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1. Introduction

Fractional calculus (FC) is the theory of differential and integral operators of non-integer order.
In recent years, it has attracted numerous researchers, engineers, and scientists who have developed
innovative models involving fractional differential equations (FDE). In the field of mechanics, the
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theories of viscoelasticity and viscoplasticity, modelling of proteins and polymers, modelling of
ultrasound waves, and modelling of human tissue under mechanical loads have been successfully
applied. In the following research articles and books, readers will find applications of FC ( [1–6]).
Recently, Y. Cao et al. [7] discussed the global Mittag-Leffler stability of the delayed fractional-
coupled reaction-diffusion system on networks without strong connectedness. Most recently, Y. Kao
et al. [8,9] established the application of FDE in the fields of Mittag-Leffler synchronization of delayed
fractional memristor neural networks via adaptive control and global Mittag-Leffler synchronization
of coupled delayed fractional reaction-diffusion Cohen-Grossberg neural networks via sliding mode
control. In recent times, G. Li et al. [10] discussed the stability analysis of multi-point boundary
conditions for fractional differential equations with non-instantaneous integral impulses. In [11], R.
Rao et al. discussed the synchronization of epidemic systems with the Neumann boundary value under
delayed impulse. Most recently, Y. Zhao et al. [12] investigated the practical exponential stability of
an impulsive stochastic food chain system with time-varying delays. The main feature of FC is that it
can handle the required rate of evolution in accordance with the needs of the occasion.

When impulsive differential equations (IDE) are used, abrupt changes and discontinuous jumps
occur in an extremely short period of time. There are many good monographs on the IDE
(see, [13–20]). There are many processes in the applied sciences that are represented by differential
equations. A wide variety of physical phenomena exhibit sudden changes in their states, including
biological systems with blood flow, popular dynamics, natural disasters, climate change, chemistry,
control theory, and engineering. FDE differs from IDE primarily due to the discontinuous and
continuous parts of the solution.

The evolution of a physical phenomenon over time is described by its local and nonlocal conditions.
In many real-life situations, nonlocal conditions provide a greater benefit than local ones. Since these
problems apply to many different areas, such as science and mathematics, the study of initial value
problems (IVP) with nonlocal conditions is of paramount importance. A new form of fractional
derivative has been developed by Hilfer that combines Riemann-Liouville fractional derivatives
(RLFD) and Caputo fractional derivatives (CFD).

Control theory plays a vital role in ensuring system stability. A wide range of applied and pure
mathematics problems are addressed in this field. It has the potential to influence the behavior of a
dynamical system in a manner that achieves the desired result. In recent years, many scientists and
researchers have been working in the field of controllability in Hilfer fractional derivatives (HFD)
with different domains such as non-densely domain (NDD), neutral functional differential equations
(NFDE), delay differential equations (DDE), and impulsive differential equation (IDE). They may
refer to the following monographs ( [21–23]). In [24], P. Bedi et al. are demonstrate the exact
controllability of HFD. In [25] J. Du et al. investigated exact controllability for HFD inclusion
involving nonlocal conditions. In [26], X. Liu et al. investigated the finite approximate controllability
for Hilfer fractional evolution systems. In [27], D. Luo et al. established the result on the averaging
principle of stochastic Hilfer-type fractional systems involving non-Lipschitz coefficients. In [28], K.
S. Nisar et al. established the controllability of HFD with a nondense domain. In [29], Y. Zhou et al.
discussed the HFD on a semi-infinite interval. Recently, M. Zhou et al. [30] established the Hilfer
fractional evolution equations with almost sectorial operators. From the above referred articles, no
manuscript deals with the nonlocal controllability exploration for Hilfer neutral type fractional integro-
differential equations (HNFrIDE) with impulsive conditions through the application of a filter system.
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As a result, we will demonstrate this concept and consider the following form of IHFrNIDE:

HDw,g(ν(t) − Θ(t, ν(t))) = Qν(t) + Pu(t) + φ(t, ν(t),
∫ t

0
χ(t, s, ν(s))ds),

t ∈ J∗ := [0,T ]\{t1, t2, ..., tρ},

∆ν(t) = ν(t+
ε ) − ν(t−ε ) = Iε(ν(t−ε )), ε = 1, 2, 3, ..., ρ, (1.1)

I1−η
0+ ν(0) = ν0 − G(ν).

Where, HDw,g denotes HFD of order 0 ≤ w ≤ 1 and 0 < g < 1 and I1−η
0+ is generalized fractional

derivatives of order 1 − η = (1 − w)(1 − g). The neutral term Θ : J∗ × Ξ → Ξ is continuous. Let
Q is a closed, linear, and bounded operator in Ξ. The control function u(t) is given in L2(J∗,Ξ) a
Banach space of admissible control functions with Ξ as a Banach space. The bounded linear operator
P : Ξ → Ξ is continuous. Consider the functions φ : J∗ × Ξ × Ξ → Ξ and χ : J∗ × Ξ × Ξ → Ξ

are continuous. The nonlocal term G : C(J∗,Ξ) → Ξ is a given continuous function. Iε is an impulse
operator. Where, ν(t+

ε ) = lim
ζ→0+

(tε + ζ) and ν(t−ε ) = lim
ζ→0−

= (tε − ζ) represents right and left limit of ν(t) at

t = tε and the discontinuous points are, 0 = t0 < t1 < t2 < ... < tρ < tρ+1 = T < ∞.

Foremost, the primary key factors of our proposed work are as follows:

• The strongly continuous operator, the linear operator, and the bounded operators are used to obtain
the solution representation of our system.
• An iterative process is a means of generating sequences that can approximate the solution of

equations describing real-life problems.
• Define a unique control function for our given system.
• Existence solutions are explored by Schauder’s fixed point theorem, and the Arzela-Ascoli

theorem.
• Uniqueness results are attained from the Banach fixed point theorem.
• Nonlocal controllability is examined with the defined control function, contraction mapping, and

iterative process.
• The novelty of this proposed work is that it establishes new assumptions for our system. When

compared to prior studies ( [31–34]), it helps to reduce the complexity of the result outcomes.
Moreover, we also discuss the applications of our problem through a filter system as well as
numerical computations. We have presented graphical representations of the given problem. It is
used to obtain the existence and uniqueness results for a given system with different parameters
at an instant time.

