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Abstract: In optimization, convex and non-convex functions play an important role. Further,
there is no doubt that convexity and stochastic processes are closely related. In this study, we
introduce the notion of the s-convex stochastic process for center-radius order in the setting of interval-
valued functions (ZV¥S) which is novel in literature. By using these notions we establish Jensen,
Ostrowski, and Hermite-Hadamard (H.H) types inequalities for generalized interval-valued CR-h-
convex stochastic processes. Furthermore, the study provides useful examples to support its findings.
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1. Introduction

In dealing with uncertain data, interval analysis provides a number of useful tools. This method
may be used in models containing data that have inaccuracies as a result of measuring certain
types of things in certain ways. As an example of a set-valued analysis, interval analysis is used
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in mathematical analysis and general topology. By using this technique, we can handle interval
uncertainty in some deterministic real-world phenomena. In Moore’s acclaimed book the mathematics
of numerical analysis, interval analysis was introduced for the first time in numerical analysis, see
Ref. [1]. Over the past fifty years, interval analysis has been widely applied to a variety of fields, such
as the following: Computer graphics [2], interval differential equation [3], automatic error analysis [4]
and neural network output optimization [5], etc.

It has long been recognized that convexity is a significant factor in areas such as probability theory,
economics, optimal control theory, and fuzzy analysis, as well as a valuable source of inspiration in
both the natural sciences and the applied sciences. Additionally, generalized convexity of mappings can
be a powerful tool for solving a wide variety of nonlinear analysis, as well as applied analysis, problems
in mathematics, and physics. A particularly exciting area is the study of convexity with integral
problems. In recent years, integral inequalities have proven useful for qualitative and quantitative
evaluations of convexity. In mathematics, the Hermite-Hadamard inequality is well known for being
the first geometric interpretation of convex maps. A famous double inequality is defined as follow:

f+g 1 ¢ {(f) +4(g)
g( 5 )sg_fj;g(g)dssT, (1.1)

where { : I € R — R be a convex function on interval I and f, g € I with f < g. Convexity classes of
various types have been covered by this function, which has been refined, generalized, and extended in
various ways by using A-convexity, see Refs. [6—16]. The following are some developments related to
proposed inequalities using different integral operators for interval-valued functions, see Refs. [17-30].
Further, more it is of great importance in statistics and probability to understand stochastic convexity in
order to calculate numerical estimates of existing probabilistic quantities. Initially an investigation of
convex stochastic processes was conducted by Nikodem in 1980, see Ref. [31]. Several applications of
stochastic convexity were given by Shaked et al. [32] in 1988. A further revision of results previously
developed by authors was made by Skowronski in 1992, along with an introduction of some new
notions associated with convex stochastic processes and some further results obtained, see Ref. [33]. A
famous double inequality often called Hermite-Hadamard inequality was extended to convex stochastic
processes by Kotrys in 2012, see Ref. [34]. In 2015, Nelson Merentes and his co-authors utilized
Varosanec [35], concept of h-convexity and revised previous results developed by different authors
in context of 4-convex stochastic processes this article develops Hermite-Hadamard, Schur and Jensen
type inequalities by describing s-convex stochastic processes, see Ref. [36]. Some recent developments
related to these inequalities for convex stochastic processes, see Refs. [37—45]. Moreover, Mevliit Tung
and the following authors [46,47] developed Ostrowski type inequalities for 4-convexity as well as for
h-convex stochastic process, respectively.

Based on the radius and midpoints of the interval, Bhunia [48], developed the center-radius order
in 2014. Following authors developed these inequalities for harmonically CR-h-convex and CR-h-
Godunova-Levin functions based on the notions of center-radius order in 2022, see Refs. [49, 50].
Center-radius order relations pertaining to /- convex functions offer the advantage of providing more
precise inequality terms, and it is possible to demonstrate the validity of the argument by providing
interesting illustrations. Therefore, understanding how convexity and inequality can be studied using
a total order relation is essential. Compared to the different order relations used in interval analysis
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to develop inequalities, this order relation is quite different to calculate, we can use the midpoint and
center of the interval to calculate it.

Inspired by Refs. [36, 46, 47,49-52]. By combining center-radius order relation and stochastic
h-convex process, we develop Hermite-Hadamard, Ostrowski, and Jensen type inequalities in the
setting of interval-valued functions. In addition to the conclusions drawn, the study provides several
examples.

