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1. Introduction

Fractional modeling has demonstrated its effectiveness in describing various time-evolving
dynamical systems [1–3]. Over the years, researchers have developed numerous numerical techniques
to approximate the solutions of these fractional models [4–8]. Among these methods, the most
commonly used techniques involve orthogonal functions, in which the solution is expanded as a
weighted infinite sum of basis functions [9]. By truncating the polynomial series, the fractional model
under consideration can be transformed into a system of algebraic equations. This transformation is
achieved by constructing a matrix representation of the differential operator, known as an operational
matrix. Spectral methods can be employed to address the residual associated with the fractional model,
aiding in the derivation of the algebraic system that governs the unknowns in the finite weighted sum
of the solution.

However, most of the developed numerical schemes depend on the non generalized orthogonal
polynomials such as Legendre [10], Laguerre [11], Hermite [12], and different kinds of Chebyshev
polynomials [13–15]. For example, Secer and Altun [16] utilized Legendre wavelets operational matrix
technique to solve a system of fractional differential equations (FDEs). Baishya and Veeresha [17]
construed a numerical scheme based on Lagurre polynomials operational matrix together with spectral
collocation method for solving FDE with Mittag-Leffler kernel. Tural-Polat and Dincel [14] used the
third-kind Chebyshev polynomials along with spectral collocation method to approximate the solution
of multi-term variable order FDEs. In [18], Abd-Elhameed and Youssri used the modified tau method
with the shifted Chebyshev polynomials of the fifth-kind to examine the solution of FDEs. Sadri
and Aminikhah developed a numerical scheme based on the shifted Chebyshev polynomials of the
sixth-kind operational matrix for studying a class of delay fractional order partial differential equations
(FPDEs) [19]. Due to the mathematical difficulties, relatively few studies involve the generalized
families of orthogonal polynomials, such as Jacobi and Ultraspherical polynomials (also known as
Gegenbauer polynomials), compared with the researches involving the traditional polynomial [20–25].
This deficiency may affect the development of accurate numerical schemes by limiting the number of
basis available for certain applications.

Recently, Masjed-Jamei [26] introduced a more general family of orthogonal polynomials with
four free parameters known as the basic class of symmetric orthogonal polynomials (BCSPs) due to its
symmetry property. This family not only includes a vast number of traditional orthogonal polynomials
even the generalized one it also can be used to generate new classes of polynomials. The development
of the BCSPs started with studying a generalization of the regular Sturm-Liouville problem known as:

d
dt

(
p (t)

dyi

dt
(t)

)
+ (λiq (t) − w (t)) yi (t) = 0, p (t) > 0, q (t) > 0, (1.1)

which, defined on the open interval (a, b) and satisfies certain boundary conditions. Whereas for any
two eigenfunctions yi (t) , y j (t), the following orthogonality relation holds∫

(a,b)
w (t) yi (t) y j (t) dt =

(∫
(a,b)

w (t) y2
i (t) dt

)
δi, j, (1.2)

where δi, j is the Kronecker function. Many non generalized orthogonal polynomials that have been
mentioned earlier are eigenfunction of Eq (1.1). Considering the symmetric functions Θi (t) satisfying
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Θi (−t) = (−1)iΘi (t), the regular Sturm-Liouville equation can be generalized to the form:

A (t)Θ′′i (t) + B (t)Θ′i +
(
λiC (t) +D (t) +

1 − (−1)i

2
E (t)

)
Θi (t) = 0, (1.3)

where A (t) ,C (t) ,D (t) and E (t) are even arbitrary functions, and B (t) is an odd function. The
functions Θi (t) obey the orthogonality relation with respect to the weight function W (t) over the
symmetric closed interval [−θ, θ]:∫

[−θ,θ]
W (t)Θi (t)Θ j (t) dt =

(∫
[−θ,θ]

W (t)Θ2
i dt

)
δi, j, (1.4)

where the function W (t) is defined as:

W (t) = C (t) · exp
(∫
B (t) −A′ (t)
A (t)

dt
)
. (1.5)

As a special case of (1.3), the generalized BCSPs with four free parameters, will denoted as S(r,s,p,q)
i (t)

through this paper, can be constructed, whereas the arbitrary function in (1.3) takes the form [26]:

A (t) = t2
(
pt2 + q

)
, B (t) = t

(
rt2 + s

)
,

C (t) = t2, D (t) = 0,E (t) = −s;

where r, s, p and q are free parameters.
However, since the time BCPs were introduced, it had never been used in any numerical techniques.

The main aim of this study is to establish a novel shifted subclass of this family applied to a spectral
Galerkin scheme for examining the numerical solution of the multi-term FDE of the form:

N∑
k=0

γk (t)
dαku (t)

dtαk
= f (t, u (t)) , t ∈ [0,T ] , T ∈ R, N ∈ N0, (1.6)

where the fractional differentiation of order, αk ∈ R
+, is defined in Caputo sense, u (t) satisfies the

boundary conditions u (0) = u0, u (T ) = u1 and γN (t) , 0. Moreover, the proposed Caputo operational
matrix introduced in the numerical scheme is a novel generalized matrix from which we will inferred
different operational matrices with respect to other families of orthogonal polynomials.

The rest of this study is organized as follows: The next section provides the relevant definitions of
fractional calculus used in this paper. In Section 3, we begin the development of the shifted family
of polynomials after illustrating the main results of the BCSPs. After that, Section 4 provides the
generalized operational matrix, also, the convergence analysis will be introduced in Section 5. Finally,
in Section 6 the numerical scheme will be discussed, supported with different numerical examples.

2. Preliminaries

In this section, some basic definition of fractional calculus is listed which will be used further in
this paper.
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Definition 2.1. Let g (t) : [a, b] → R, a < b , be Lebesgue square integrable function, and let α be the
order of integration. The Riemann-Liouville fractional integral operator is defined as [27]:

Iαc g (t) =


1
Γ (α)

∫ t

c

g (τ)
(t − τ)1−αdτ, α > 0,

g (t) , α = 0.

Definition 2.2. The left Caputo’s fractional derivative with singular kernel of order α > 0, α < N0 for
the function g (t) : [a, b]→ R is defined as:

C
Dαc+g (t) =

1
Γ (n − α)

∫ t

c

g(n) (τ)
(t − τ)1+α−n dτ, (2.1)

for n = −⌈−α⌉, [27].