This manuscript is organized into five sections. In Section 2, we introduce some preliminary
definitions, remarks, and lemmas that can be used to prove the proposed work. In Section 3, we
examine the nonlocal controllability result using the necessary and sufficient conditions we have
assumed. In Section 4, we provide the applications of our suggested work with numerical computations
and a filter system. At the end of this manuscript, we discuss the conclusion.

2. Fundamental materials and solution representation

Finding our main results will be of significant assistance. It is pertinent to note that the following
notation will be used throughout the paper: ‖ν(t)‖ = supt∈J∗{|ν(t)|, ν(t) ∈ C(J∗,Ξ)}.
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Definition 2.1. [35] The Riemann-Liouville fractional integral (RLFI) of order w ∈ R+ (the set of
positive real numbers) and the function φ(t) is defined as

Iw
o+φ(t) =

1
Γ(w)

∫ t

0
(t − s)w−1φ(s)ds, t > 0.

Definition 2.2. [35] The RLFD of order n − 1 ≤ w < n, n ∈ N for the function φ : [w,+∞) → R is
defined by

Dw
0+φ(t) =

1
Γ(n − w)

dn

dtn

∫ t

0

φ(s)
(t − s)w−n+1 ds, t > 0.

Remark 2.1. [35] A subset Λ in C(J∗,Ξ) is relatively compact if and only if it is uniformly bounded
and equicontinuous on J∗.

Definition 2.3. [36] The HFD is the generalized the RLFD of order 0 ≤ w ≤ 1 and 0 < g < 1, with
lower limit ‘0’ is defined as

Dw,g
0+
φ(t) = Iw(1−g)

0+

d
dt

I(1−w)(1−g)
0+

φ(t).

where, I represents the Riemann-Liouville fractional integral.

Definition 2.4. [37] A system is said to be nonlocal controllable onJ∗ if every pair of vector ν0, νt ∈ Ξ

there exists a control u ∈ L2(J∗,Ξ) such that the mild solution ν which satisfies ν(t) = νt − G(ν).

Theorem 2.1. [38] Let Ξ be a real Banach space, ϕ ⊂ Ξ a nonempty closed bounded convex subset
and Λ : ϕ→ ϕ is compact. Then Λ has a fixed point.

Lemma 2.1. [39] The operator S w,g(t) and Ψg(t) have the following properties:

• {Ψg(t) : t > 0} is continuous in the uniform operator topology.

• For any fixed t > 0, S w,g(t) and Ψg(t) are linear and bounded operators

‖Ψg(t)‖ ≤
K tg−1

Γ(g)
, and ‖S w,g(t)‖ ≤

K t(w−1)(g−1)

Γ(w(1 − g) + g)
. (2.1)

• {Ψg(t) : t > 0} and {S w,g(t) : t > 0} are strongly continuous.
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Lemma 2.2. Let 0 ≤ w ≤ 1, 0 < g < 1 then the equation (1.1) can be equivalent in the form of

ν(t) =



S w,g(t)(ν0 − G(ν) − Θ(0, ν(0)) + Θ(t, ν(t))) +
∫ t

0
QΨg(t − s)Θ(s, ν(s))ds

+
∫ t

0
Ψg(t − s)(Pu(s) + φ(s, ν(s),

∫ s

0
χ(s,m, ν(m))dm))ds

+S w,g(t − t1)I1(ν(t−1 )), t ∈ [0, t1];
S w,g(t)(ν0 − G(ν) − Θ(0, ν(0)) + Θ(t, ν(t))) +

∫ t

0
QΨg(t − s)Θ(s, ν(s))ds

+
∫ t

0
Ψg(t − s)(Pu(s) + φ(s, ν(s),

∫ s

0
χ(s,m, ν(m))dm))ds

+
∑2
ε=1 S w,g(t − tε)Iε(ν(t−ε )), t ∈ (t1, t2];

.

.

.

S w,g(t)(ν0 − G(ν) − Θ(0, ν(0)) + Θ(t, ν(t))) +
∫ t

0
QΨg(t − s)Θ(s, ν(s))ds

+
∫ t

0
Ψg(t − s)(Pu(s) + φ(s, ν(s),

∫ s

0
χ(s,m, ν(m))dm))ds

+
∑ρ
ε=1 S w,g(t − tε)Iε(ν(t−ε )), t ∈ (tρ,T ];

where, S w,g = Iw(1−g)
0+ Ψg(t), Ψg(t) = tg−1Tg(t) and Tg(t) =

∫ ∞
0

gσRg(σ)S (tgσ)dσ.

Rg(σ) =

∞∑
n=1

(−σ)n−1

(n − 1)!Γ(1 − ng)
, σ ∈ (0,∞),

where, Rg(σ) is a function of Wright type which satisfies
∫ ∞

0
σδRg(σ)dσ =

Γ(1+δ)
Γ(1+gδ) , σ ≥ 0.

3. Discussion on nonlocal controllability

The fundamental objective of this section is to examine the nonlocal controllability results of
Eq (1.1) with iterative type. Before that, we have to define the function F : C(J∗,Ξ) → C(J∗,Ξ)
is follows:

F (ν(t)) =



S w,g(t)(ν0 − G(ν) − Θ(0, ν(0)) + Θ(t, ν(t))) +
∫ t

0
QΨg(t − s)Θ(s, ν(s))ds

+
∫ t

0
Ψg(t − s)(Pu(s) + φ(s, ν(s),

∫ s

0
χ(s,m, ν(m))dm))ds

+S w,g(t − t1)I1(ν(t−1 )), t ∈ [0, t1];
S w,g(t)(ν0 − G(ν) − Θ(0, ν(0)) + Θ(t, ν(t))) +

∫ t

0
QΨg(t − s)Θ(s, ν(s))ds

+
∫ t

0
Ψg(t − s)(Pu(s) + φ(s, ν(s),

∫ s

0
χ(s,m, ν(m))dm))ds

+
∑2
ε=1 S w,g(t − tε)Iε(ν(t−ε )), t ∈ (t1, t2];

.

.

.

S w,g(t)(ν0 − G(ν) − Θ(0, ν(0)) + Θ(t, ν(t))) +
∫ t

0
QΨg(t − s)Θ(s, ν(s))ds

+
∫ t

0
Ψg(t − s)(Pu(s) + φ(s, ν(s),

∫ s

0
χ(s,m, ν(m))dm))ds

+
∑ρ
ε=1 S w,g(t − tε)Iε(ν(t−ε )), t ∈ (tρ, tρ+1];

(3.1)

Our considerations are based by the following assumptions:
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(H1) The impulsive operator is function from Ξ to Ξ then there exists a constants K∗ε > 0,M∗
ε > 0 such

that

(i)
∑ρ
ε=1 ‖Iενn(t−ε ) − Iεν(t−ε )‖ ≤

∑ρ
ε=1 K∗ε‖νn − ν‖.

