supremacy of the explored work. In this paper, we deal with hesitancy, randomness,
and fuzziness using parameterized families simultaneously, which is efficient and useful. Complex
probabilistic hesitant fuzzy sets play a very significant role in decision making. It helps to save time
while dealing with hesitancy, randomness, and fuzziness separately. In this paper, the membership
function is in complex form. In the engineering field, complex forms or complex numbers play a
very very significant role. For example, in the modelling of bridges, signal processing, computational
intelligence, data analysis, image processing, radar systems, mobile communication systems, computer
graphics, launching a satellite, electrical appliances, and many more.

One of the biggest failures due to lack of knowledge of complex numbers is, the Tacoma Bridge in
the USA in Washington State near Puget Sound, which was opened on 1* July 1940, but unfortunately
on 7" November 1940 it collapsed for certain reasons [49]. In the modeling of bridges, the imaginary
part of complex numbers measures the frequency of the vibrations, and the real part gives you the
measure of the amount of decay in the motion. Professor Ahmer Wadee of Imperial College London
spoke about the strength of complex numbers and how they work to keep bridges from collapsing [50].

Case study 1. A suspension bridge can be characterized as a pedestrian bridge or footbridge, a very
environment-friendly, light-weight shape that allows pedestrians to go through risky areas such as
highways, rivers, and ravines. Suspension bridges can span somewhere between 2,000 to 13,000 feet,
which is farther than different kinds of bridges. This is why it is frequently the layout of preference
when connecting very far-off locations. Suspension bridges are an antique but smart technology.
Suppose the X country wants to construct the world’s best suspension bridge and M = {m, m,,
ms, My, ms} be the set of the engineers who presented the bridge model. The government wants to
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take into account the following three specific features & = {ey, ey, e3} where ey = “capability to bear
forces (such as wind force, gravity force, restoring force)”, e, =“safety during natural disasters” and
es =“durability”. The government wants to select the best model among them. As a result, experts
gave the CPHFSS (E ,&) which furnishes an approximate narration of complex probabilistic hesitant

fuzzy information of five models of engineers and their features represented in the Table 9.

Table 9. Tabular representation of CPHFSS (E ,E).

(K’ 8) €1 2
0. 4627”0 8|0 7 0.7€2ﬂi0'7 |O4, V0
my 0.2¢27109)0.2, 0.1¢2705|0.3, { 8 ZZZWO 1:8 2 }
0.3¢*702/0.1 0.3¢20910.3
0.1e*7]0.8, 0.4¢>705(0.5, .
my 0. Sezmo 3|O 2 0.5€2m'0.4|0.5 { 0.2e |1 }
2mi0.3
ms { 0.2£270. 6|1 { 0.8¢2703] } { 8;2%07:8? }
27i0.6
eZmO 5|O 7 0.8627”'0 5|0.2, 0 3827”0 4|0 8
" 0.7 8|0 3 ot . °10.3, 0.7 20 8|0 2
0.8¢2703(0.5
0‘36271[0.8'0'9 .
203 ’ 27i0.7
ms { 0.5e |1 0.9¢07]0.1 { 0.7€*707|1 }

For illustration, the above table is of CPHFSS (i(\ , &) established on specific parameters (forces,
safety, and durability) of the bridge models presented by engineers. Where the top left cell contains the
complex membership of the bridge model of m| with respect to e, = forces. Similarly, the bottom right
cell contains the complex membership of the bridge model of ms with respect to e3 = durability.

By using Step 3 of the Algorithm 1, Tables 10—12 represent the complex membership values for the
amplitude term, phase term, and probability separately.

Table 10. Tabular representation of the membership of amplitude term.

rg € € €3

m {0.4,0.2, 0.3} {0.7, 0.1, 0.3} {0.9, 0.8}
Ny {0.1, 0.8} {0.4, 0.5} {0.2}
ms {0.2} {0.8} {0.7, 0.9}
my {0.5, 0.7} {0.8, 0.9, 0.8} {0.3 0.7}
ms {0.5} {0.3, 0.9} {0.7}
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Table 11. Tabular representation of the membership of phase term.

wg (4] () és

m {0.8, 0.6, 0.2} {0.7, 0.5, 0.9} {0.9, 0.1}
my {0.7, 0.3} {0.5, 0.4} {0.3}

ms {0.6} {0.3} {0.3,0.7}
my {0.5, 0.8} {0.6, 0.5, 0.8} {0.4, 0.8}
ms {0.3} {0.8, 0.7} {0.7}

Table 12. Tabular representation of the probability of membership.