Remark 2.1. The left Caputo’s fractional derivative of the power function tn, for n ∈ N0, has the
following two cases:

C
Dαc+t

n =


0, f or n < ⌈α⌉,
Γ (n + 1)
Γ (n + 1 − α)

tn−α, f or n ≥ ⌈α⌉.
(2.2)

Similar to normal derivatives, the left sided Riemann-Liouville and Caputo fractional derivatives obey
the linearity relation:

RLDαa+

m∑
s=0

bsgs (t) =
m∑

s=0

bs
RLDαa+gs (t) , (2.3)

and
C
Dαa+

m∑
s=0

bsgs (t) =
m∑

s=0

bs
C
Dαa+gs (t) , (2.4)

where {bs}
m
s=0 are constants.

The following generalized Taylor’s formula was introduced by Odibat and Momani in [28], which
have the following statement, (see also [29, 30]).

Definition 2.3. Suppose that g (t) is differentiable, and C
Dkα

0+g (t) ∈ C (0, 1] for k = 0, 1, · · · ,m, where
0 < α ≤ 1, the generalized Taylor’s formula takes the form:

g (t) =
m−1∑
i=0

tiα

Γ (iα + 1)
C
Dα0+g

(
0+

)
+

tmα

Γ (mα + 1)
C
Dα0+g (ξ) , (2.5)

with 0 ≤ ξ ≤ t for all t ∈ (0, 1].

3. Basic symmetric polynomials class

This section is concerned with recalling the relations relevant to the basic class of symmetric
polynomials (BCSPs) along with developing the main concepts of the novel shifted subclass.
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3.1. BCSPs properties

As mentioned earlier, the BSCPs are the eigenfunctions of the symmetric generalization of the
Sturm-Liouville problem in (1.3) of the form:

t2
(
pt2 + q

)
S′′

(r,s,p,q)

i (t) + t
(
rt2 + s

)
S′

(r,s,p,q)

i (t)

−

[
i (r + (i − 1) p) t2 +

(
1 − (−1)i

) s
2

]
S

(r,s,p,q)
i (t) = 0. (3.1)

The BCSPs can be defined over the symmetric interval
[
−ρ, ρ

]
, which fulfill certain conditions that will

be mentioned, through the following analytic form.

Definition 3.1. Suppose that t ∈
[
−ρ, ρ

]
, and i ∈ N0. For the parameters r, s, p, q ∈ R such that s and q

nor r and p can vanish together, the BCSPs of degree i, can be defined as (see [26]):

S
(r,s,p,q)
i (t) =

⌊ i
2 ⌋∑

k=0

(
⌊ i

2⌋

k

) 
⌊ i

2 ⌋−(k+1)∏
µ=0

ξ
r,s,p,q
µ,i

 ti−2k, (3.2)

where ξr,s,p,q
µ,i is given by:

ξ
r,s,p,q
µ,i =

(
2µ + (−1)i+1 + 2⌊ i

2⌋
)

p + r(
2µ + (−1)i+1 + 2

)
q + s

. (3.3)

In the purpose of defining the monic type of this family, the leading term is multiplied by the inverse
of the coefficient ξr,s,p,q

µ,i as follows [26].

Definition 3.2. The monic type of BCSPs (MBCSPs) is defined through the following representation:

S̄
(r,s,p,q)
i (t) =


⌊ i

2 ⌋−1∏
ν=0

1
ξ

r,s,p,q
ν,i

S(r,s,p,q)
i (t) . (3.4)

Figure 1 indicates the graph of S̄(r,s,p,q)
5 (t) for different values of s, with a fixed r, q and p.
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Figure 1. The graph of MBCSP with parameter r = −7, p = −1 = −q and s ∈ {2, 4, 6, 8}.
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By the means of the following three-term recurrence relation, the monic type of BSCPs can be
generated as:

S̄
(r,s,p,q)
i+1 (t) = tS̄(r,s,p,q)

i (t) + ϱr,s,p,q
i S̄

(r,s,p,q)
i−1 (t) , (3.5)

with the leading members S̄(r,s,p,q)
0 (t) = 1, S̄(r,s,p,q)

0 (t) = t, and ϱr,s,p,q
i is defied by:

ϱ
r,s,p,q
i =

(2pq) i2 + 2
(
(r − 2p) q − (−1)i ps

)
i + (r − 2p) s

(
1 − (−1)i

)
2 (2pi + r − p) (2pi + r − 3p)

. (3.6)

According to Favard’s theorem [31], the above three-term recurrence relation implies the next
orthogonality property [26]:

⟨S̄
(r,s,p,q)
i (t) , S̄(r,s,p,q)

j (t)⟩ =
∫ ρ

−ρ

Ξ(r,s,p,q) (t) S̄(r,s,p,q)
i (t) S̄(r,s,p,q)

j (t) dt

=

(−1)i
i∏
ν=0

ϱr,s,p,q
ν

∫ ρ

−ρ

Ξ(r,s,p,q) (t) dt

 δi, j, (3.7)

where, ϱr,s,p,q
ν as in (3.6), δi, j is the Kronecker function, and the weight function Ξ(r,s,p,q) (t) is defined as:

Ξ(r,s,p,q) (t) = exp
(∫

s + t2 (r − 2p)
t
(
q + pt2) )

, (3.8)

although, the expression
(
pt2 + q

)
Ξ(r,s,p,q) (t) should vanishes at the boundaries of the orthogonality

interval
[
−ρ, ρ

]
.

3.2. The shifted class of MBCSPs

In this part of the present article, we introduce the shifted class of the MBCSPs defined over the
interval Ω =

[
0, ρ

]
by means of a certain transformation. To the best of our knowledge, this class of

polynomials are being discussed here for the first time. The shifted class will be denoted by G(r,s,p,q)
i (t),

for i ∈ N0.

Definition 3.3. The shifted class of the MBCSPs of order i ∈ N0, defined over the interval Ω, is related
to the MBCSPs via the following transformation:

G
(r,s,p,q)
i,ρ (t) = S̄(r,s,p,q)

i (2t − ρ) , (3.9)

where, ρ ∈ R.

The set
{
G

(r,s,p,q)
i,ρ (t)

}∞
i=0

forms a complete set of orthogonal functions with respect to the weight

functionW(r,s,p,q)
ρ (t) defined as:

W
(r,s,p,q)
ρ (t) = exp

(∫
s + t2 (r − 2p)

t
(
q + pt2) dt

) ∣∣∣∣
2t−ρ
, (3.10)

which obeys the inner product of the form:
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⟨G
(r,s,p,q)
i,ρ (t) ,G(r,s,p,q)

j,ρ (t)⟩ =
∫
Ω

W
(r,s,p,q)
ρ (t)G(r,s,p,q)

i,ρ (t)G(r,s,p,q)
j,ρ (t) dt

=

(−1)i
i∏
ν=0

ϱr,s,p,q
ν

∫
Ω

W
(r,s,p,q)
ρ (t) dt

 δi, j. (3.11)

In order to establish the analytic form of the polynomials G(r,s,p,q)
i,ρ (t), we introduce the series

representation in the next lemma.