(ii)
∑ρ
ε=1 ‖Iεν(t

−
ε )‖ ≤

∑ρ
ε=1M

∗
ε.

(H2) A map G : Ξ→ Ξ be a continuous function and it is satisfy the following condition

‖G(νn) − G(ν)‖ ≤ η∗‖νn − ν‖, η
∗ > 0.

(H3) The functions φ : J∗ × Ξ × Ξ→ Ξ and χ : J∗ × Ξ × Ξ→ Ξ are both continuous with respect to t
on J∗ and there exists a constants L∗χ > 0,N∗χ > 0, γχ > 0, K1 > 0,K2 > 0 and Sχ > 0 such that

(i) ‖φ(t, ν(t),Ω(t))‖ ≤ L∗χ‖ν‖ +N∗χ‖Ω‖ + γχ.

(ii) ‖φ(t, ν(t),Ω(t)) − φ(t, ν∗(t),Ω∗(t))‖ ≤ K1‖ν(t) − ν∗(t)‖ +K2‖Ω(t) −Ω∗(t)‖.
(iii) ‖Ω(t) −Ω∗(t)‖ ≤ Sχ‖ν(t) − ν∗(t)‖.

Where, Ω(t) =
∫ t

0
χ(t, s, ν(s))ds, and Ω∗(t) =

∫ t

0
χ(t, s, ν∗(s))ds.

(H4) A map Θ : J∗ × Ξ → Ξ be a continuous function with respect to t on J∗ then there exists a
constantsWξ > 0, λ∗ > 0 such that

(i) ‖Θ(t, ν(t))‖ ≤ Wξ.

(ii) ‖Θ(t, νn(t)) − Θ(t, ν(t))‖ ≤ λ∗‖νn − ν‖.

(H5) The linear operator B : L2(J∗,Ξ)→ Ξ is defined as follows:

Bu =

∫ t

0
Ψg(t − s)Pu(s)ds. (3.2)

Equation (3.2) is invertible and it is denoted by B−1. Where, B−1 takes value from L2(J∗,Ξ)
kerB then

there exists a % > 0 such that ‖B−1‖ ≤ %. Here we define the control term u(t) for every t ∈ (tρ,T ]
as follows:

u(t) = B−1
[
νt − G(ν) − sg,w(t)(ν0 − G(ν) − Θ(0, ν(0)) + Θ(t, ν(t))) −

∫ t

0
Qψg(t − s)Θ(s, ν(s))ds

−

∫ t

0
ψg(t − s)φ(s, ν(s),Ω(s))ds −

ρ∑
ε=1

S w,g(t − tε)Iε(ν(t−ε ))

 ,
‖u(t)‖ = sup

t∈J∗

∣∣∣∣B−1
[
νt − G(ν) − sg,w(t)(ν0 − G(ν) − Θ(0, ν(0)) + Θ(t, ν(t)))

−

∫ t

0
Qψg(t − s)Θ(s, ν(s))ds −

∫ t

0
ψg(t − s)φ(s, ν(s),Ω(s))ds

−

ρ∑
ε=1

S w,g(t − tε)Iε(ν(t−ε ))


∣∣∣∣∣∣∣ ,

≤ Dm

[
‖νt − G(ν)‖ −

K t(w−1)(g−1)

Γ(w(1 − g) + g)

(
Cν +Wξ

)
−
K tg−1

Γ(g)

(‖Q‖Wξ +L∗χ‖ν(t)‖ +N∗χ‖Ω(t)‖ + γχ) −
∑ρ
ε=1M

∗
εK(t − tε)(w−1)(g−1)

Γ(w(1 − g) + g)

]
,

≤ Dmβ
∗
γ.
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Here we used the following notation of above equation

Where, β∗γ =

[
‖νt − G(ν)‖ −

K t(w−1)(g−1)

Γ(w(1 − g) + g)

(
Cν +Wξ

)
−
K tg−1

Γ(g)
(‖Q‖Wξ +L∗χ‖ν(t)‖ +N∗χ‖Ω(t)‖ + γχ)

−

∑ρ
ε=1M

∗
εK(t − tε)(w−1)(g−1)

Γ(w(1 − g) + g)

]
.

‖ν0 − G(ν) − Θ(0, ν(0))‖ ≤ Cν.

‖Θ(s, ν(s))‖ ≤ Wξ.

‖φ(t, ν(t),Θ(t))‖ ≤ L∗χ‖ν(t)‖ +N∗χ‖Ω(t)‖ + γχ.

‖B−1‖ ≤ Dm.
ρ∑
ε=1

‖S w,g(t − tε)Iε(ν(t−ε ))‖ ≤
∑ρ
ε=1M

∗
εK(t − tε)(w−1)(g−1)

Γ(w(1 − g) + g)
.

Theorem 3.1. The hypothesis (H1)− (H3)(i) and Lemma 2.1 are hold then (1.1) is uniformly bounded
for every t ∈ [0,T ] and provided that

‖F (ν(t))‖ ≤ Z∗. (3.3)

Where, ‖F (ν(t))‖ ≤
K(t − tε)(w−1)(g−1)

Γ(w(1 − g) + g)

(
Cν +Wξ

)
+ ‖Q‖

KWξtg−1

Γ(g)

+
K tg−1L∗χ‖ν(t)‖ +N∗χ‖Ω(t)‖ + γχ

Γ(g)
+

∑ρ
ε=1M

∗
εK(t − tε)(w−1)(g−1)

Γ(w(1 − g) + g)
.

