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Abstract: This article concerns the regularity of weak solutions for a variational inequality problem
constructed by a fourth-order parabolic operator which has received much attention recently. We first
consider the internal regular estimate of weak solutions using the difference type test function. Then,
the near edge regularity and global regularity of weak solutions are analyzed by using the finite cover
principle. Since the quadratic gradient of the weak solution does not satisfy the conditions for a test
function, we have constructed a test function using a spatial difference operator to complete the proof of
regularity. The results show that the weak solution has a second order regularity and an L∞(0,T ; H2(Ω))
estimation independent of the lower order norm of the weak one.
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1. Introduction

A swap option is a kind of exotic option involving two stocks. Assume that the stock price {S i(t), t ∈
[0,T ]} follows the following stochastic process:

dS i(t) = µiS i(t)dt + σiS i(t)dS i(t), S i(0) = si,

where si is known, µi is the yield rate of stock {S i(t), t ∈ [0,T ]}, and σi is the volatility, i = 1, 2. In the
financial contract, the swap option allows investors to convert stock {S 1(t), t ∈ [0,T ]} to stock {S 2(t), t ∈
[0,T ]} within the time interval [0,T ]. ( It is just a right, not an obligation, to make the conversion.) If
the yield and turnover of stock {S 1(t), t ∈ [0,T ]} are better than those of {S 2(t), t ∈ [0,T ]}, investors
need to compensate the agent for a certain amount of cash K, so the value of the swap option on the
maturity date T is [1–3]

V(S 1(T ), S 2(T ),T ) = max{S 2(T ) − S 1(T ) − K, 0}.
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Since investors can execute at any time within the interval [0,T ],

V(S 1(t), S 2(t), t) ≥ max{S 2(t) − S 1(t) − K, 0}.

From [4], the value of the swap option with maturity time T at time 0 satisfies the following parabolic
variational inequality:

L0V ≥ 0, (s1, s2, t) ∈ R+ × R+ × [0,T ],
V −max{s2 − s1 − K, 0} ≥ 0, (s1, s2, t) ∈ R+ × R+ × [0,T ],
L0V × (V −max{s2 − s1 − K, 0}) = 0, (s1, s2, t) ∈ R+ × R+ × [0,T ],
V(s1, s2,T ) = max{s2 − s1 − K, 0}, (s1, s2) ∈ R+ × R+.

Let r be the risk-free interest rate in the securities market, and define qi as the dividend rate of the stock
{S i(t), t ∈ [0,T ]}, i = 1, 2. Parabolic operator L0V can be written as

L0V = ∂tV +
1
2
σ2

1s2
1∂s1 s1V +

1
2
σ2

2s2
2∂s2 s2V + (r − q1)s1∂s1V + (r − q2)s2∂s2V − rV.

If the stock has transaction costs, the operator Lv has a more complex structure in which

σ2
i = σ

2
i (∂si siV, ∂siV,V), i = 1, 2.

Readers can read about the Leland model, the Barles and Soner’s model and the Davis model in [5].
The author of this study focuses on more complex models, considering a certain kind of variational

inequality problem 

Lu ≥ 0, (x, t) ∈ ΩT ,

u − u0 ≥ 0, (x, t) ∈ ΩT ,

Lu(u − u0) = 0, (x, t) ∈ ΩT ,

u(0, x) = u0(x), x ∈ Ω,
u(t, x) = 0, (x, t) ∈ ∂Ω × (0,T )

(1)

with the non-Newtonian polytropic operator

Lu = ∂tu − ∆u + γ|u|p−2u, p > 0. (2)

Recently, there are many studies about the theoretical research of variational inequality problems.
Tao Wu in [6] used a fourth-order p-Laplacian Kirchhoff operator and considered the following
variation-inequality initial-boundary value problem

min{Lϕ, ϕ − ϕ0} = 0, (x, t) ∈ QT ,

ϕ(0, x) = ϕ0(x), x ∈ Ω,
ϕ(t, x) = 0, (x, t) ∈ ∂Ω × (0,T ).

(3)

Based on the Leray-Schauder principle, the existence of solutions to the auxiliary problem is proved.
The existence and uniqueness of solution to (3) is then studied in which the parabolic operator Lϕ is
extended. The 2-D value variational inequality problem is also considered in [7] using the limit
method. For the existence of weak solutions to variational inequalities, readers can refer to the
literature [8–10]. The stability and uniqueness of weak solutions have also been a hot topic in recent
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years. Literature [7,11] analyzes the upper bound estimate of the difference between two weak
solutions and proves the stability and uniqueness of the weak solution about the initial value.
However, there is currently no literature on the regularity of weak solutions of such variational
inequalities. Literature [12] analyzes parametric boundary value problems using optimal variational
iteration methods and convergence control techniques, showing that the optimal variational iteration
method is an effective method for solving such problems. The authors of [13] developed a scheme to
examine fractional-order shock wave equations and wave equations occurring in the motion of gases
in the Caputo sense with their main finding being the handling of the recurrence relation that produces
the series solutions after only a few iterations. Finally, the authors of [14] suggested a He-Laplace
variational iteration method for the study of some partial differential equations arising in physical
phenomena such as chemical kinetics and population dynamics.