Pk\ €] (%) 3
m {0.7,0.2, 0.1} {0.4,0.3, 0.3} {0.6, 0.4}
my {0.8, 0.2} {0.5, 0.5} {1}
ms {1} {1} {0.9, 0.1}
my {0.7, 0.3} {0.2,0.3, 0.5} {0.8, 0.2}
ms {1} {0.9,0.1} {1}

Computation by using Step 4 of the Algorithm 1, Tables 13—15 represent the choice values for
amplitude term, phase term, and probability separately.

AIMS Mathematics

Table 13. Choice value of amplitude term.

C(”E) €l € €3
mp 0.3 0.36 0.85
my 0.45 0.45 0.2
ms 0.2 0.8 0.8
my 0.6 0.83 0.5
ms 0.5 0.6 0.7

Table 14. Choice value of phase term.

Clwg) el e e;
my 0.53 0.7 0.5
my 0.5 0.45 0.3
ms 0.6 0.3 0.5
my 0.65 0.63 0.6
ms 0.3 0.75 0.7
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Table 15. Choice value of probability.

C(Pg) e e e3
m 0.014 0.036 0.24
my 0.16 0.25 1
ms 1 1 0.09
my 0.21 0.03 0.16
ms 1 0.09 1

Computation by using Step 5 of the Algorithm 1, Tables 16 and 17 represent the comparison of
amplitude term and phase term.

Table 16. Comparision table for amplitude term.

C(rg) my my ms N ms
ny 3 1 2 1 1
N 2 3 1 0 0
s 1 2 3 1 2
Ny 2 3 2 3 2
ms 2 3 1 1 3

Table 17. Comparison table for phase term.

Clwg) m my m; my ms
ny 3 3 2 1 1
my 0 3 1 0 1
ms 2 2 3 0 1
ny 2 3 3 3 1
ms 2 2 2 2 3

Evaluation by using Step 6 of the Algorithm 1, Table 18 represent the score values of S(r;g), g(w,?)
and S(PE).

Table 18. Score values.

row sum col. sum row sum col. sum

@(}’k‘) @(FE) S(rg) @(U)E) @(wk‘) S(wg)  S(Pg)

m; 8 10 -2 10 9 1 0.00012096
m; 6 12 -6 5 13 -8 0.04

msz 9 9 0 8 11 -3 0.09

my 12 6 6 12 6 6 0.001008
ms 10 8 2 11 7 4 0.09

Evaluation by using Step 7 of the Algorithm 1, the final score S is

S(@m,) = -0.00012, S(m,) = —0.56, S(m3) = -0.27, S(ms) = 0.012096, S(ms) = 0.54.
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By using Step 8 of the Algorithm 1, the best bridge model among five engineers is of ms. So, the
government will select the model of ms engineer to build the suspension bridge.

The graphical representation of ranking is given in Figure 4.

0.6
0.54
0.4
0.2
0 -0.00012 o 0.012096
0.2
0.4
#-0.56
0.6 0.56

-0.8
§(my) §(m2) §(ms) s(ma) s(ms)

Figure 4. Ranking results.

Case study 2. Circuit simulation is an essential phase of developing digital products. With the
assistance of simulators, we are able to compute the competencies of circuits as well as analyze their
overall performance without making the circuit. It is cost effiient as well as time-saving. With the
assistance of software, we can design complicated circuits in no time.

There is a wide range of circuit simulator software and equipment in the market. For instance,
Proteus, Droid Tesla, NI's Multisim, Ngspice, Synopsys, Cadence Spectre, PSIM and many more. These
assist agencies by means of saving their time and money. However, it is difficult to pick out exceptional
circuit simulation software by giving a significant number of options.

Suppose the manager of the multinational company Y wants to buy complicated multi-purpose
circuit simulator software. For that, the manager hires the two experts and provides them with five
circuit simulator software and M = {my, my, ms, my, ms} be the set of the simulator softwares. The two
experts evaluate with CPHF information based on the given set of parameters G. Let the first expert
7(\1 evaluate with the set of parameters &; = {ey, e, €3, e4} C G and the second expert 7(\2 evaluate with
the set of parameters &, = {es, es, €7, €3} € G where e; = library parts, e, = 3D viewing features, ez =
graphical representation, e, = analog and digital components, es = real looking, es = draw circuit
quickly, e; = readymade circuit and eg = expensive. The manager wants to buy the circuit simulator
software, which consists of supreme quality parameters. Then the right decision for selecting the
software is done by using the max-AND operator. The evaluation given by the experts is presented in
Tables 19 and 20.
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Table 19. Tabular representation of CPHFSS (7(\1, &E).