Proof. We want to show that the Eq (1.1) is uniformly bounded for every t ∈ [0,T ]. First we prove that
a function F (ν(t)) is bounded on [0, t1] and we get the following inequality

‖F (ν(t))‖ = sup
t∈J∗

{
S w,g(t)(ν0 − G(ν) − Θ(0, ν(0)) + Θ(t, ν(t))) +

∫ t

0
QΨg(t − s)Θ(s, ν(s))ds

+

∫ t

0
Ψg(t − s)(Pu(s) + φ(s, ν(s),

∫ s

0
χ(s,m, ν(m))dm))ds + S w,g(t − t1)I1(ν(t−1 ))

}
,

≤
K t(w−1)(g−1)

Γ(w(1 − g) + g)

(
Cν +Wξ

)
+ ‖Q‖

KWξtg−1

Γ(g)

+
K tg−1

Γ(g)

(
‖P‖Dmβ

∗ +L∗χ‖ν(t)‖ +N∗χ‖Ω(t)‖ + γχ
)

+
M∗

1K(t − t1)(w−1)(g−1)

Γ(w(1 − g) + g)
,

≤ Z∗1. (3.4)

Proceeding in similar way we define the function F for every t ∈ (tρ,T ],

‖F (ν(t))‖ ≤
K t(w−1)(g−1)

Γ(w(1 − g) + g)

(
Cν +Wξ

)
+ ‖Q‖

KWξtg−1

Γ(g)

+
K tg−1

Γ(g)

(
‖P‖Dmβ

∗ +L∗χ‖ν(t)‖ +N∗χ‖Ω(t)‖ + γχ
)
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+

∑ρ
ε=1M

∗
εK(t − tε)(w−1)(g−1)

Γ(w(1 − g) + g)
,

≤ Z∗ρ. (3.5)

From the inequality (3.4) and (3.5) then we have

‖F (ν(t))‖ ≤ sup{Z∗1,Z
∗
2, ...,Z

∗
ρ},

= Z∗,

‖F (ν(t))‖ ≤ Z∗. (3.6)

From the inequality (3.6) we can say that F (ν(t)) is uniformly bounded for every t ∈ [0,T ]. �

Theorem 3.2. Assume that the hypothesis (H1), (H3)(ii), (H3)(iii) and Lemma (2.1) are holds then
prove that the function F has atleast one solution on C(J∗,Ξ).

Proof. Step 1: We want to show that F is continuous on C(J∗,Ξ). Let {νn(t)} be a sequence on
C(J∗,Ξ) such that {νn(t)} → ν as n→ ∞. For every t ∈ [0, t1] and then we have

‖F (νn(t)) − F (ν(t))‖ ≤ ‖S w,g(t)‖ {‖(G(νn) − G(ν))‖ + ‖(Θ(t, νn(t)) − Θ(t, ν(t)))‖}

+

∫ t

0
‖Q‖‖Ψg(t − s)‖ × ‖Θ(s, νn(s)) − Θ(s, ν(s))‖ds

+

∫ t

0
‖Ψg(t − s)‖ × ‖φ(s, νn(s),Ωn(s)) − φ(s, ν(s),Ω(s))‖

+‖S w,g(t − t1)‖ × ‖I1νn(t−1 ) − I1ν(t−1 )‖,

≤

{
K t(w−1)(g−1)(η + λ∗)

Γ(w(1 − g) + g)
+
K tg−1(‖Q‖λ∗ + (K1 +K2Sχ))

Γ(g)

+
K∗1K(t − t1)(w−1)(g−1)

Γ(w(1 − g) + g)

}
× ‖νn − ν‖.

Since, as n→ ∞, νn → ν⇒ ‖(F (νn)(t) − (F )(ν)(t)‖ → 0 for every [0, t1].
Proceeding like this, we define for every t ∈ (tρ,T ] and then we obtained

‖F (νn(t)) − F (ν(t))‖ ≤
{
K t(w−1)(g−1)(η + λ∗)

Γ(w(1 − g) + g)
+
K tg−1(‖Q‖λ∗ + (K1 +K2Sχ))

Γ(g)

+

∑ρ
ε=1 K∗εK(t − tε)(w−1)(g−1)

Γ(w(1 − g) + g)

}
× ‖νn − ν‖.

Since, as n→ ∞, νn → ν⇒ ‖(F (νn)(t) − (F )(ν)(t)‖ → 0 for every (tρ,T ].

Step 2: Next, we have to show that F is equicontinuous on C(J∗,Ξ). Let us consider the two
arbitrary elements θ1, θ2 ∈ [0, t1] and relation between θ1, θ2 is θ1 < θ2.
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‖(F ν)(θ2) − (F ν)(θ1)‖ = sup
t∈J∗

∣∣∣∣∣∣Sw,g(t)Θ(θ2, ν(θ2)) +

∫ θ2

0
QΨg(θ2 − s)Θ(s, ν(s))ds

+

∫ θ2

0
Ψg(θ2 − s) × (Pu(s) + φ(s, ν(s),Ω(s)))ds

−Sw,g(t)Θ(θ1, ν(θ1)) −
∫ θ1

0
QΨg(θ1 − s)Θ(s, ν(s))ds

−

∫ θ1

0
Ψg(θ1 − s)(Pu(s) + φ(s, ν(s),Ω(s)))ds

∣∣∣∣∣∣ ,
≤
K t(w−1)(g−1)λ∗‖θ2 − θ1‖

Γ(w(1 − g) + g)
+ ‖Q‖

Kθg−1
2

Γ(g)
−
Kθ

g−1
1

Γ(g)

 ×Wξ

+

Kθg−1
2

Γ(g)
−
Kθ

g−1
1

Γ(g)

 ‖P‖Dmβγ∗ +L∗χ‖ν(t)‖ +N∗χ‖Ω(t)‖ + γχ.

(3.7)

As θ2 → θ1 in (3.7) then we have ‖(F ν)(θ2) − (F ν)(θ1)‖ → 0 and therefore (F ν)(t) is equicontinuous
on [0, t1]. In similar manner, we prove the function F is equicontinuous on every t ∈ (tρ,T ],

|(F ν)(θρ+1) − (F ν)(θρ)‖ ≤
K t(w−1)(g−1)λ∗‖θρ+1 − θρ‖

Γ(w(1 − g) + g)
+ ‖Q‖

Kθg−1
2

Γ(g)
−
Kθ

g−1
ρ

Γ(g)

 ×Wξ

+

Kθg−1
ρ+1

Γ(g)
−
Kθ

g−1
ρ

Γ(g)

 ‖P‖Dmβγ∗ +L∗χ‖ν(t)‖ +N∗χ‖Ω(t)‖ + γχ.