Lemma 3.1. Suppose that t ∈ Ω and i ∈ N0, the polynomials G(r,s,p,q)
i,ρ (t) can be defined through the

following series representation:

G
(r,s,p,q)
i,ρ (t) =

⌊ i
2 ⌋∑

k=0

i−2k∑
l=0

hr,s,p,q
k,l,i tl, (3.12)

where

hr,s,p,q
k,l,i =

(
⌊ i

2⌋

k

)(
i − 2k

l

) ⌊ i
2 ⌋−1∏
ν=0

1
ξ

r,s,p,q
ν,i

⌊ i
2 ⌋−(k+1)∏
µ=0

ξ
r,s,p,q
µ,i

(−1)i−l

2−lρ2k+l−i . (3.13)

Proof. According to the power series of S(r,s,p,q)
i (t) in (3.2) and the connection between the monic

class (3.4). By substituting the transfomation in (3.3), we arrive at the relation:

G
(r,s,p,q)
i,ρ (t) =

⌊ i
2 ⌋∑

k=0

(
⌊ i

2⌋

k

) ⌊ i
2 ⌋−1∏
ν=0

1
ξ

r,s,p,q
ν,i

⌊ i
2 ⌋−(k+1)∏
µ=0

ξ
r,s,p,q
µ,i (2t − ρ)i−2k ,

by applying the binomial theorem, we get the desired result. □

Considering the column vector of the shifted polynomials G(r,s,p,q)
i,ρ (t) defined by:

G
(r,s,p,q)
ρ,n (t) =

[
G

(r,s,p,q)
0,ρ (t) ,G(r,s,p,q)

1,ρ (t) , · · · ,G(r,s,p,q)
n,ρ (t)

]T

1×(n+1)
, (3.14)

this vector has a matrix representation that will be derived in the next lemma.

Lemma 3.2. Let G(r,s,p,q)
ρ,n (t) be the shifted MBCSPs vector, where n ∈ N0. For t ∈ Ω, the vector

G
(r,s,p,q)
ρ,n (t) can be written as:

G
(r,s,p,q)
ρ,n (t) = Qr,s,p,q

ρ,n Tn (t) , (3.15)

where, Tn (t) =
[
t0, t1, · · · , tn

]T
, and Qr,s,p,q

ρ,n is the (n + 1 × n + 1) lower triangle matrix and

Qr,s,p,qT

ρ,n =



qr,s,p,q
ρ,00 qr,s,p,q

ρ,10 qr,s,p,q
ρ,20 · · · qr,s,p,q

ρ,n0

0 qr,s,p,q
ρ,11 qr,s,p,q

ρ,21 · · · qr,s,p,q
ρ,n1

0 0 qr,s,p,q
ρ,22 · · · qr,s,p,q

ρ,n2
...

...
...

. . .
...

0 0 0 · · · qr,s,p,q
ρ,nn


, (3.16)
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16731

and, the entries qr,s,p,q
ρ,i j are given by:

qr,s,p,q
ρ,i j =

⌊
j
2 ⌋−ϱi∑
k=0

hr,s,p,q
k,i, j , (3.17)

where, the ϱi is defined as:

ϱi =


⌈

i
2
⌉ i even,

⌈
i
2
⌉ − 1 i odd,

(3.18)

and, the coefficients hr,s,p,q
k,i, j as in (3.13).

Proof. By careful examination for the coefficients of the power form given in Lemma 3.1, the lemma
can be proven. □

For instance, if r = −5, s = 8, q = 1 = −p, n = 5, and ρ = 1, the vector G(−5,8,−1,1)
1,5 (t) has the form:

G
(−5,8,−1,1)
1,5 (t) =



1 0 0 0 0 0
−1 2 0 0 0 0

1
6 −4 4 0 0 0
−1

8
17
4 −12 8 0 0

3
80 −12

5
92
5 −32 16 0

− 1
40

41
20 −22 68 −80 32





t0

t1

t2

t3

t4

t5


.

The essence advantage of working with the shifted MBCSPs that it includes as a special cases most of
the traditional shifted orthogonal polynomials. The following propositions gives the relation between
G

(r,s,p,q)
i,ρ (t) and some of other families.

Proposition 3.1. The shifted Legendre polynomials over the interval [0, 1] is defined in terms of the
shifted MBCSPs as:

P∗i (t) =
(2i)!

(i!)2 2i
G

(−2,0,−1,1)
i,1 (t) . (3.19)

Proof. For the even case, taking i = 2n in equation (3.4) and setting the parameters r, s, p, q, ρ to be
−2, 0,−1, 1, 1 respectively, we get

G
(−2,0,−1,1)
2n,1 (t) =

 n−1∏
ν=0

2ν + 1
− (2ν + 2n − 1) − 2

S(−2,0,−1,1)
2n (2t − 1) .

Thus, the analytic form of the MBCSPs reads:

G
(−2,0,−1,1)
2n,1 (t) =

n∑
k=0

(−1)k n!Γ
(

1
2 + n

) (
3
2 + n

)
−1−k+n

k! (n − k)!Γ
(

1
2 + n − k

) (
3
2 + n

)
n−1

(2t − 1)2n−2k ,

where (s)k is the Pochhammer symbol (for s ∈ C) see [32]. Using the identities

(s)m =
Γ (s + m)
Γ (s)

, and Γ
(
1
2
+ m

)
=

(2m)!
√
π

22mm!
, (3.20)
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we get

G
(−2,0,−1,1)
2n,1 (t) =

n∑
k=0

(−1)k (2n!)2 (4n − 2k)!
k! (4n)! (2n − k)! (2n − 2k)!

(2t − 1)2n−2k ,

multiplying both sides by (4n)!
(2n!)222n , we have

(4n)!
(2n!)2 22n

G
(−2,0,−1,1)
2n,1 (t) =

n∑
k=0

(−1)k (4n − 2k)!
22nk! (2n − k)! (2n − 2k)!