(K1,E1) e e; ey
0.6e701]0.1,
026271101'07 } { 03627”08|06 } ori0d pri0s
m { 270i0.7 27i0.1 { 0.1 |1 0.7¢779°10.1,
0.7e 0.3 0.9¢ 0.4 036030 8
0. 9627”0 4|0 8 5ri08 0. 16’27”0 2|O 9 203
" {0762”‘°8|02 0501 02020301 | | 01
0.6702|0.2, :
] le 27i0.1 0. 8 eZmO.9 06,
ns { 0-4627”0.4” { 0. 8627”04|0 4 { 0.7¢ 271103:0 2 } { eZﬂiO.S:O 4 }
0.76>1(0.4 -
0. 3e2mO 6|0 1
] 0. 7eZmO 2|0 7 0. 6e27r10 9|0 6
2mi0.2 2mi0.1
" { 8 2227”0 8:8 3 { 0471 } { 0.2¢70410.3 } { 0.4¢*7|0.4
) 0. SeZmO llo 2
27i0.3
. : 0. 6627”0 6|0 5
Table 20. Tabular representation of CPHFSS (7(\2, &r).
(7(\2, &) es €6 es
0.2¢707|0.3, .
4 . 0.4e709|0.3, 0.6e>07|0.2
27i0.5 27i0.6 ’
" [ ot | 8:;%0.3:82 { 0.7¢*72/0.7 } { 0.7¢*%0.8
0.4e%03|0.2 _
j ’ ; 0.8¢704|0.3, 0.7¢*09|0.6
27i0.8 2mi0.1 ’
" Sj?;ﬂm:gjé’ L Odein | { 0.9¢70210.7 } { 0.9¢>07|0.4
) 0. 6eZmO 3|0 2
2mi0.3
ms { 0.762ﬂi0'9|1 } { géizmo.“:g.g 0.6¢ 2mO7|O 4, { 0.262ﬂi0'6|1 }
' ' 0.8¢>0]0.4
: . 0.2¢208]0.3
0.2£7706)0.2, 0.6e%70310.1, i . ’
my { eZniO.2|0 8 0 3627ri0.3|0 9 { 0 562 O.7|1 } 0-582 .0'4|0-3,
' ' ’ 0.8¢27:110.4
0.1¢27102|0.2 .
0.3¢02(0.2, } o { 0.8¢703/0.3 } .
m 0.3¢704|0.3, ~ ’ 0.9¢%7103|1
; { 0.5¢273(0.8 0 6e2m‘0~3:0. . 08907 | | i

Evaluate the soft max-AND operation (Q, L) = (7(\1, E) A (7(;, &») by using Step 3 of Algorithm 2,
represented in Table 21.
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Table 21. Evaluation by using soft max-AND operation.

(O,L) (e Xes) (e1 X es) (e1 X e7) (e1 X eg)
27i0.7
. { 0.6¢27703(0.7, } 8?;”,.0.7:8‘(2);’ { 0.4¢277°9|0.21 } { 0.6¢2707|0.14, }
1 27i0.7 . VI 27i0.7 27i0.8
0.7¢707]0.3 0.302703)0.4 0.7¢207)0.21 0.7¢2703)0.24
27i0.4
. g‘g;mo.g:g'(l)g’ { 0.9¢27104(0.8, } { 0.9¢270410.24, } { 0.9¢271%2|0.48, }
2 . U4, 27i0.8 27i0.8 27i0.8
0120710 6 0.7¢2703|0.2 0.9¢2703)0.14 0.9¢27103]0.08
. 0.6€%"04|0.2
27i0.4 5
m; { 0.7 27ri0.9|1 } { 8-;227”.0'4:8-2, } 0.662ﬂi0'7|0.4, { 0’462711'0.6'1 }
’ ’ 0.8¢2709]0.4
0.3¢27060.02, 0.6€*"060.01, 0.5¢*"0710.1, 0.3¢%70-810.03,
My 0.9¢2702|0.16, 0.9¢%703|0.18, 0.9¢%70-2|0.2, 0.9¢%"0410.06,
0.5¢*708|0.7 0.5¢%708)0.7 0.5€*7080.7 0.8¢2708]0.28
- 0.3¢2703]0.2 .
0.3¢27703(0.2, } o 0.8¢2703]0.3, 0
ms { rri03 0.3¢2704|0.3, .y { 092031}
0.5¢ 0.8 0.6¢23(0.5 0.8¢ 0.7
(Q,L) (exXes) (€2 X €6) (€2 X €7) (€2 X e3)
27108
- { 0.6e703|0.6, } g‘gzlﬂiﬁﬁ:g‘g, { 0.4¢709|0.18, } { 0.6703|0.12, }
1 27i0.1 . . 27i0.2 27i0.8
0.9¢27010.4 0302030 4 0.9¢27102|0.28 0.9¢277%3]0.32
0.5¢2708]0.2 .
. ’ 0.8¢2708]0.3, 0.7€*"0910.6
my 0.9¢7108|0.2, { 0562081 { rrion o
0.127070.6 0.9¢7410.7 0.9¢77]0.4
0.7€270210.2, 0.6€270210.1, 0.6€%70910.04, 0.6€%70|0.2,
ms 0.8¢204|0.4, 0.8¢2704|0.2, 0.8¢*"070.16 0.8¢%"04|0 4,
0.7¢7010.4 0.7¢701)0.4 0.8¢709|0.16 0.7¢701)0.4
- 0.4¢*7080.3
0.4¢27105(0.2, } { O6e2’”05|01 2o o
my { rrion 103 { 05711 | 0.5¢>04(0.3,
0.8¢27102|0.8 0.3¢>103]0.9 0.80270110.4
2mi0.3
. 0.9e2’”'0-3|0.18 0. gemo 8:8 (1)2 0.9¢2703|0.27, 0.9¢271%3]0.9,
: 0.862”i0'8|0.08 0.62703(0 5 0.8¢27103]0.07 0.8¢27703|0. 1
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Table 21. Evaluation by using soft max-AND operation (Continued).