(3.8)

Since θρ+1 → θρ in (3.8) which implies ‖(F ν)(θρ+1) − (F ν)(θρ)‖ → 0 and therefore (F ν) is
equicontinuous on (tρ,T ] then using Arzela-Ascoli theorem and remark (2.1), we get (F ν) is compact
on J∗. Using the Theorem 3.1, Steps 1 and 2 in conjunction with the Schauder fixed point theorem,
we attained a solution for Eq (1.1) on J∗. �

Theorem 3.3. The hypothesis (H1), (H2), (H3)(ii), (H3)(iii), (H4)(ii),(H5), and Lemma 2.1 are
satisfied then the Eq (1.1) has a unique solution and nonlocal controllable on J∗.

Proof. In order to satisfy the Banach contraction, we consider two solutions of given system (1.1)
namely, ν(t) and µ(t) in Ξ and define the contraction mapping F : Ξ → Ξ by ‖F (ν)(t) − F (µ)(t)‖ ≤
Υ‖ν(t) − µ(t)‖ for every t ∈ (tρ,T ] and 0 ≤ Υ < 1 and then prove the uniqueness and nonlocal
controllability of IHFrNIDE (1.1). Initially, prove the contraction mapping for every t ∈ [0, t1] by
using above hypothesis,

‖F (ν)(t) − F (µ)(t)‖ ≤ sup
t∈J∗

∣∣∣S w,g(t)
∣∣∣ (|G(ν) − G(µ)| + |Θ(t, ν(t)) − Θ(t, µ(t))|)

+

∫ t

0
|Q||Ψg(t − s)| × |Θ(s, ν(s)) − Θ(s, µ(s))|ds
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+

∫ t

0
|Ψg(t − s)| × |φ(s, ν(s),Ω(s)) − φ(s, µ(s),Ω∗(s))|

+|S w,g(t − t1)| × |I1(ν(t−1 )) − I1(µ(t−1 ))|,

≤

{
K t(w−1)(g−1)(η∗ + λ∗)

Γ(w(1 − g) + g)
+
K t(g−1)

Γ(g)
×

{
‖Q‖λ∗ + (K1 +K2Sχ)

}
+
K(t − t1)(w−1)(g−1)K∗1

Γ(w(1 − g) + g)

}
× ‖ν(t) − µ(t)‖,

≤ Υ1‖ν(t) − µ(t)‖. (3.9)

Similarly, next prove the contraction mapping for every ∈ (t1, t2] and we get the following inequality:

‖F (ν)(t) − F (µ)(t)‖ ≤
{
K t(w−1)(g−1)(η∗ + λ∗)

Γ(w(1 − g) + g)
+
K t(g−1)

Γ(g)
×

{
‖Q‖λ∗ + (K1 +K2Sχ)

}
+

∑2
ε=1K(t − tε)(w−1)(g−1)K∗ε

Γ(w(1 − g) + g)

}
× ‖ν(t) − µ(t)‖,

≤ Υ2‖ν(t) − µ(t)‖. (3.10)

Proceeding similar way, we prove the contraction mapping for every t ∈ (tρ, tρ+1] and obtained the
following inequality:

‖F (ν)(t) − F (µ)(t)‖ ≤
{
K t(w−1)(g−1)(η∗ + λ∗)

Γ(w(1 − g) + g)
+
K t(g−1)

Γ(g)
×

{
‖Q‖λ∗ + (K1 +K2Sχ)

}
+

∑ρ
ε=1K(t − tε)(w−1)(g−1)K∗ε

Γ(w(1 − g) + g)

}
× ‖ν(t) − µ(t)‖,

≤ Υρ‖ν(t) − µ(t)‖. (3.11)

From the inequality (3.9), (3.10) and (3.11) we get contraction mapping for every t ∈ J∗

‖F (ν)(t) − F (µ)(t)‖ ≤ sup{Υ1,Υ2,Υ3, ...,Υρ}‖ν(t) − µ(t)‖,
= Υ‖ν(t) − µ(t)‖. (3.12)

Hence, from Eq (3.12) we get the contraction mapping ‖F (ν)(t)−F (µ)(t)‖ ≤ Υ‖ν(t)−µ(t)‖ for every t on
J∗. Since Υ < 1 and as a consequence of Banach fixed point theorem, we say that the IHFrNIDE (1.1)
has a unique solution on J∗ then using the hypothesis (H5) and definition (2.4) such that

F (ν)(t) = S w,g(t)(ν0 − G(ν) − Θ(0, ν(0)) + Θ(t, ν(t))) +

∫ t

0
QΨg(t − s)Θ(s, ν(s))ds

+

∫ t

0
Ψg(t − s)(Pu(s) + φ(s, ν(s),

∫ s

0
χ(s,m, ν(m))dm))ds

+

ρ∑
ε=1

S w,g(t − tε)Iε(ν(t−ε )),

= S w,g(t)(ν0 − G(ν) − Θ(0, ν(0)) + Θ(t, ν(t))) +

∫ t

0
QΨg(t − s)Θ(s, ν(s))ds
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+BB−1
[
νt − G(ν) − S g,w(t)(ν0 − G(ν) − Θ(0, ν(0)) + Θ(s, ν(s)))

−

∫ t

0
Qψg(t − s)Θ(s, ν(s))ds −

∫ t

0
ψg(t − s)φ(s, ν(s),Ω(s))ds

−

ρ∑
ε=1

S w,g(t − tε)Iε(ν(t−ε ))

 +

∫ t

0
ψg(t − s)φ(s, ν(s),Ω(s))ds

+

ρ∑
ε=1

S w,g(t − tε)Iε(ν(t−ε )),

F (ν)(t) = νt − G(ν). (3.13)

From Eq (3.13), we attained the nonlocal controllable result for IHFrNIDE (1.1) with respect to t on
J∗. �

4. Applications

Application 1. Consider the following impulsive Hilfer fractional neutral integro-differential
(IHFrNIDE) system

HD
2
3 ,

3
5

(
ν(t) −

∫ 5

0
e−2tsin(ν(t))dt

)
= Qν(t) + Pu(t) +

1
Γ(π)

∫ 5

0

√
(e−tsin(ν(t))

1 + 9sec(ν(t))
dt,

t ∈ J∗ := [0, 5]\{1, 2, 3, 4},

∆ν(t) =
1

π
√

(sin(ν(t−ε )))
, ε = 1, 2, 3, 4. (4.1)

I0.1333
0+ ν(0) = ν0 −

3π
43

sin(ν(t)).