(2t − 1)2n−2k , (3.21)

where the right hand side is the analytic form of the shifted Legendre polynomials P∗2n (t). Similarly,
the odd case can be obtained and the proof is complete. □

Proposition 3.2. The shifted Chebyshev polynomials of the first and second-kind over the interval
[0, 1] are defined in terms of the shifted MBCSPs as:

T ∗i (t) = 2i−1G
(−1,0,−1,1)
i,1 (t) , (3.22)

U∗i (t) = 2iG
(−3,0,−1,1)
i,1 (t) . (3.23)

Proposition 3.3. The shifted generalized Ultraspherical polynomials over the interval [0, 1] is defined
in terms of the shifted MBCSPs as:

Cλ
∗

i (t) =
2i (λ)i

i!
G

(−2λ−1,0,−1,1)
i,1 (t) . (3.24)

Also, another significant monic types of orthogonal polynomials can be obtained directly from the
shifted MBCSPs.

Proposition 3.4. The shifted monic Chebyshev polynomials of the fifth and sixth-kind over the interval
[0, 1] are defined in terms of the shifted MBCSPs as:

X̄∗i (t) = G(−3,2,−1,1)
i,1 (t) , (3.25)

Ȳ∗i (t) = G(−5,2,−1,1)
i,1 (t) . (3.26)

Remark 3.1. For obtaining the matrix representation of all other shifted orthogonal polynomials
related to the shifted MBCSPs in terms of Qr,s,p,q

ρ,n the coefficients correlating these polynomials with
G

(r,s,p,q)
i,ρ (t) must be taken into account. As an example, by using of Proposition 3.2, the coefficient

matrix of the shifted Chebyshev polynomials of the second-kind, for n = 4, can be written as:

diag
(
2 j, 4

)
Q−3,0,−1,1

1,4 =


20 0 0 0 0
0 21 0 0 0
0 0 22 0 0
0 0 0 23 0
0 0 0 0 24




1 0 0 0 0
−1 2 0 0 0

3
4 −4 4 0 0
−1

2 5 −12 8 0
5

16 −5 21 −32 16


, (3.27)

where diag (·, n) denotes the (n + 1) × (n + 1) diagonal matrix.
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According to the value of r, s, p, and q. The four parameter weight function in (3.10) reduces to
the existing weight function of the related polynomials. For example, in the first-kind Chebyshev
polynomials case, we have

W
(−1,0,−1,1)
1 (t) = exp

(∫
t

1 − t2 dt
) ∣∣∣∣

2t−1

= exp
(
−

1
2

ln
(
1 − (2t − 1)2

))
=

(
1 − (2t − 1)2

) −1
2
,

which is the weight function of the shifted Chebychev polynomials of the first-kind.

Lemma 3.3. The shifted monic BCSPs has the following analytic form:

G
(r,s,p,q)
i,ρ (t) =

i∑
k=0

qr,s,p,q
ρ,ik tk, (3.28)

where qr,s,p,q
ρ,i j , is the entry in (3.17).

Proof. Having the matrix representation in Lemma 3.2, the present lemma can be proven. □

Let u (t) ∈ L2 (Ω), the function u (t) can be expanded as a linear combination terms of the orthogonal
basis

{
G

(r,s,p,q)
i,ρ (t)

}∞
i=0

as follows:

u (t) =
∞∑

i=0

ciG
(r,s,p,q)
i,ρ (t) , (3.29)

where ci are the coefficients of the series (3.29). By truncating the series at i = n ∈ N0, the first n + 1
terms are taken as an appropriate approximation of u (t) as:

u (t) ≃ un (t) =
n∑

i=0

ciG
(r,s,p,q)
i,ρ (t) = ΛT

G
(r,s,p,q)
ρ,n (t) (3.30)

where ΛT = [c0, c1, · · · , cn]T is the coefficient vector having the entries:

ci =
1
σ

r,s,p,q
i,ρ

∫
Ω

W
(r,s,p,q)
ρ (t) u (t)G(r,s,p,q)

i,ρ (t) dt, (3.31)

and the coefficients σr,s,p,q
i are defined as:

σ
r,s,p,q
i,ρ = (−1)i

i∏
ν=0

ϱr,s,p,q
ν

∫
Ω

W
(r,s,p,q)
ρ (t) dt. (3.32)

Through the upcoming section we introduce the shifted MBCSPs operational matrix of the left-sided
Caputo’s fractional operator in the purpose of investigating the numerical solution of the FDEs in (1.6)
with the help of spectral Galerkin technique.
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4. Shifted MBCSPs operational matrix

The shifted monic operational matrix of the left-sided Caputo fractional operator will be introduced
in this section. Consequently, the operational matrix of this operator with respect to other orthogonal
polynomials can be constructed as a special case of the generalized one.

Theorem 4.1. Suppose that CDαc+ is the Caputo’s fractional differentiation of order α ∈ R. The
derivative of the shifted MBSCPs vector CDαc+G

(r,s,p,q)
ρ,n (t) is given by:

C
Dαc+G

(r,s,p,q)
ρ,n (t) = O(r,s,p,q)

ρ,n,α G
(r,s,p,q)
ρ,n (t) , (4.1)

where O(r,s,p,q)
ρ,n,α is the shifted monic BCSPs operational matrix of the Caputo fractional derivative of

order α, defined as:

O
(r,s,p,q)
ρ,n,α = Qr,s,p,q

ρ,n Hn,α (t)
(
Qr,s,p,q
ρ,n

)−1
,

andHn,α (t) is the diagonal matrix of the form:

Hn,α (t) =



0 · · · 0 · · · 0
...
. . .

...
. . .

...

0 · · ·
Γ(⌈α⌉+1)
Γ(⌈α⌉−α+1) t

−α · · · 0
...
. . .

...
. . .

...

0 · · · 0 0 Γ(n+1)
Γ(n−α+1) t

−α


. (4.2)

Proof. According to the matrix equation in Lemma 3.2, the derivative of G(r,s,p,q)
ρ,n (t) can be written as:

C
Dαc+G

(r,s,p,q)
ρ,n (t) = Qr,s,p,q

ρ,n
C
Dαc+Tn (t) , (4.3)

whereas the derivative of Tn (t), by applying (2.2), is given by:

0 · · · 0 · · · 0
...
. . .

...
. . .

...

0 · · ·
Γ(⌈α⌉+1)
Γ(⌈α⌉−α+1) t

⌈α⌉−α · · · 0
...
. . .

...
. . .

...

0 · · · 0 0 Γ(n+1)
Γ(n−α+1) t

n−α


, (4.4)

which readsHn,α (t)Tn (t). Since the vector Tn (t) can be written terms of G(r,s,p,q)
ρ,n (t) as:

Tn (t) =
(
Qr,s,p,q
ρ,n

)−1
G

(r,s,p,q)
ρ,n (t) .