(Q,L) (e3Xes) (e3 X e6) (e3 X e7) (e3 X eg)
0.2¢?0710.3 ; ;
. . ’ 0.4¢710910.3 0.6e?07|0.2
m { 0.6¢2]1 } 0.1¢2710.3, { 2i021() 7 } { 27081y @
0.3¢2103(0.4 0.7¢ 0.7 0.7 0.8
27i0.3
. 0 ou0510.00 { 1627020.9, } { 0.8¢2704/0.27, } { 0.7¢>709]0.54, }
2 27i0.3 27i0.3 27i0.7
0.1207)0.6 0.2e 0.1 0.9¢ |0.07 0.9¢ |0.04
27i0.3
. { 0.7¢2702]0.8, } { ezﬂf0-3|o.4 0 gezﬂm:g (1)2 { 0.2¢2709]0.8, }
3 27i0.3 27i0.4 27i0.3
0.7e 0.2 Te |0.1 0.8¢2109)0.4 0.7e 0.2
27i0.8
. { 0.7€>70|0.14, } { 0.7€279510.07, } { 0.7€270710.7, } 8'22%1'0-4:8'3;’
4 27i0.4 27i0.4 27i0.4 : U
0.8e |0.24 0.3e |0.27 0.2e 0.3 0.8¢270110.4
0.5¢?7103|0.04, 0.5¢%7102|0.04, 0.8¢279-310.06, 0.9¢77310.2,
ms 0.9¢77104|0.24, 0.9¢2704|0.09, 0.9¢7779:610.21, 0.9¢2794)0.3,
0.6e*1090.5 0.6e%709|0.25 0.6e*:610.5 0.6e>"0|0.5
(Q,L) (eq4 Xes) (e4 X €6) (eq4 X €7) (e4 X €3)
0.6e703|0.1, 0.67™710.03, 0.6¢>"0°|0.03, 0.67°7|0.02,
nm 0.7¢*103)0.1, 0.7¢*7109|0.03, 0.7¢%95)0.07, 0.7¢*38)0.08,
0.3¢?03|0.8 0.3¢?710310.32 0.3¢7310.8 0.3¢7310.8
0.4¢%7103|0.2
: ’ ; 0.8¢704|0.3, 0.7¢72|0.6,
my 0.9e>%0.2, + { 0.1>™|1 | { 202 2ri0.7
0.17707)0.6 0.9¢ 0.7 0.9¢ 0.4
27i0.9
" { 0.762m’0.9|0.6’ } { 0-2627”'0.9'0.3 82227“07:8 ié { De 2mi0. 9|O 6, }
3 27i0.5 27i0.5 27i0.5
0.3e 0.4 0.3e |O.2 0.8¢2709(0 4 0.3e 0.4
27i0.9
m { 0.6e7109)0.12, } { 0.6e7109)0.06, } { 0.6e7109)0.6, 8262,”07:8 ig
4 27i0.7 27i0.7 27i0.7
0.8¢ |0.32 0.4e |0.36 0.4e 0.4 0.8¢20110.4
: 0.2e77108)0.2, ‘
0.3627”0'8|0.2, 2ri0A 0.8¢ 27i0. 8|O 3 2i0L8
ms { pri03 0.3¢2704|0.3, 0 { 0.9¢31 |
0.5¢ 0.8 { 0.6¢703)0.5 0.8e 0.7

Computation of the choice value C(l, [)(mp); Y m; € M,(l;,1;) € (& X &) by using Step 4 of the
Algorithm 2, represented in Table 22.
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Table 22. Tabular representation of choice value.