2. Preliminaries

Concerning the notions that have been used but not defined, see Refs. [6,49]. As you process the
rest of the paper, it will be very useful if you are familiar with a few basic arithmetic concepts related
to interval analysis.

and

[SQ, sﬁ] , (e > 0);
eQ = £[Q, Q] = {{0}, (e =0);
eQ.20|. (<0,

where € € R.
Let Ry and Ry be the collection of all and positive intervals of R, respectively. The following will
discuss several algebraic properties of interval arithmetic.

Let Q = [Q, Q] € Ry, then Q; = % and Qg = ﬁ% are the center-radius of interval Q. A
center-radius form of interval Q2 can be expressed as:
Q+Q Q-Q
Q=Qc. Q) ={——.——

Following are the relationships we use to determine the radius and center of an interval:
Definition 2.1. (see [49]) The CR-order relation for Q) = [Q, ﬁ] =(Qc,Qp), 0 = [0,0] =(0¢c,0r) €

R, represented as (see Figure 1).

QC<O-C’ lfQC;éO'C,
Q =Zor 0 &= ]
QRSO'Q, lfQC:(Tc.

For any two intervals Q, o € Ry, we have either Q <cg 0 or o <¢g Q. Riemann integral for 7VF S
are represented as:
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Definition 2.2. (see [49]) Let n : [f, g] be an 7VF such that n = [Q’ 17]. Then 7 is Riemann integrable
(IR) on [f, g] iff n and 77 are Riemann integrable on [f, g], that is,

8 8 8
(IR) j; 1(s)ds = [(R) ff n(s)ds, (R) j; ﬁ(S)dS]-

The pack of all (IR) V¥ S on [f, g] is represented by IRf,j). The collection of all center-radius
order interval-valued functions are denoted by CR-ZVF S.

Shi et al. [49] proved that the integral preserves order by using CR-order relations.

Theorem 2.1. (see [49]) Letn,{ : [f,g] be ZVF S given by = (7,771 and ¢ = [{, Z1 I n(s) <eg £(s),

for all s € [f, g, then
8 g
f NS <cr f £s)ds.
f f

To support the above Theorem, we will now provide an illustration and some interesting example
(see Figure 2).

Example 2.1. Conider n = [z,2z] and ¢ = [z, 7> + 2], then, ¥ z € [0, 1].

3z z
e = 5% = 5,§c=z2+1 and (g =1.

From Definition 2.1, we have n(z) <cr {(z), Y z € [0, 1].

Since,
: 1
2 =]=.1
fo[z, zldz [2, ]
! 17
22 42ldz=|=, =|.
fo [, 2" + 2laz [3 3]
1 1
f n(2)dz Zcr f (2)dz.
0 0
values
3'0§ 2242
2_5/
2402 2z

1.5F

and

From Theorem 2.1, we have

1.0F

05F

z

+ I L L Il L L L Il L L L Il L L L Il
0.2 0.4 0.6 0.8 1.0

Figure 1. Graph shows that Definition 2.1 is valid.
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values

20f 3

N

N

z
0.2 0.4 0.6 0.8 1.0

Figure 2. Graph shows that Theorem 2.1 holds.

2.1. New definitions and properties

Definition 2.3. Consider (Q, A,P) be a probability space (PBS). A function { : Q — R is said to be
random variable if they satisfy the axioms of A-measurable. A function { : I X Q — R where I C R is
called stochastic process if, ¥ f € I the function {(f,.) is a random variable.

2.1.1. Properties of stochastic process
A stochastic process { : I X Q — Ris

e Continuous in interval 1, if V f, € I, we have
P lim £(£.) = {(fn)

where P — lim represent the limit in probability space.
e Mean square continuous in interval /, if V f, € I, we have

lim E[((f,) = £(f,, )] = 0
where E [£(f,.)] represent the expectation of random variable Z(f, .).

e Mean-square differentiable at some point f, if one has random variable £’ : I X Q — R, then this

nolds () = L)
'(f,.) = P — lim 2222207
g Jim =
e Mean square integral in interval I, if V f € I, with E[Z(f,.)] < co. Let [f,g] C I, f = s, <
§1 < $p... < 8 1s a partition of [ f, g]. Consider ¢, € [s,-1, s,], Yn = 1,...,k. A random variable
S : Q — R is mean-square integral of the stochastic process { over interval [ f, g], if this holds

k 2
(Z Lo N = $0t) - S(.)) ] =0,
n=1

lim E
k—o0

In that case, we write it as

8
S() = j]: (s, .)ds (a.e). 2.1
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Definition 2.4. (See [49,50]) Consider h : [0, 1] — R*. We say that { : [ f, g] — R" is called h-convex
function, or that { € SX(CR-h,[f,gl,R"), ifV fi,g1 € f,g]l and € € [0, 1], we have

Lefi+ (1 —-e)g1) < Me)(f1) + (1 - &){(g1). (2.2)
In (2.2), if “<” is replaced with “>", then it is called h-concave function or { € SV(CR-h,[f, g], R").