Substituting the last equation in (4.3), we get

C
Dαc+G

(r,s,p,q)
ρ,n (t) = Qr,s,p,q

ρ,n Hn,α (t)
(
Qr,s,p,q
ρ,n

)−1
G

(r,s,p,q)
ρ,n (t) .

The previous equation completes the proof. □
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The operational matrix with respect to vast families of orthogonal polynomials related to the shifted
monic BCSPs can be expressed in terms of the generalized operational matrix given in Theorem 4.1.
The following corollaries provide the methodology taken to derive such operational matrices.

Corollary 4.1. Let P∗n (t) =
[
P∗0 (t) , P∗1 (t) , · · · , P∗n (t)

]
be the shifted Legendre polynomials vector

defined over the interval [0, 1]. The shifted Legendre operational matrix of the Caputo fractional
operator of order α is given by:

C
Dαc+P

∗
n (t) =

(
Dp,nQ−2,0,−1,1

1,n

)
Hn,α (t)

(
Dp,nQ−2,0,−1,1

1,n

)−1
P∗n (t) , (4.5)

where Dp,n is the (n + 1) × (n + 1) diagonal matrix given by:
(2·0)!

(0!)220 0 · · · 0
0 (2·1)!

(1!)221 · · · 0
...

...
. . .

...

0 0 · · ·
(2·n)!

(n!)22n

 .
Proof. Since the shifted Legendre polynomials is related to G(r,s,p,q)

i,ρ (t) as in (3.19), by applying
Remark 3.1, the matrix representation of P∗n (t) would be:

P∗n (t) = diag
(

(2i)!
(i!) 2i , n

)
Q−2,0,−1,1

1,n Tn (t) . (4.6)

Acting on the vector Tn (t) as in (4.4), we get the desired result. □

Corollary 4.2. Let Uλ
∗

n (t) =
[
Cλ

∗

0 (t) ,Cλ
∗

1 (t) , · · · ,Cλ
∗

n (t)
]

be the shifted Ultraspherical polynomials
vector defined over the interval [0, 1]. The shifted Ultraspherical operational matrix of the Caputo
fractional operator of order α is given by:

C
Dαc+U

λ∗

n (t) =
(
Du,nQ−2λ−1,0,−1,1

1,n

)
Hn,α (t)

(
Du,nQ−2λ−1,0,−1,1

1,n

)−1
Uλ

∗

n (t) , (4.7)

where Du,n is the (n + 1) × (n + 1) diagonal matrix given by:
20(λ)0

(0!) 0 · · · 0

0 21(λ)1
(1!) · · · 0

...
...

. . .
...

0 0 · · ·
2n(λ)n

(n!)

 .
Corollary 4.3. Let T ∗n (t) =

[
T ∗0 (t) ,T ∗1 (t) , · · · ,T ∗n (t)

]
be the first-kind shifted Chebyshev polynomials

vector defined over the interval [0, 1]. The shifted Chebyshev of the first-kind operational matrix of the
Caputo fractional operator of order α is given by:

C
Dαc+T

∗
n (t) =

(
Dt,nQ−1,0,−1,1

1,n

)
Hn,α (t)

(
Dt,nQ−1,0,−1,1

1,n

)−1
T ∗n (t) , (4.8)

where Dt,n is the (n + 1) × (n + 1) diagonal matrix given by:
20−1 0 · · · 0

0 21−1 · · · 0
...

...
. . .

...

0 0 · · · 2n−1

 .
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Corollary 4.4. Let X̄∗n (t) =
[
X̄∗0 (t) , X̄∗1 (t) , · · · , X̄∗n (t)

]
be the shifted moinc Chebyshev polynomials

vector of the fifth-kind defined over the interval [0, 1]. The shifted moinc Chebyshev of the fifth-kind
operational matrix of the Caputo fractional operator of order α is given by:

C
Dαc+X̄

∗
n (t) = Q−3,2,−1,1

1,n Hn,α (t)
(
Q−3,2,−1,1

1,n

)−1
X̄∗n (t) . (4.9)

Corollary 4.5. Let Ȳ∗n (t) =
[
Ȳ∗0 (t) , Ȳ∗1 (t) , · · · , Ȳ∗n (t)

]
be the shifted moinc Chebyshev polynomials

vector of the sixth-kind defined over the interval [0, 1]. The shifted moinc Chebyshev of the sixth-kind
operational matrix of the Caputo fractional operator of order α is given by:

C
Dαc+Ȳ

∗
n (t) = Q−5,2,−1,1

1,n Hn,α (t)
(
Q−5,2,−1,1

1,n

)−1
Ȳ∗n (t) . (4.10)

5. Discussion of error estimate

Here, the error estimate will be examined by the help of the generalized Taylor’s formula.

Theorem 5.1. Assume that CDiα
0+g (t) ∈ C (Ω) for i = 0, 1, · · · , n, and let u (t) ∈ Cn [

0, ρ
]
. Consider

Jn = Span
{
G

(r,s,p,q)
0,ρ (t) ,G(r,s,p,q)

1,ρ (t) , · · · ,G(r,s,p,q)
n,ρ (t)

}
. If un (t) = ΛTG

(r,s,p,q)
ρ,n (t) is the best approximation

of the function u (t) out of Jn, then the error bound is estimated by:

∥u (t) − un (t)∥L2
W

(Ω) ≤
M

Γ (nα + 1)

√
In,ρ,α
r,s,p,q, (5.1)

where In,ρ,α
r,s,p,q is defined as:

In,ρ,α
r,s,p,q =

∫
Ω

t2nαW
(r,s,p,q)
ρ (t) dt, (5.2)

which converges for all t ∈ Ω, and M = sup
t∈Ω

∣∣∣CDnα
0+u (t)

∣∣∣.
Proof. By expanding u (t) ∈ L2 (Ω) in terms of the generalized Taylor’s formula as given in
Definition 2.3

u (t) =
n−1∑
i=0

tiα

Γ (iα + 1)
CDα0+u

(
0+

)
+

tnα

Γ (nα + 1)
CDα0+u (ξ) ,

for ξ ∈ [0, t]. Consider the function φ (t) ∈ Jn defined as:

φ (t) =
n−1∑
i=0

tiα

Γ (iα + 1)
C
Dα0+u

(
0+

)
,

then
|u (t) − φ (t)| ≤

tnα

Γ (nα + 1)

∣∣∣CDα0+u (ξ)
∣∣∣ = Mtnα

Γ (nα + 1)
.