C  (eixen) (e1 X e3) (e1 X e3) (e1 X ey4)

my  0.60769(0.21 0.6/0.00756 0.77272/0.0441  0.75384/0.0336
m,  0.605260.00384  0.575(0.16 0.6[0.0336 0.85/0.0384

my 09| 0.4/0.25 0.69]0.032 0.6|1

my  0.44705/0.00224  0.515[0.00126 0.48947(0.014 0.62/0.000504
ms  0.3)0.16 0.325|0.03 0.45(0.21 0.3|1

C  (eaxen) (e2 X €3) (€2 X €3) (e2 X e4)

my  0.38]0.24 0.58|0.00864 0.41538[0.0504  0.8/0.0384

my 0.79333/0.024 0.8 0.48235/0.21 0.7875/0.24

ms  0.463630.032  0.44285/0.008 0.82727|0.001024  0.44285(0.032
ms  0.33333/0.16 0.43333/0.09 0.7]1 0.35294{0.036
ms  0.53529/0.0144  0.47391/0.0027  0.53529[0.0189  0.53529/0.09

C  (esxe) (e3 X e3) (e3 X e3) (e3 X e4)

my 0.5 0.48333[0.036 0.45454]0.21 0.75384]0.16
my  0.65/0.00216 0.26666/0.09 0.34705/0.0189  0.78750.0216
ms  0.6[0.16 0.3875(0.04 0.661900.00512  0.36666/0.16
ms  0.49333/0.0336  0.47/0.0189 0.63333/0.21 0.42|0.00756
ms  0.435/0.0048 0.41]0.0009 0.49565/0.0063  0.4125/0.03

C  (esxe) (es4 X €) (e4 X €3) (e4 X e4)

my  0.4625(0.008 0.58125]0.000288  0.6125[0.00168  0.66875/0.00128
my  0.65[0.024 0.3|1 0.29411/0.21 0.7875/0.24

msy  0.78(0.24 0.66/0.06 0.84/0.00768 0.66/0.24

ms  0.78571|0.0384 O.82|0.0216 0.82/0.24 0.51052/0.00864
ms  0.4875/0.16 0.41818/0.03 0.7]0.21 0.8[1

Computation of the the score values 5(1;,1;)(m;) by using Step 5 of Algorithm 2, represented in
Table 23.

Table 23. Tabular representation of score value.

S, 1;)(m;) The Score S, 1;)(m;) The Score
S(e; X e;)(m3) 0.9 S(esz X e1)(my) 0.00140
S(e; X ey)(my) 0.00453 S(e3 X ep)(my) 0.0174
S(er X e3)(my) 0.03407 S(es X e3)(m3) 0.00338
8(61 X e4)(my) 0.03264 8(83 X e4)(my) 0.01701
S(e; X e1)(my) 0.01904 S(es X e1)(my) 0.03017
S(es X e3)(my) 0.8 S(es X e3)(my) 0.01771
S(ey X e3)(m3) 0.00084 S(eq X e3)(m3) 0.00645
S(ez X e4)(my) 0.03072 S(€4 X e4)(ms) 0.8

Evaluation of weighted values for each 5(1;, 1;)(m;) by using Step 6 of Algorithm 2 is

S(m;) = 0.08673, S(m,) = 0.87009, S(m3) = 0.91068, S(m4) = 0.04788, S(ms) = 0.8.
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By using Step 7 of Algorithm 2 the best circuit simulator software is ms. So, the manager will buy the

ms software.

The graphical representation of ranking is given in Figure 5.
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Figure 5. Ranking results.

Case study 3. Consider the Case Study 2. Manager wants to buy the circuit simulator software which
consists of the lowest quality of parameters. Then, the right decision for selecting the software is done
by using the min-OR operator. Evaluation given by the experts is represented in Tables 19 and 20.

First of all evaluate the soft min-OR operation (E, L) = (7(\1, &)V (7(;, &») by using Step 3 of
Algorithm 3, represented in Table 24.
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Table 24. Evaluation by using soft min-OR operation.