Definition 2.5. (See [36]) Consider h : [0,1] — R*. We say that { : I x Q — R* is called h-convex
stochastic process, or that € S PX(CR-h,I,R"), if ¥ fi,g1 € I and € € [0, 1], we have

{efi+ (1 =8)g1,.) < Me)(fi) + Al - £)(g, ) (2.3)

In (2.3), if “<” is replaced with “>”, then it is called h-concave stochastic process or { €
SPV(CR-h,I,R").

Definition 2.6. (See [49, 50]) Consider h : [0,1] — R*. We say that { = [é, Z] : [f, gl — Ry is called
CR-h-convex function, or that { € SX(CR-h, [f,gl,R)), if V fi,g1 € [f,gl and € € [0, 1], we have

{(efi + (1 =&)g1) =cr M(&)(f1) + h(1 —£){(g1). (2.4)

In (2.4), if “<cr” is replaced with “>cg”, then it is called CR-h-concave function or { €
SV(CR-h,[f, g, Rp).

Now let’s introduce the concept for ~-convex stochastic process for CR-7VF S

Definition 2.7. (See [36, 50]) Consider h : [0,1] — R*. We say that stochastic process { = [é , Z] :
I xQ — Ry where [f,g] C I is called h-convex stochastic process for CR-IVFS or that { €
SPX(CR-h,[f, 8. Ry), if ¥ fi.81 € [f. gl and € € [0, 1], we have

{efi+ (A =-28)g1,.) Scr ME)(f1,.)+h(l - &)(g1,.). (2.5

In (2.5), if “<cr” is replaced with “>cg”, then it is called h-concave stochastic process for CR-IVF S
or{ € SPV(CR-h,[f, 2], R{).

Remark 2.1. (i) If h = 1, Definition 2.7 becomes a stochastic process for CR-P-function.

(ii) If h(e) = é, Definition 2.7 becomes a stochastic process for CR-Godunova-Levin function.
(iii) If h(e) = &, Definition 2.7 becomes a stochastic process for CR-convex function.

(iv) If h = &°, Definition 2.7 becomes a stochastic process for CR-s-convex function.

3. Hermite-Hadamard inequality for CR-/-convex stochastic process

Theorem 3.1. Let h : (0,1) —» R* and h(%) # 0. A function { : I X Q — Ry is h-convex
stochastic process as well as mean square integrable for CR-I'VFS. For every f,g € [f,g] C I, if
{ € SPX(CR-h,[f,gl,R)) and { € R{. Almost everywhere, the following inequality is satisfied

TR R

8 1
ff((s,-)d85cve [§(f,-)+§(g,-)]f0h(S)dS- (3.1
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Proof. Since { € S PX(CR-h,[f, g], Ry), and consequently integrate over (0, 1), we have
1 (f +g

Za
MM

) <cr {(sf+ (1 —s)g,.)+L((-29)f+sg,.)

1 1
(f_+g )5CR [f g(sf+(1—s)g,.)ds+f (1= 9)f + sg,.)ds

{(sf+(1—s)g )dS+f L1 = 5)f +58,.)ds,

j; {(sf + (1 —s)g,.)ds + j(; Z((l -8 f + sg, .)ds]

2 g 2 g _
= . )de, .)d
[g_f«f]:é(g )8g—fff e )g]

2 8
:;7Lg@wa (32)

By Definition 2.7, we have

{(sf+ (1 —9)g,.) =cr M, .) +h(1 = $){(g, ).
Integration over (0, 1), we have
1 1 1
\fo L(sf+(1—5)g,.)ds <cr {(f, .)ﬁ h(s)ds + {(g, .)fo h(1 — s)ds.

Accordingly,
1 § :
Tf‘ff {(e, )de Zcr [{(f, ) + L (g, -)]fo h(s)ds. (3.3)

Now, combining (3.2) and (3.3), we get the required result

1
Mm»w@nﬁh@w

| )=

Example 3.1. Consider [f,g] = [0,1],h(s) = s, ¥ s € [0,1]. If ¢ : [f, gl — Ry is defined as

l(e,)=[-26"+3,28%+4], €€][0,1].

o))
—ff e, )ds—[f( 26 +3)d8f(28 +4)d8]_[; 134]

AIMS Mathematics Volume 8, Issue 7, 16013-16030.
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1
[£(f )+ {(s, -)]f0 h(s)ds = [2,5].