In Table 1, we provided the symbol of assumptions and interpretation of our given application. Let
Q(t) ≡ Q : D(Q) ⊂ Ξ → Ξ is a closed linear bounded operator is defined by QE = E with the domain
D(Q) = {E ∈ Ξ : E is absolutely continuous, E(0) = E(5) = 0}. Let K = 0.7, t = 5, g = 3

5 , w = 2
3 . We

assume that the function φ : J∗ × Ξ→ Ξ and satisfies the hypothesis (H3), as follows

‖φ(t, ν(t),Ω(t)) − φ(t, ν∗(t),Ω∗(t))‖

=
1

Γ(π)

[∫ 5

0

√
(e−tsin(ν(t)))

1 + 9sec(ν(t))
dt −

∫ 5

0

√
(e−tsin(ν∗(t)))

1 + 9sec(ν∗(t))
dt

]
,

≤
1

Γ(π)
‖ν(t) − ν∗(t)‖.

Moreover, we have

‖φ(t, ν(t),Ω(t))‖ ≤

∥∥∥∥∥∥ 1
Γ(π)

∫ 5

0

√
(e−tsin(ν(t))

1 + 9sec(ν(t))
dt

∥∥∥∥∥∥ ,
≤

1
Γ(π)

(‖ν(t)‖ + ‖Ω(t)‖ + 1).
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Let the neutral term Θ : J∗ × Ξ → Ξ and defined by Θ(t, ν(t)) =
∫ 5

0
e−2tsin(t)dt and ‖Θ(t, ν(t))‖ ≤

0.2000 and it is satisfies the hypothesis (H4). The impulsive function Iε : Ξ → Ξ is defined by
Iε(ν(t)) = 1

π
√

(sin(ν(t−ε )))
and by employing the hypothesis (H1) we have,∥∥∥∥∥∥ 1

π
√

(sin(ν(t−ε )))
−

1
π
√

(sin(ν∗(t−ε )))

∥∥∥∥∥∥ ≤ 1
π

∥∥∥∥∥∥ 1
√

(sin(ν(t−ε )))
−

1
√

(sin(ν∗(t−ε )))

∥∥∥∥∥∥ ,
≤ 0.3183‖ν(t) − ν∗(t)‖.

Consider the nonlocal termG : Ξ→ Ξ and defined byG(ν(t)) = 3π
43 sin(ν(t)) and applying the hypothesis

(H2) then obtained the following inequality∥∥∥∥∥3π
43

sin(ν(t)) −
3π
43

sin(ν∗(t))
∥∥∥∥∥ ≤ 3π

43
‖sin(ν(t)) − sin(ν∗(t))‖,

≤ 0.2192‖sin(ν(t)) − sin(ν∗(t))‖.

Table 1. Symbol of assumptions and interpretation in Application 1.

SI.No Symbol Interpretation Assumptions

1. Q(t) Closed, linear and bounded operator D(Q) = {E ∈ Ξ : E(0) = E(5) = 0}

2. Θ(t, ν(t)) Netural function
∫ 5

0
e−2tsin(ν(t))dt

3. φ(t, ν(t),Ω(t)) Integro-Differential function 1
Γ(π)

∫ 5

0

√
(e−tsin(ν(t))

1+9sec(ν(t)) dt

4. ∆ν(t) Impulsive function 1
π
√

(sin(ν(t−ε )))

G(ν) and ν0 Nonlocal function and initial value 3π
43 sin(ν(t)) and ν0 = 0

6. w and g Order of HFD, 0 ≤ w ≤ 1 and 0 < g < 1 g = 3
5 and w = 2

3

8. u(t) Control function
Square integrable function on J∗

where, J∗ := [0, 5]\{1, 2, 3, 4}.

Let us consider the map F : C(J∗,Ξ)→ C(J∗,Ξ) and using the Theorem 3.3 as follow the unique
solution to Eq (4.1),

‖F (ν(t)) − F (ν∗(t))‖ ≤


0.7 × 5( 2

3−1)( 3
5−1)

Γ( 2
3 (1 − 3

5 ) + 3
5

) × 3π
43

 +

0.7 × 5
3
5−1

Γ( 3
5 )

×
1

Γ(π)


+

0.7 × 1
π

Γ(2
3 (1 − 3

5 ) + 3
5

) × ‖ν(t) − ν∗(t)‖,
≤ 0.4844‖ν(t) − ν∗(t)‖.

The linear operator B : L2(J∗,Ξ) → Ξ and defined by Bu =
∫ 5

0
Ψ 3

5
(5 − s)Pu(s)ds, and the inverse

linear operator is takes from L2(J∗,Ξ)
kerB and then there exists % > 0 such that ‖B−1‖ ≤ % and manipulating
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the hypothesis (H5) and definition (2.4) to get the nonlocal controllability for every t ∈ [0, 5] and
our application can be applied to the problem IHFrNIDE (1.1). Figures 1 and 2 are represents the
uniqueness of the solution of different parameters with finite time interval for Eq (4.1).

Interval 't'

1 1.5 2 2.5 3 3.5 4 4.5 5
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n
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e
 S

o
lu

ti
o

n

×10
-12

-4

-2

0

2

4

6

8

g= 0.2

w=0.3

Figure 1. Graphical representation of Hilfer (w = 0.3, g = 0.2).
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0

0.5

1
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g=0.2
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Figure 2. Graphical representation of Hilfer (w = 0.5, g = 0.2).

Application 2. (High pass impulsive response filter system)

Filters are an essential component of all signal processing and communication systems. An
advantage of a filter system (FS) is that it is used to restrict a signal to a specific frequency band, as in a
low-pass filter (LPF), a high-pass filter (HPF), and a band-pass filter (BPF). The finite duration impulse
response (FIR) filter and the infinite duration impulse response (IIR) filter are the primary focus of
the digital filter class. FIR filters possess significant benefits, such as bounded input-bounded output
(BIBO) stability, that make them suitable for widespread applications. Following monographs explain
the filter system ( [40–42]). FIR filters can be discrete-time or continuous-time, digital or analog. In
our model, the filter system includes the high-pass FIR, low-pass FIR, integrator block, and continuous
time. Our filter system depicts a block diagram model, which improves the effectiveness of numerical
solutions in less time, and the sum block accepts the input values of A,B, C, D, HPF, Gain (Θ(t, ν(t))),
and Gain 1 (Pu(t)) then the overall resultant is connected to the integrator over the interval [0,5].
Where A=S w,g(t)ν0 is the initial condition, B=S w,g(t)G(ν) is a nonlocal term, C=S w,g(t)Θ(0, ν(0)) is
initial neutral term, and D=S w,g(t)Θ(t, ν(t)) is neutral term. The output of integrator is connected to a
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high-pass filter and merged with integrator 1. Finally, all blocks combine to the scope block, and hence
the output ν(t) is attained, which is bounded and nonlocally controllable onJ∗. The output of our filter
system is represented in Figures 3 and 4.