(R,L) (e;Xes) (€1 X e6) (e X e7) (e1 X eg)
27i0.1
. { 0.2¢¥0110.7, } 8?22”1‘06:8'(2);’ { 0.2¢¥0110.21 } { 0.2¢2701)0.14, }
1 27i0.7 . ) 27i0.2 27i0.7
0.7¢2710.3 0,363 4 0.7¢202|0.21 0.7¢2"0710.24
27i0.3
" 8471227”08:8 (1)2 { 0.1¥1]0.8, } { 0.8¢204|0.24, } { 0.7¢¥04|0.48, }
2 27i0.8 27i0.2 27i0.7
0.1e207)0.6 0.7¢¥08|0.2 0.7¢¥2|0.14 0.7¢¥710.08
‘ 0.4¢¥3|0.2
27i0.3 ’
my | 0.4e041 | { 8'5%4:82’ } 0.6207[0.4, b { 0.262041 |
' ‘ 0.8¢2010.4
0.2¢270|0.02, 0.3¢205|0.01, 0.3¢2709|0.1, 0.2¢2706]0.03,
my 0.8¢2020.16, 0.3¢¥2)0.18, 0.9¢¥20.2, 0.5¢2020.06,
0.5¢>08)0.7 0.5¢>080.7 0.5¢>08)0.7 0.5¢¥-110.28
0.1¢¥02|0.2 .
0.3¢7193|0.2, } iAoy 0.3¢7193|0.3, .
ms { pri03 0.3¢204)0.3, oy { 03¢231 |
0.5¢¥3|0.8 066219305 0.8¢>0910.7
(R,L) (exXes) (e2 X eg) (e2 X &7) (e2 X e3)
27i0.7
0.3¢¥050.6, 0'2€2ﬂ.0 1 0.18, 0.3¢208(0.18, 0.3¢27|0.12,
™ 0.9¢>0110.4 0.le o012 0.7¢>110.28 0.76>71]0.32
' ‘ 0.3¢203|0.4 ‘ ' ‘ '
0.4¢2703|0.2 .
o 0.5¢704|0.3, 0.5¢>810.6
my 0.962”10'8|0.2, { 0. 1e2mO lll { 202 ori0 7 s
01620706 0.9¢>2|0.7 0.9¢77|0.4
0.6¢209|0.2, 0.1¢203)0.1, 0.6¢>03|0.04, 0.2¢>0)0.2,
ms 0.8¢2704(0 4, 0.2¢2704)0.2, 0.6¢2040.16 0.8¢2704|0.4,
0.7¢¥1(0.4 0.7¢¥1]0.4 0.7¢¥110.16 0.7¢¥110.4
. 0.2¢¥110.3
0.2¢¥0110.2, } { 04e2’"°‘|01 oo i 2
my { rri0 pri0 { 04e>11 | 0.5¢204|0.3,
0.8¢2702|0.8 0.3¢>310.9 0.8¢01(0.4
27i0.2
. { 0.3€2ﬂi0'3|0.18 0. ;6271104:8 (1)2 { 0.8627ri0.3|0.27’ } { 0.9eZ7riO.3|0.9, }
5 27i0.3 27i0.6 27i0.8
0.5¢ |0.08 0660305 0.8¢2010.07 0.8¢27080.1

AIMS Mathematics

Volume 8, Issue 8, 17765-17802.



17795

Table 24. Evaluation by using soft min-OR operation (Continued).