Having that un (t) is the best approximation of u (t) in Jn, then

∥u (t) − un (t)∥2L2
W

(Ω) ≤ ∥u (t) − φ (t)∥2L2
W

(Ω) =

∫
Ω

|u (t) − φ (t)|2W(r,s,p,q)
ρ (t) dt

≤
M2

Γ (nα + 1)2

∫
Ω

t2nαW
(r,s,p,q)
ρ (t) dt,

which proves the theorem. □
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The next theorem gives the residual error associated with the FDEs considered in Eq (1.6).

Theorem 5.2. Suppose that f : [0,T ] × Ω → R satisfies a Lipschitz condition in u with Lipschitz
constant L, that is

∥ f (t, u) − f (t, ũ)∥L2
W

(Ω) ≤ L ∥u (t) − ũ (t)∥L2
W

(Ω) . (5.3)

Then, the residual error is bounded by:

∥R (t)∥L2
W

(Ω) ≤

 N∑
k=0

ϑkξk + L

 ∥un (t) − u (t)∥L2
W

(Ω) , (5.4)

where ∥un (t) − u (t)∥L2
W

(Ω) is the truncation error in Theorem 5.1.

Proof. Consider the approximate spectral solution un (t) of (1.6). Since the residual error is defined as:

R (t) =
N∑

k=0

γk (t) C
D
αk
0+un (t) − f (t, un (t)) ,

then

∥R (t)∥L2
W

(Ω) =

∥∥∥∥∥∥∥
N∑

k=0

γk (t) C
D
αk
0+un (t) − f (t, un)

∥∥∥∥∥∥∥
L2
W

(Ω)

=

∥∥∥∥∥∥ N∑
k=0

γk (t) C
D
αk
0+un (t) − f (t, un)

−

 N∑
k=0

γk (t) C
D
αk
0+u (t) − f (t, u)

 ∥∥∥∥∥∥
L2
W

(Ω)

=

∥∥∥∥∥∥∥
N∑

k=0

γk (t) C
D
αk
0+ (un (t) − u (t)) − ( f (t, un) − f (t, u))

∥∥∥∥∥∥∥
L2
W

(Ω)

≤

∥∥∥∥∥∥∥
N∑

k=0

γk (t) C
D
αk
0+ (un (t) − u (t))

∥∥∥∥∥∥∥
L2
W

(Ω)

+ ∥ f (t, un) − f (t, u)∥L2
W

(Ω)

≤

N∑
k=0

ϑk

∥∥∥C
D
αk
0+ (un (t) − u (t))

∥∥∥
L2
W

(Ω) + L ∥un (t) − u (t)∥L2
W

(Ω) ,

where
ϑk = sup

t∈Ω
∥γk (t)∥L2

W
(Ω) . (5.5)

Now, from the boundedness of C
D
αk
0+ (see [33]), for each k in {0, 1, · · · ,N}, we have∥∥∥C

D
αk
0+ (un (t) − u (t))

∥∥∥
L2
W

(Ω) ≤ ξk ∥un (t) − u (t)∥L2
W

(Ω) . (5.6)

Hence,

∥R (t)∥L2
W

(Ω) ≤

 N∑
k=0

ϑkξk + L

 ∥un (t) − u (t)∥L2
W

(Ω) ,

which tends to zero as shown in Theorem 5.1 when n is sufficiently large. □
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6. Numerical scheme

In this section, we introduce the method of solution of the multi-term FDE in (1.6). Unlike other
traditional numerical schemes, the proposed scheme based on the shifted MBCSPs can be used to study
the numerical solution with respect to numerous orthogonal polynomials without performing further
calculations.

6.1. Method of solution

Consider the multi-term FDE in (1.6), by approximating the function u (t) ∈ L2
W

(Ω) as in (3.30),
the FDE reads

N∑
k=0

γk (t) C
D
αk
0+Λ

T
G

(r,s,p,q)
ρ,n (t) = f

(
t,ΛT
G

(r,s,p,q)
ρ,n (t)

)
,

now, applying Theorem 4.1 implies

N∑
k=0

γk (t)ΛT
O

(r,s,p,q)
ρ,n,αk

G
(r,s,p,q)
ρ,n (t) = f

(
t,ΛT
G

(r,s,p,q)
ρ,n (t)

)
,

hence, the residual of the problem would be

R (t) =
N∑

k=0

γk (t)ΛT
O

(r,s,p,q)
ρ,n,αk

G
(r,s,p,q)
ρ,n (t) − f

(
t,ΛT
G

(r,s,p,q)
ρ,n (t)

)
. (6.1)

The application of spectral Galerkin method yields

⟨
G

(r,s,p,q)
i,ρ (t)

W
(r,s,p,q)
ρ (t)

,R (t)⟩ =
∫
Ω

G
(r,s,p,q)
i,ρ (t) R (t) dt = 0, (6.2)

for i = 0, 1, · · · , n − 2. the above equation generates n − 1 dimensional system of equation in the
unknowns ci. Making use of the boundary conditions, we get the following additional equation

ΛT
G

(r,s,p,q)
ρ,n (0) = u0, and ΛT

G
(r,s,p,q)
ρ,n (T ) = u1. (6.3)

By solving the obtained system using a suitable solver, the approximate solution can be expressed in
terms of the shifted MBCSPs.

6.2. Numerical experiments

In the purpose of illustrating the accuracy and applicability of the proposed generalized approach,
a numerical treatment for a different FDEs supported with comparison with other techniques will be
present in this section.

The error estimate between the exact solution u (t) and the numerical solution ũ (t), will be measured
by calculating the absolute value ei = |u (ti) − ũ (ti)| for i = 1, 2, · · · , n.
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Example 6.1. Consider the following Bagley-Torvik initial-value problem (IVP) [18, 34]:

CD2
0+u (t) + CDα0+u (t) + u (t) = f (t) , t ∈

[
0, ρ = 1

]
, (6.4)

subject to u (0) = 1 which has the exact solution u (t) = 1 + t. For α = 1
2 , and n = 2, writing u (t) as

in (3.30)
u2 (t) = c0G

(r,s,p,q)
0 (t) + c1G

(r,s,p,q)
1 (t) + c2G

(r,s,p,q)
2 (t) , (6.5)

by applying (6.1), the residual of given equation reads

R (t) = ΛT
(
O

(r,s,p,q)
1,2,2 G

(r,s,p,q)
1,2 (t) +O(r,s,p,q)

1,2, 12
G

(r,s,p,q)
1,2 (t) +G(r,s,p,q)

1,2 (t)
)
− f (t) , (6.6)

where f (t) = t+ 2
√

t
√
π
+ 1. Choosing r = −5, s = 4, p = −q = −1, the proposed scheme with the weights

G
(−5,4,−1,1)
k (t), k = 0, 1, 2, provide the coefficients

u2 (t) =
(
3
2

)
G

(−5,4,−1,1)
0 (t) +

(
1
2

)
G

(−5,4,−1,1)
1 (t) + (0)G(−5,4,−1,1)

2 (t) = 1 + t,

which is the exact solution. For small values of α = 0.1, 0.05, and 0.01 with n = 2 the following results
are obtained in Table 1.