 Time
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Figure 3. Output of the Filter system.
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Figure 4. Output of filter system with upper limit ‘5’ and lower limit ‘0’.

AIMS Mathematics Volume 8, Issue 7, 16846–16863.



16860

5. Conclusions

In Banach space, we demonstrate the mild solution of the Hilfer neutral impulsive fractional
integro-differential equation. The nonlocal controllability results are attained by uniform operator,
linear operator, bounded operator, strongly continuous operator, iterative processes, and fixed point
techniques. Eventually, an appropriate application was given to enhance the effectiveness and
applicability of our proposed work. In the future, we will extend our results to the nonlocal
controllability analysis of ψ-Hilfer fractional differential equation with non-instantaneous impulses
and state-dependent delay.

Acknowledgments

This study is supported via funding from Prince Sattam bin Abdulaziz University project number
(PSAU/2023/R/1444). This research work was supported by the part of Department of Science and
Technology, Government of India through INSPIRE Grant:DST/INSPIRE/03/2019/003255.

Conflict of interest

The authors declare no conflict of interest.

References

1. A. Akgül, S. H. A. Khoshnaw, Application of fractional derivative on non-linear biochemical
reaction models, Int. J. Intell. Netw., 1 (2020), 52–58. https://doi.org/10.1016/j.ijin.2020.05.001

2. R. L. Bagley, P. J. Torvik, A theoretical basis for the application of fractional calculus to
viscoelasticity, J. Rheol., 27 (1983), 201–210. https://doi.org/10.1122/1.549724

3. K. Diethelm, The analysis of fractional differential equations, In: Lecture Notes in Mathematics,
2010. https://doi.org/10.1007/978-3-642-14574-2

4. C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus
in modelling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017),
141–159. https://doi.org/10.1016/j.cnsns.2017.04.001

5. R. L. Magin, Fractional Calculus in Bioengineering, Chicago: University of Illinois-Chicago,
2006.

6. I. Podlubny, Fractional Differential Equation, Academic Press, 1998.

7. Y. Cao, Y. Kao, J. H. Park, H. Bao, Global Mittag–Leffler stability of the delayed fractional-coupled
reaction-diffusion system on networks without strong connectedness, IEEE Trans. Neur. Net. Lear.
Syst., 33 (2021), 6473–6483. https://doi.org/10.1109/TNNLS.2021.3080830

8. Y. Kao, Y. Li, J. H. Park, X. Chen, Mittag–Leffler synchronization of delayed fractional memristor
neural networks via adaptive control, IEEE Trans. Neur. Net. Lear. Syst., 32 (2021), 2279–2284.
https://doi.org/10.1109/TNNLS.2020.2995718

AIMS Mathematics Volume 8, Issue 7, 16846–16863.

http://dx.doi.org/https://doi.org/10.1016/j.ijin.2020.05.001
http://dx.doi.org/https://doi.org/10.1122/1.549724
http://dx.doi.org/https://doi.org/10.1007/978-3-642-14574-2
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2017.04.001
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3080830
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2020.2995718


16861

9. Y. Kao, Y. Cao, X. Chen, Global Mittag-Leffler synchronization of coupled delayed fractional
reaction-diffusion Cohen-Grossberg neural networks via sliding mode control, Chaos, 32 (2022),
113123. https://doi.org/10.1063/5.0102787

10. G. Li, Y. Zhang, Y. Guan, W. Li, Stability analysis of multi-point boundary conditions for fractional
differential equation with non-instantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–
7041. https://doi.org/10.3934/mbe.2023303

11. R. Rao, Z. Lin, X. Ai, J. Wu, Synchronization of epidemic systems with Neumann boundary value
under delayed impulse, Mathematics, 10 (2022), 2064. https://doi.org/10.3390/math10122064

12. Y. Zhao, L. Wang, Practical exponential stability of impulsive stochastic food chain system with
time-varying delays, Mathematics, 11 (2023), 147. https://doi.org/10.3390/math11010147

13. R. Agarwal, S. Hristova, D. O’Regan, Non-Instantaneous impulses in Caputo fractional differential
equations, Fract. Calc. Appl. Anal., 20 (2017), 595–622. https://doi.org/10.1515/fca-2017-0032

14. H. M. Ahmed, M. M. El-Borai, H. M. El-Owaidy, A. S. Ghanem, Impulsive Hilfer fractional
differential equations, Adv. Differ. Equ., 2018 (2018), 226. https://doi.org/10.1186/s13662-018-
1679-7

15. D. D. Bainov, P. S. Simeonov, Oscillation Theory of Impulsive Differential Equations, Orlando:
International Publications, 1998.

16. V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations,
Singapore: World Scientific Publishing, 1989.

17. J. Liang, H. Yang, Controllability of fractional integro-differential evolution
equations with nonlocal conditions, Appl. Math. Comput., 254 (2015), 20–29.
https://doi.org/10.1016/j.amc.2014.12.145

18. K. Muthuselvan, B. S. Vadivoo, Analyze existence, uniqueness and controllability of impulsive
fractional functional differential equations, Adv. Stud.: Euro-Tbil. Math. J., 10 (2022), 171–190.

19. A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, Singapore: World Scientific
Publishing Co. Pte. Ltd., 14 (1995). https://doi.org/10.1142/2892

20. B. S. Vadivoo, R. Raja, J. Cao, H. Zhang, X. Li, Controllability analysis of nonlinear neutral-type
fractional-order differential systems with state delay and impulsive effects, Int. J. Control Autom.
Syst., 16 (2018), 659–669. http://doi.org/10.1007/s12555-017-0281-1

21. X. Fu, X. Liu, Controllability of non-densely defined on neutral functional differential systems in
abstract space, Chin. Ann.Math. Ser. B, 28 (2007), 243–252. http://doi.org/10.1007/s11401-005-
0028-9

22. K. Jothimani, K. Kaliraj, S. Kumari Panda, K. S. Nisar, C. Ravichandran, Results on controllability
of non-densely characterized neutral fractional delay differential system, Evol. Equ. Control The.,
10 (2021), 619–631. https://doi.org/10.3934/eect.2020083

23. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, Elsevier, 204 (2006).