0.5¢23|0.8

0.8¢27|0.7

(R,L) (e3Xes) (€3 X e6) (e3 X e7) (e3 X eg)
0.1e70410.3 ; ;
; ; ’ 0.1e704)0.3 0.1e704|0.2
m { 0.1627”0‘4“ } 0.1€2n10.6|0.3’ { 202 ’ } { pri0g s
0.3¢2703/0.4 0.7¢ |0.7 0.7¢ |0.8
27i0.2
. 85;03:8(1)2 { 1e270110.9, } { 0.162792/0.27, } { 0.16292/0.54, }
2 . Ve 27i0.3 27i0.2 27i0.3
0.127070.6 0.2e |0.1 0.1e |0.07 0.2e |0.04
27i0.1
. { 0.12701/0.8, } { e2’”‘0-1|0.4 Oéez,m:g (1)2 { 0.1¢270110.8, }
3 27i0.3 27i0.3 27i0.3
0.7¢ |0.2 2e |0.1 0.8¢2709]0.4 0.7¢ |0.2
271i0.2
m { 0.2¢?7102|0.14, } { 0.6¢2192|0.07, } { 0.5¢771-210.7, } 8’;22,”.0_4:8'3;’
4 27i0.2 27i0.3 27i0.4 : Vs
0.2e |0.24 0.2e |0.27 0.2e 0.3 0.8¢270110.4
0.3¢70:110.04, 0.1e70110.04, 0.5¢770110.06, 0.5¢7710:110.2,
ms 0.5¢7710310.24, 0.3¢7704|0.09, 0.8¢7704|0.21, 0.9¢7710410.3,
0.6e7|0.5 0.6e70310.25 0.6e>™|0.5 0.6e*1090.5
(R,L) (e4Xes) (e4 X €6) (e4 X €7) (e4 X €3)
0.6e7110.1, 0.2¢7110.03, 0.4¢710.03, 0.6¢7™-10.02,
my 0.7¢*15)0.1, 0.1e70310.03, 0.7¢*02|0.07, 0.7¢?103|0.08,
0.3¢703)0.8 0.3¢7710310.32 0.3¢7703)10.8 0.3¢?70310.8
0.1e77103|0.2 )
; ’ ; 0.1€7310.3, 0.1e73)0.6,
m, 0.9¢2708|0.2, {01211 | { ori02 ori07
0.1¢2707)0.6 0.9¢“410.7 0.9¢7710.4
27i0.3
m { 0.2¢77109)0.6, } { 0.1e7310.3, 8?227”.0.5:8'}2 { 2e*710|0.6, }
3 27i0.5 27i0.4 . . 27i0.5
0.3e |0.4 0.2¢ 0.2 0.82719910.4 0.3¢ |0.4
27i0.8
m { 0.2¢%7109|0.12, } { 0.6%7103|0.06, } { 0.562”i0'7|0.6 8ie2ﬂt04:8 g
4 27i0.2 27i0.3 27i0.7
0.4e |0.32 0.3e |0.36 0.4e |0.4 0.8¢27010.4
. 0.1€270210.2 .
27i0.3 ) 27i0.3
s { 0.2¢770310.2, { 0.3¢27040.3, { 0.2¢27103|0.3, } { 026203 }

0.6e2703|0.5

Computation of the choice value C(l,-,lj)(m[); VY m; € M,(I;,lj) € (& x &) by using Step 4 of
Algorithm 3, represented in Table 25.
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Table 25. Tabular representation of choice value.

C (e1xen) (€1 X e3) (€1 X e3) (€1 X eq)

m; 0.56666[0.21  0.28333[0.00756  0.17777/0.0441  0.56666/0.0336
m, 0.625/0.00384  0.7125/0.16 0.30666|0.0336  0.55/0.0384

my  0.4|1 0.36666(0.25 0.7/0.032 0.4/1

ms 0.45333/0.00224 0.55454|0.00126  0.44705/0.014  0.225/0.000504
ms 0.3]0.16 0.320.03 0.51818/0.21 0.3|1

C (exxen) (€2 X €2) (€2 X e3) (€2 X ey4)

my  0.2[0.24 0.4/0.00864 0.31]0.0504 0.280.0384

m, 0.65/0.024 0.1]1 0.27142[0.21 0.73571(0.24
ms 0.44285(0.032  0.180.008 0.25789(0.001024  0.30.032

my  0.18]0.16 0.18571]0.09 0.1)1 0.2(0.036

ms 0.3/0.0144 0.32/0.0027 0.45/0.0189 0.53529/0.09

C  (esxen (e3 X e3) (e3 X e3) (e3 X ey4)

my 041 0.38]0.036 0.225/0.21 0.75/0.16

m; 0.375'0.00216 0.23333'0.09 0.2/0.0189 0.26666(0.0216
msy 0.275/0.16 0.23333|0.04 0.60666[0.00512  0.2750.16

my  0.2[0.0336 0.225(0.0189 0.25714/0.21 0.16666(0.00756
ms 0.38571[0.0048  0.31]0.0009 0.38421/0.0063  0.385/0.03

C (eaxe) (es4 X €) (e4 X e3) (es4 X e4)

my  0.3125/0.008 0.26666]0.000288  0.19285/0.00168  0.3125/0.00128
my 0.74545(0.024  0.1]1 0.21]0.21 0.66[0.24

ms  0.66[0.24 0.36666/0.06 0.71538/0.00768  0.54(0.24
my 0.33333/0.0384  0.43333)0.0216  0.7/0.24 0.28571(0.00864
ms 0.3[0.16 0.320.03 0.54/0.21 0.3|1

Computation of the the score values 5(1;,1;)(m;) by using Step 5 of Algorithm 3, represented in
Table 26.