Table 1. The numerical results of Example 6.1 for different values of α at n = 2.

t Exact Absolute error Absolute error Absolute error
solution (α = 0.1) (α = 0.05) (α = 0.01)

0.0 1.00000 2.66454 × 10−15 9.10383 × 10−15 1.11022 × 10−15

0.2 1.20000 3.10862 × 10−15 9.99201 × 10−15 1.11022 × 10−15

0.4 1.40000 3.33067 × 10−15 1.04361 × 10−14 1.33227 × 10−15

0.6 1.60000 3.33067 × 10−15 1.04361 × 10−14 1.11022 × 10−15

0.8 1.80000 3.10862 × 10−15 9.99201 × 10−15 1.11022 × 10−15

1.0 2.00000 3.10862 × 10−15 9.10383 × 10−15 8.88178 × 10−16

Example 6.2. Consider the linear fractional IVP of the form [35]:

CD2
0+u (t) − 2 CD1

0+u (t) + CD
1
2
0+u (t) = f (t, u (t)) , t ∈

[
0, ρ = 1

]
, (6.7)

where f (t, u (t)) is defined as:

f (t, u (t)) = t7 − 14t6 + 42t5 − t2 +
8
(
256t5 − 143

)
t

3
2

429
√
π

+ 4
(
t −

1
2

)
− u (t) ,

having the initial conditions u (0) = u′ (0) = 0 with the exact solution u (t) = t2
(
t5 − 1

)
. Similarly as in

Example 6.1, the residual of the problem can be derived. Assuming that

u (t) ≃ u7 (t) =
7∑

i=0

ciG
(−4,5,−1,1)
i (t) ,
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by constructing the algebraic system with the aid of Galerkin technique, the approximate solution u7 (t)
is found to be

u7 (t) = t2
(
t5 − 1

)
,

which is the same as the exact solution. Table 2 shows the comparison between the maximal absolute
error of the present method and other polynomial based techniques such as Tau-Shifted Chebyshev
(TC), Legendre-Gauss quadrature (LGQ), triangular functions (TF), and block pulse functions (BPF).

Table 2. The maximal absolute error of Example 6.2.

Present method TSC (n = 8) LGQ (n = 8) TF (h = 0.01) BPF (h = 0.01)
(n = 8)
0.00000 3.07566×10−15 1.22696 × 10−15 3.96626×10−4 2.61473 × 10−2

Example 6.3. Consider the Bagley-Torvik boundary value problem (BVP) [34]:

CDαc+u (t) = f (t, u (t)) , t ∈
[
0, ρ = 1

]
, (6.8)

for α = 3
2 , the function f (t, u (t)) takes the form:

f (t, u (t)) = t5 − t4 +
128t

7
2

7
√
π
−

64t
5
2

5
√
π
− u (t) ,

governed by the boundary conditions u (0) = u (1) = 0, with the exact solution u (t) = t4 (t − 1). By
applying the proposed method for r = −5, s = 4 and p = −q = −1, the exact solution can be found
with n = 5, i.e.,

u5 (t) =
5∑

i=0

ciG
(−5,4,−1,1)
i (t) = t4 (t − 1) .

The graph of the exact and numerical solutions is given in Figure 2(a), in addition, the comparison
between the absolute error of the present method and the Gegenbauer wavelet method [34] is given
graphically in Figure 2(b). Therefore, the numerical results is compared with the Gegenbauer wavelet
method [34] in Table 3. Also, Table 4 provides the absolute error for small values of α.

One of the main advantages of the proposed scheme appears from the ability of providing the
approximate solution in terms of different families of polynomials. So, Figure 3 compares the absolute
error between the shifted Legendre (SL), first-kind shifted Chebyshev (FSC), second-kind shifted
Chebyshev (SSC) and the shown configuration of the MBCSPs for Example 6.3 with α = 1

4 . Table 5
provides the numerical results obtained with different r, s, p and q configurations representing other
families of polynomials for n = 5.
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Figure 2. (a) The graph of exact and numerical solutions, (b) comparison between the
absolute error of the present method and the method in [34].

●
● ● ● ● ● ● ● ● ● ● ●

● ●
●
●

●
●
●
●

●

● ●●

■ ■ ■ ■ ■ ■ ■ ■
■
■
■
■ ■ ■

■ ■
■
■

■

■

◆ ◆◆◆◆◆◆
◆
◆
◆
◆

◆

◆
◆

◆

◆

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲ ▲

▲ ▲
▲ ▲

▲

▲

▲

▲

● Pi
*(t)=

(2 i)!

(i!)2 2i
i,1

(-2,0,-1,1)

■ Ti
*(t)=2i-1i,1

(-1,0,-1,1)

◆ Ui
*(t)=2ii,1

(-3,0,-1,1)

▲ i,1
(-5,4,-1,1)

0.0 0.2 0.4 0.6 0.8 1.0
0

5.×10-17

1.×10-16

1.5×10-16

2.×10-16

2.5×10-16

t

A
bs
ol
ut
e
er
ro
r

Figure 3. Comparison of the absolute error between, SL, FSC, SSC, and MBCSP.

Table 3. The numerical results of Example 6.3 for n = 5.

t Exact Present Absolute error Absolute error
solution method (n = 5) in [34]

0.0 0.00000 0.00000 0.00000 0.00000 × 10−6

0.1 -0.00009 -0.00009 0.00000 2.00000 × 10−6

0.2 -0.00128 -0.00128 0.00000 3.00000 × 10−6

0.3 -0.00567 -0.00567 0.00000 1.00000 × 10−6

0.4 -0.01536 -0.01536 0.00000 0.00000 × 10−6

0.5 -0.03125 -0.03125 0.00000 2.00000 × 10−6

0.6 -0.05184 -0.05184 0.00000 1.00000 × 10−6

0.7 -0.07203 -0.07203 0.00000 3.00000 × 10−6

0.8 -0.08192 -0.08192 0.00000 2.00000 × 10−6

0.9 -0.06561 -0.06561 0.00000 0.00000 × 10−6

1.0 0.00000 0.00000 0.00000 0.00000 × 10−6

AIMS Mathematics Volume 8, Issue 7, 16724–16747.