As a result,

59 7 14
[2 2]-07%[3 3]<CR[2 5].

This verify the above theorem.

Theorem 3.2. Let h : (0,1) —» R* and h(%) # 0. A function { : I x Q — Ry is h-convex
stochastic process as well as mean square integrable for CR-I'VFS. For every f,g € [f,g] C I, if
{ € SPX(CR-h,[f,gl.R)) and { € Rf. Almost everywhere, the following inequality is satisfied

1

4[n(3

1 8
zf(f § ) <cr &1 ZcRr f {(&,.)de Zcr D2
)] w7

g f o

<o {[af )+ e ]

where

Ay =

1
g(f+g")+ {(f,-)+é“(g,-)]f h(s)ds.
2 2 o

Proof. Take [ f, %] we have

{(3f+g )<Cﬂh(l) (sf+(1—s)f ) h(l)g“((l—s)f+sf+g,.)
4 2 2
Integration over (0,1), we have
1 1
§(3f2+g,‘) CRh(;)[f (Sf+(1—s)f ) s+£ {(sf;g+(1—s)g,~)ds]
f+g
= ( )[ f {(e, )de+ f {(e, )de]
f+g
4

h( )[g ff S )‘4 GH

1 {(3f+g ) =
w2

Accordingly,

(3.5)
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Similarly for interval [%, g], we have

1 3
4h(1)§( o ) f £(e )de. -0
2
Adding inequalities (3.5) and (3.6), we get
1 3f+g 3g +
el et B S ECEE
Now
1
1 zg(f;g )
4[n(3)]
__ 1 1(3f+g \ 1(3g+f
_4[;1(1)]2{(2( 4 ')+2( 4 ))
2
1 1\ (3f+g 1\ . (3g+f
ﬁmam[zl(%)]z[h(i)g( 4 )+h(5)5( 4 )]
_ 1 3f+g ) (3g+f )]
4h(%)[g( T AN U
:Al
1 1 1
e o855 22
2
1[z(f,. ..
S HESELCMTIETS )}
e | (4 )] N
2 2
:Az
[7(F,. ,. 1 1 !
<or |28 5)402 .>+h(§)4<g, .>] fo h(s)ds
o(f.. ,. 1 :
<on |28 4 5) () + s -)]] fo h(s)ds
» 1 1 !
<cr {[5(f»-)+-’:(g,-)] §+h(§)]}j(; h(s)ds.
O

Example 3.2. Recall the Example 3.1, we have

4[]\ 2

AIMS Mathematics

1 ] g(f+g

P )R

Volume 8, Issue 7, 16013-16030.



16022

SR R

1
aa»+aLJ+§G_ﬂj‘M”M’
0

Ay = 5.
2 2 2

1 59
“3(a+[55]

9 19
i
lhl 1h ds =[2,5
2+ 2 L(s)s_[a]-

591, [1937) (114 [o19
2,2 =CR 8’8 =CR 3,3 =CR 434

This verify Theorem 3.2.

and

{[Z(f, )+ (8. )]

Thus, we obtain

<cr [2,5].

Theorem 3.3. Let hy,h, : (0,1) — R and hi,h, # 0. A functions {,¢ : I X Q — Ry are h-
convex stochastic process as well as mean square integrable for CR-IVFS. For every f,g € I, if
{ € SPX(CR-hi,[f,gl,R{), ¢ € SPX(CR-hy,[f,gl,Ry) and {,p € IR;. Almost everywhere, the
following inequality is satisfied

1 8 1 1
e f —fff L(g, (e, )de Zcr M(f, g)fo hi(s)hy(s)ds + N(f, g)fo Ry ()ha(1 — s)ds,

where

M(f, 8) = {(f, )e(f, ) + £(8, )e(g, ), N(f, 8) = {(f, )e(g, ) + {(g, )e(f ).
Proof. Conider { € S PX(CR-hy, [ f, g, R{), ¢ € S PX(CR-h,,[f, gl, R{) then, we have

C(fs+(=5)8,.) Zcg M(HI(S,.) + (1 - )8, ),

o(fs+(1-15)g,.) <cr ha(s)e(f,.) + ha(1 — $)p(g, .).
Then,

{(fs+(=9g)e(fs+(1-19g,.)
Zcr (h(1 = $){(f, ) + h($)(g, ) (h(1 = $)e(f, ) + h()e(g, ) -