Table 26. Tabular representation of score value.

S, 1;)(m;) The Score S, 1;)(m;) The Score
S(e; X e1)(my) 0.0024 S(es X e;)(my) 0.4

S(er X ey)(my) 0.114 S(es X ey)(m) 0.01368
S(er X e3)(m3) 0.0224 S(e; X e3)(m3) 0.00310
S(e; x es)(my) 0.01904 S(€3 X ey)(my) 0.12

S(er X e1)(my) 0.0156 S(eq X e1)(m,) 0.01789
S(er X ey)(my) 0.00345 S(esq X e3)(my) 0.00936
S(ey X e3)(ms) 0.00850 S(eq X e3)(m3) 0.00549
S(€2 X e4)(m,) 0.17657 S(€4 X e4)(my) 0.1584

Evaluation of weighted values for each 5(1;, 1;)(m;) by using Step 6 of Algorithm 3 is

S(my) = 0.55617, S(m,) = 0.48486, S(m3) = 0.031, S(m4) = 0.00936, S(ms) = 0.00850,
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optimal decision

¥ = max{S(my), S(my), S(m3), S(ma), S(ms)}.

By using Step 7 of Algorithm 3 the best circuit simulator software is my. So, the manager will buy the
my software.

The graphical representation of ranking is given in Figure 6.

0.6
.55617

0> 0.48486

0.4

0.2

01

2
0 0.0085
S(my) S(mz) S(ms) S(ma4) S(ms)

Figure 6. Ranking results.

5.1. Comparative analysis

We devised an approach by combining the theory of constraints with multiattribute and
multiobjective decision-making techniques in order to find a solution to a challenging problem which
still exists in the real-world. In the context of the CPHFSS, we examined three different algorithms.
All three approaches provide a ranked list of all viable options regardless of whether there is a single
best answer. However, none of the existing work is up to the task of handling Soft max-AND or
min-OR kind of information supplied by CPHFSS to a decision-maker. While the suggested method is
capable of handling data from pre-existing methods as well, it has the potential to significantly improve
upon them. Several structures supplied by various researchers were compared to show how well the
proposed method performed in contrast to the existing methods for multi-parameter group decision-
making. The comparison is given in Table 27 and concludes that our proposed study is superior and
more reliable than the those currently in use.
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Table 27. The characteristic comparison with existing approaches.

Methods Capable Capable of Flexible Capable of capable of
of making handling to adapt integrate handling
decisions two decision- information multi-
using dimensional makers’ parameter
probability  information choices information

Zadeh [4] no no no no no

Roy and Maji [16] no no no no yes

Torra [38] no no yes no no

Babitha and John [51] no no yes no yes

Garg et al. [52] no yes yes no no

Proposed approach yes yes yes yes yes

6. Conclusions

Many struggles have been made in the literature about the enhancement of data measures. However,
there is nonetheless a lot of room to enhance these measures in a higher way and use them to locate new
functions and novel directions. As computational intelligence has grown to be more popular these days
due to big data, superior algorithms, and elevated computing electricity and storage, these structures
are becoming an embedded factor of digital systems and, more specifically, are having a profound
impact on human selection making. As a result, there is a growing demand for information systems
researchers to look at and recognize the implications of computational intelligence for selection making
and to make a contribution to theoretical development, especially in engineering applications. In
this paper, we developed the complex probabilistic hesitant fuzzy set and its operations such as
restricted union, restricted intersection, extended union, extended intersection, complement, soft max-
AND operator and soft min-OR operator by integrating randomness, hesitancy, and uncertainty with
parameterized families. Several examples are introduced to exhibit the suitability and validity of the
proposed methods. Based on computational results, it is viewed that the proposed techniques are
realistic and well-suited to the surroundings of CPHFSS. We prove their fundamental laws, such as
commutativity, associativity, idempotency, involution, and de-Morgan laws. We also proposed three
different algorithms and case studies based on bridges and simulation for decision-making to exhibit
the validity and effectiveness of the new approach. Furthermore, the limitation of this structure is that
we can not take the membership values beyond the complex plane unit circle. In further research,
the average or Einstein aggregation operators of complex probabilistic hesitant fuzzy soft set is an
important and interesting issue to be addressed, and TODIM, EDAS, TAOV and AHP methodologies
can also be investigated. The proposed metrics will be applied to various applications like risk analysis,
investment strategy, feature extractions, bipartite consensus control models, and unmanned aerial
vehicles [53-55].
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