16742

Table 4. The numerical Absolute error of Example 6.3 for different values of α at n = 2.

t Exact Absolute error Absolute error Absolute error
solution (α = 0.25) (α = 0.1) (α = 0.05)

0.0 0.00000 1.04083 × 10−17 3.46945 × 10−18 1.73472 × 10−18

0.2 -0.00218 7.80626 × 10−18 1.30104 × 10−18 2.58040 × 10−17

0.4 -0.01536 8.67362 × 10−18 2.77556 × 10−17 3.12250 × 10−17

0.6 -0.05184 2.08167 × 10−17 8.32667 × 10−17 9.71445 × 10−17

0.8 -0.08192 5.55112 × 10−17 6.93889 × 10−17 8.32667 × 10−17

1.0 0.00000 1.56125 × 10−16 2.25514 × 10−16 2.23779 × 10−16

Table 5. The numerical results of Example 6.3 with α = 0.25 and n = 5 for different families
of polynomials.

t Exact SL FSC SSC
solution solution solution solution

0.0 0.00000 1.73472−17 3.46945−18 1.73472−17

0.2 -0.00128 9.97466−18 7.58942−18 1.51788−18

0.4 -0.01536 1.04083−17 2.08167−17 3.46945−17

0.6 -0.05184 4.16334−17 6.93889−17 1.38778−16

0.8 -0.08192 5.55112−17 8.32667−17 2.63678−16

1.0 0.00000 7.97973−17 1.90820−16 5.44703−16

Example 6.4. Consider the linear boundary value problem [36]:

(10 + t)2 CD
5
2
0+u (t) +

5
2

(10 + t) CD
3
2
0+u (t) +

1
2

CD
1
2
0+u (t) =

t
3
2

100
√
π
, t ∈

[
0, ρ = 1

]
, (6.9)

governed by the boundary conditions u (0) = ln (10) , u (1) = ln (11), with the exact solution u (t) =
ln (10 + t). By applying the proposed method for r = −7, s = 4 and p = −q = −1. Figure 4(a), obtained
The graph of exact and numerical solutions at n = 12, whereas, Figure 4(b) gives the absolute error for
different values of n, which reflects the convergence of the proposed method by increasing the number
of basis. Also, Table 6 gives The numerical results of the present example at n = 8, 10 and 12.

In case that we want to provide the approximate solution in terms of different families of
polynomials. Figure 5 shows the absolute error of the approximate solution in terms of the SL, SFC,
SSC, and the monic shifted sixth-kind Chebyshev polynomials (MSSC) obtained as a special case of
G

(r,s,p,q)
i,ρ (t). It is clear that the Chebyshev family has similar performance in this problem. Finally,

Table 7 gives the absolute error of different polynomials ( SL solution, SFC solution, SSC solution,
and MSSC solution) at n = 8.
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Table 6. The numerical results of Example 6.4 for n = 8, 10 and 12.

t Exact Present Absolute error Absolute error Absolute error
solution method (n = 8) (n = 10) (n = 12)

0.0 2.30259 2.30259 8.88178 × 10−16 8.88178 × 10−16 4.44089 × 10−16

0.1 2.31254 2.31254 2.22045 × 10−15 4.44089 × 10−16 0.00000 × 10−16

0.2 2.32239 2.32239 1.33227 × 10−15 4.44089 × 10−16 0.00000 × 10−16

0.3 2.33214 2.33214 3.10862 × 10−15 4.44089 × 10−16 0.00000 × 10−16

0.4 2.34181 2.34181 2.66454 × 10−15 4.44089 × 10−16 0.00000 × 10−16

0.5 2.35138 2.35138 2.66454 × 10−15 4.44089 × 10−16 0.00000 × 10−16

0.6 2.36085 2.36085 5.32907 × 10−15 4.44089 × 10−16 0.00000 × 10−16

0.7 2.37024 2.37024 8.88178 × 10−16 4.44089 × 10−16 0.00000 × 10−16

0.8 2.37955 2.37955 3.10862 × 10−15 8.88178 × 10−16 4.44089 × 10−16

0.9 2.38876 2.38876 4.44089 × 10−16 4.44089 × 10−16 0.00000 × 10−16

1.0 2.39789 2.39789 0.00000 × 10−16 1.33227 × 10−15 0.00000 × 10−16

Table 7. The absolute error in Example 6.4 of different polynomials for n = 8.

t SL Absolute SFC Absolute SSC Absolute MSSC Absolute
Error Error Error Error

0.0 0.00000−16 8.88178−16 4.44089−16 4.44089−16

0.2 4.44089−16 1.33227−16 0.00000−16 0.00000−16

0.4 3.55271−15 2.66454−15 3.99680−15 3.99680−15

0.6 4.44089−15 5.32907−15 3.99680−15 4.44089−15

0.8 3.99680−15 3.10862−15 3.99680−15 3.99680−15

1.0 4.44089−16 8.88178−16 4.44089−16 0.00000−16
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Figure 4. (a) The graph of exact and numerical solutions, (b) the absolute error of the present
method for n = 8, 10 and 12.
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Figure 5. Graph of the absolute error in Example 6.4 of different families of polynomials for
n = 8, where, (a) SL solution, (b) SFC solution, (c) SSC solution, (d) MSSC solution.

7. Conclusions

Through the discussion in this paper, the authors have introduced a novel generalized shifted
symmetric orthogonal basis which was used later for obtaining a general operational matrix for the
left-sided Caputo fractional derivative. This class of polynomials presumably used for the first time
as trial functions with spectral methods in a numerical scheme concerning the solution of fractional
differential equations (FDEs). The obtained operational matrix with four parameters can be used for
expressing the operational matrix with respect to other families without needing additional calculations.
For the sake of demonstration, the proposed basis were used for solving multiple FDEs showing its
accuracy and applicability along with comparing it with other different techniques. The advantage of
these orthogonal polynomials is that it include numerous choices for the basis of solution with different
domains of definitions as well as generating a new orthogonal basis. This makes the task of choosing
the most appropriate basis for the problem under study much easier by comparing the error for different
four parameters configurations.
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