Integration over (0,1), we have
1
f (fs+(=95)g)e(fs+—1s5)g,.)ds
0
1 1
{ﬁg@wu—mwgﬁﬂhw&mﬁﬂaﬁHLM&qua—me

AIMS Mathematics Volume 8, Issue 7, 16013-16030.
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1o Y
_[—g—fj; (AN g’g—f\[f‘ L(e, Jp(e, . 8]

1 8 J
= fo (g, )p(e, )de
i !
<cr M(f, g)f hi(s)ha(s)ds + N(f, g)f hi($)ho(1 = s)ds.
0 0

It follows that
1 g 1 1
— f {5, Yole, )de <ox M(f,8) f hn(S)ha(s)ds + N(f. g) f (a1 - s)ds.
f 0 0

Theorem is proved. m|

Example 3.3. Let [f,g] = [0,11,h1(s) = s, ho(s) = L forall s € (0,1). If ,¢ : [f,gl €I — Ry" are
defined as
{(&,.) = (%, & + 1] and (e, .) = [£%, &+ 2].

Then, we have

1 s 1 16
E L 4(8, ~)<P(3, )d8 = |:§9 ?:| )

1 1
M(f, g)f hi(s)hy(s)ds = M(O, l)f sds = [%,4]
0 0

and

1 1
N(f, g)f hi($)hy(1 — s)ds = N(O, l)f sds = [O, z] .
0 0

2
1 16 1 7 1 15
[5’ ?] <o [5’4] * [O’ 5] - [5’ 7]~

Consequently, Theorem 3.3 is verified.

Theorem 3.4. Let hi,h, : (0,1) — R" and hi,h, # 0. A functions {,¢ : I x Q — Ry are h-
convex stochastic process as well as mean square integrable for CR-IVF S. For every f,g € I, if
{ € SPX(CR-hi,[f,gl,R{), ¢ € SPX(CR-hy,[f,gl,R}) and {,¢ € IR,;. Almost everywhere, the
following inequality is satisfied

FoiERA e
Jia(3)\ 2 2
1
§—f
Proof. Since { € S PX(CR-hy, [f,gl,R)), ¢ € S PX(CR-hy, [f, g, R}), we have

1 1
4(_f;g,.) <o i (E)é(fs +(1=5)g,)+h (§)§(f(1 —5)+58..).

Since

2h, (

1
2

<cRr

g 1 1
f £(5, Joe, )de + M(f, ) f hn(ha(l - s)ds + N(f. g) f Iy ($)ha(s)ds.
f 0 0

AIMS Mathematics Volume 8, Issue 7, 16013-16030.
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(f+g
@

1 1
> ) <cr ha (E)so(fs +(1-5)g,.)+h (E)SD(f(l = 5) +58,.). (3.7)

f+sg f+g
()

1
5) )MUS+U—SM)¢US+U—ﬂg)+{Uﬂ—iﬂwg)ﬂﬂl—@+Sgﬂ

+M(%yl()B(ﬁ*%l—ﬂg)ﬂfﬂ—S%+% D+ L(f(L=s)+ 58, )p(fs + (1 = 5)g,.)]

&mhli) ﬁéU@+(l—@g)¢Uk+(l—@g)+{(ﬂ1—@+wg)¢urb—9+sg)]
1
+m(2h( ﬁm(@ﬂf)+hU—WE@ D) (ha(1 = $)e(f, ) + ha(s)e(g, )]

+ [(Ai(1 = 9)(f, ) + M ()4(g, ) (a(s$)e(f, ) + ha(1 = $)¢(g, )]

1
ﬁmh4é) ( ﬁé@b+(b—ﬂg)¢Uk+(l—@g)+¢(ﬂ1—®+wg)Wfﬂ—sr+w )]

+h%2) ()KMGWﬂl—@+hK1—@M@ﬁhﬂf@+NMme@+hml—@ma—s»ngﬂ

Integration over (0, 1), we have

P b3 e 2 3 o [ 5
L35 52 o Qo4 ]

1 1 !
2, (—)hz(i)[M(f,g) f (a1 = s)ds + N(f, 8) f hl(s>hz<s>ds].
0 0

2

Divide both sides by yl(llw above in equation, we get the required result
1z 2

;hz(%)g(f;g")*”(f;g")

1 g 1 1
— [ et ade s Mt [ s+ NG [ oo
f 0 0

As a result, the proof is completed.