24. P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Existence of mild solutions for impulsive
neutral Hilfer fractional evolution equations, Adv. Differ. Equ., 2020 (2020), 155.
https://doi.org/10.1186/s13662-020-02615-y

AIMS Mathematics Volume 8, Issue 7, 16846–16863.

http://dx.doi.org/https://doi.org/10.1063/5.0102787
http://dx.doi.org/https://doi.org/10.3934/mbe.2023303
http://dx.doi.org/https://doi.org/10.3390/math10122064
http://dx.doi.org/https://doi.org/10.3390/math11010147
http://dx.doi.org/https://doi.org/10.1515/fca-2017-0032
http://dx.doi.org/https://doi.org/10.1186/s13662-018-1679-7
http://dx.doi.org/https://doi.org/10.1186/s13662-018-1679-7
http://dx.doi.org/https://doi.org/10.1016/j.amc.2014.12.145
http://dx.doi.org/https://doi.org/10.1142/2892
http://dx.doi.org/http://doi.org/10.1007/s12555-017-0281-1
http://dx.doi.org/http://doi.org/10.1007/s11401-005-0028-9
http://dx.doi.org/http://doi.org/10.1007/s11401-005-0028-9
http://dx.doi.org/https://doi.org/10.3934/eect.2020083
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02615-y


16862

25. J. Du, W. Jiang, D. Pang, A. U. Niazi, Exact controllability for Hilfer fractional
differential inclusion involving nonlocal initial conditions, Complexity, 2018 (2018), 9472847.
https://doi.org/10.1155/2018/9472847

26. X. Liu, Y. Li, G. Xu, On the finite approximate controllability for Hilfer fractional evolution
systems, Adv. Differ. Equ., 2020 (2020), 22. https://doi.org/10.1186/s13662-019-2478-5

27. D. Luo, Q. Zhu, Z. Luo, A novel result on averaging principle of stochastic Hilfer-type
fractional system involving non-Lipschitz coefficients, Appl. Math. Lett., 122 (2021), 107549.
http://dx.doi.org/10.1016/j.aml.2021.107549

28. K. S. Nisar, K. Jothimani, C. Ravichandran, D. Baleanu, D. Kumar, New approach on
controllability of Hilfer fractional derivatives with nondense domain, AIMS Mathematics, 7 (2022),
10079–10095. https://doi.org/10.3934/math.2022561

29. Y. Zhou, J. W. He, A Cauchy problem for fractional evolution equations with Hilfer’s
fractional derivative on semi-infinite interval, Fract. Calc. Appl. Anal., 25 (2022), 924–961.
https://doi.org/10.1007/s13540-022-00057-9

30. M. Zhou, C. Li, Y. Zhou, Existence of mild solutions for Hilfer fractional evolution equations with
almost sectorial operators, Axioms, 11 (2022), 144. https://doi.org/10.3390/axioms11040144

31. K. M. Furati, M. D. Kassim, N. E.Tatar, Existence and uniqueness for a problem
involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626.
https://doi.org/10.1016/j.camwa.2012.01.009

32. H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional
derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083

33. A. Kumar, D. N. Pandey, Controllability results for non-densely defined impulsive fractional
differential equations in abstract space, Differ. Equ. Dyn. Syst., 29 (2021), 227–237.
https://doi.org/10.1007/s12591-019-00471-1

34. C. Ravichandran, N. Valliammal, J. J. Nieto, New results on exact controllability of a class of
fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J.
Franklin Inst., 356 (2019), 1535–1565. https://doi.org/10.1016/j.jfranklin.2018.12.001

35. Y. Zhou, J. R. Wang, L. Zhang, Basic Theory of Fractional Differential Equation, Singapore: World
Scientific Publishing, 2016.

36. R. Hilfer, Applications of Fractional Calculus in Physics, Singapore: World Scientific Publishing,
2000.

37. Y. Cao, J. Sun, Controllability of measure driven evolution systems with nonlocal conditions, Appl.
Math. Comput., 299 (2017), 119–126. https://doi.org/10.1016/j.amc.2016.11.037

38. K. Balachandran, J. P. Dauer, Elements of Control Theory, Narosa Publishing House, 1999.

39. K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for
nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Soliton. Fract., 146
(2021), 110915. https://doi.org/10.1016/j.chaos.2021.110915

AIMS Mathematics Volume 8, Issue 7, 16846–16863.

http://dx.doi.org/https://doi.org/10.1155/2018/9472847
http://dx.doi.org/https://doi.org/10.1186/s13662-019-2478-5
http://dx.doi.org/http://dx.doi.org/10.1016/j.aml.2021.107549
http://dx.doi.org/https://doi.org/10.3934/math.2022561
http://dx.doi.org/https://doi.org/10.1007/s13540-022-00057-9
http://dx.doi.org/https://doi.org/10.3390/axioms11040144
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2012.01.009
http://dx.doi.org/https://doi.org/10.1016/j.amc.2014.10.083
http://dx.doi.org/https://doi.org/10.1007/s12591-019-00471-1
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2018.12.001
http://dx.doi.org/https://doi.org/10.1016/j.amc.2016.11.037
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.110915


16863

40. Y. K. Ma, K. Kavitha, W. Albalawi, A. Shukla, K. S. Nisar, V. Vijayakumar, An analysis on the
approximate controllability of Hilfer fractional neutral differential systems in Hilbert spaces, Alex.
Eng. J., 61 (2022), 7291–7302. https://doi.org/10.1016/j.aej.2021.12.067

41. V. Vijayakumar, R. Udhayakumar, A new exploration on existence of Sobolev-type Hilfer
fractional neutral integro-differential equations with infinite delay, Numer. Meth. Part. Differ. Equ.,
37 (2021), 750–766. https://doi.org/10.1002/num.22550

42. S. Zahoor, S. Naseem, Design and implementation of an efficient FIR digital filter, Cogent Eng., 4
(2017), 1323373. https://doi.org/10.1080/23311916.2017.1323373

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 7, 16846–16863.

http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.12.067
http://dx.doi.org/https://doi.org/10.1002/num.22550
http://dx.doi.org/https://doi.org/10.1080/23311916.2017.1323373
http://creativecommons.org/licenses/by/4.0

	Introduction
	Fundamental materials and solution representation
	Discussion on nonlocal controllability
	Applications
	Conclusions