2m(

1
2

=cr

Example 3.4. Recall the Example 3.3, we have

TEE R SRR SO R e |

AIMS Mathematics Volume 8, Issue 7, 16013-16030.
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5 227
_ff L(e, el )ds—[lz 12]

M(f,g)f hi($)hy(1 = s)ds = M(1,2)f sds = [-4,20]
0 0

and 1 1
N(f,g)f hi(s)hy(s)ds = N(1,2)f sds = [ 5, ﬁ]
0 0

It follows that

21 147 5 227 29] [-103 641
e S < | 2 4200+ -5, 2 = [ 222 2.
[8 8] qu[12 12]” H[ 2} [12 12]

This proves the above theorem.

3.1. Ostrowski type inequality
Here is a lemma to help us accomplish our objective [53].

Lemma 3.1. Define { : I xQ C R — R be a stochastic process which is mean square differentiable on

the interior of interval 1. Also, if the derivative of { is mean square integrable on interval [ f, g], and
f, g €1, then this holds:

1 8 J
ﬁa-)—mff (s, )ds

2 2
_ &) f $C(s2+ (1= 5)f, )ds — =2 f s¢(sz+ (1= $)g, )ds, ¥z € [f, g].
g§—f g§=rf Jo
Theorem 3.5. Define h : (0,1) — R be a super-multiplicative as well as nonnegative function with
having the property that s < h(s) for each s € (0,1). Let { : I X Q C R — R be a stochastic process
which is mean square differentiable on the interior of interval 1. Also, the derivative of n is mean
square integrable on interval [ f, g], and f, g € 1. If |n’| is h- convex stochastic process for CR-IVF S
on I, with holding this property |{'(z,.)| < B for each z, then

) o2
<cr P [(Z fg) _+f(g 2 ] fl [h(sz) + h(s — SZ)] ds

0

{(z, )——f (s, )ds

Vzelf gl

Proof. From Lemma 3.1, we have |{’| is h- convex stochastic process for CR-ZVF S, then

‘G, >—— f £(s, )ds
2 2
<ox & f’ fs|§<sz+<1—s)f Jds+ 822 fslg“’(su(l—s)g,.)ms
f g~ f 0
2
<o & _];3 fo ST o ) + (L = I (F, ), ] ds
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N2l

At ik f ST G, ) + (L= 91 (... Jlds
g-f Jo
- N2 ! N2l
<o PEZ S f [12(5) + h(s)h(1 - 5)| ds + (§-2 f [12(s) + h()h(1 - 5)| ds
g—f 0 - 0

Ble-1rP+@-2* 1,

<R f [h (s) + h(s)h(1 — s)] ds.
g-f 0
The proof is completed. O

3.2. Jensen type inequality

Theorem 3.6. Let s; € R*. If h is super multiplicative non-negative function and { : [ X Q — R is
non-negative h-convex stochastic process for CR-I'VF S or we say that { € S PX(h,I,R{) with z; € 1,

then this holds .

1 d Si
§[S—k > sz ] <cr Z [h(s—k)azi, .>] , (3.8)

i=1 i=

where S| = Zf;l S;.
By mathematical induction when k = 2, then Eq (3.8) is true. Suppose that Eq (3.8) holds for k — 1,
then,

pn S
Sk Si-1 = Si
<cr h S, {(zk, ) + h(S—k)f (; :Zz, )
Sk Sk-1 S S
<cr h 5 {(zk,.) + h(—) [h S—)f(zi, )]
k k)4 k=1

k-1

Zor h| < 6@ ) + )

i=1

k
e $hlepe]

i=1

i
h (S—k)f(Zi, )]

Hence proved by mathematical induction
4. Conclusions

A center-radius order relation is introduced in this manuscript by considering s-convex stochastic
processes for 7VF¥S. Using these notions, we developed inequalities of the Ostrwoski-type, Jensen-

type, and H.H types. A distinguishing feature of this order relation is that inequality terms derived

AIMS Mathematics Volume 8, Issue 7, 16013-16030.
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from it produce precise results. Moreover, we generalize the findings of following authors [36, 46,
48, 50], in this article, which is a new approach for future study. Additionally, the study provides
interesting examples to prove the validity of theorems. It is possible to use these ideas to take convex
optimization to a new level. This concept should be useful to researchers working in a variety of
scientific fields. In the future, researchers might look at determining equivalent inequalities using
different integral operators for different types of convexity.
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