In summary, we investigate the regularity of weak solutions for the variational inequality
problem (1). We use a variety of techniques, including integral inequalities, partial derivatives,
flattening operators, and the finite cover principle, to obtain internal, near edge, and global regularity
estimates. Additionally, we provided an L∞(0,T ; H2(Ω)) estimation using the quadratic gradient of
the weak solution.

2. Statement of the problem and its background

We will recall several well-known aspects about the solution to problem (1) and provide a set of
maximal monotone maps defined in [1–3]

G = {u|u(x) = 0, x > 0; u(x) ∈ [0,−M0], x = 0}, (4)

where M0 is a positive constant. With a similar method to that used in [6,7], variational inequality
problem (1) admits a generalized solution (u, ξ) that satisfies
(a) u ∈ L∞(0,T,H1(Ω)) ∩ L∞(0,T, Lp(Ω)), ∂tu ∈ L∞(0,T, L2(Ω)) and ξ ∈ G,
(b) u(x, t) ≥ u0(x), u(x, 0) = u0(x) for any (x, t) ∈ ΩT ,
(c) for every test-function φ ∈ C1(Ω̄T ),∫ ∫

ΩT

∂tu · φ + ∇u∇φ + γ|u|p−2uφdxdt =
∫ ∫

ΩT

ξ · φdxdt. (5)

Indeed, for any generalized solution u, (5) can be rewritten as∫ ∫
ΩT

∂tu · φ + ∆u · φ + γ|u|p−2uφdxdt =
∫ ∫

ΩT

ξ · φdxdt. (6)

Following a similar way of [6,7], applying the comparison principle shows that

u0 ≤ u ≤ |u0|∞ + 1 for any (x, t) ∈ ΩT . (7)

This paper focuses on the internal regularity of weak solutions within a subarea Ω′ ⊂⊂ Ω. In doing
so, we introduce the difference operator

∆i
hu(x, t) =

u(x + hei, t) − u(x, t)
h

,
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where ei is the unit vector in the direction xi. As stated in the literature [12], the difference operator
has the following results.
Lemma 2.1. (1) Let ∆i∗

h = −∆
i
−h be the conjugate operator of ∆i

h. Then we have∫
Rn

f (x)∆i
hg(x)dx = −

∫
Rn

g(x)∆i
−h f (x)dx

in other words,
∫

Rn
f (x)∆i

hg(x)dx =
∫

Rn
g(x)∆i∗

h f (x)dx.
(2) Operator ∆i

h has the following commutative results

D j∆
i
h f (x) = ∆i

hD j f (x), j = 1, 2, · · · , n.

(3) If u ∈ W1,p(Ω), for any Ω′ ⊂⊂ Ω,

||∆i
hu||Lp(Ω′) ≤ ||Diu||Lp(Ω′), ||∆

i∗
h u||Lp(Ω′) ≤ ||Diu||Lp(Ω′).

(4) Let h be small enough. If ||∆i
hu||Lp(Ω) ≤ C, then

||Diu||Lp(Ω) ≤ C,

where C is independent of h.

3. Internal regularity of solution

In this section, we will investigate the internal regularity of weak solutions. To do so, we require
the following auxiliary result.
Lemma 3.1. Let η ∈ C∞0 (Ω) be the cutoff factor on Ω′ ⊂⊂ Ω that satisfies

0 ≤ η ≤ 1, η = 1 in Ω′, dist(suppη,Ω) ≥ 2d

where d = dist(Ω′,Ω); then,∫
Ω

|∆i∗
h (η2∆i

hu)|2dx ≤ 2
∫
Ω

η2|∇∆i
hu|2dx + 8

∫
Ω

|∇η|2|∇∆i
hu|2dx. (8)

Proof. It follows from Lemma 2.1 (3) that∫
Ω

|∆i∗
h (η2∆i

hu)|2dx =
∫
Ω

|∆i
−h(η2∆i

hu)|2dx ≤
∫
Ω

|∇(η2∆i
hu)|2dx,

such that ∫
Ω

|∆i∗
h (η2∆i

hu)|2dx ≤
∫
Ω

|η2∇∆i
hu + 2η∆i

hu∇η|2dx.

Using (a + b)2 ≤ 2a2 + 2b2 gives∫
Ω

|∆i∗
h (η2∆i

hu)|2dx ≤ 2
∫
Ω

|η2∇∆i
hu|2dx + 8

∫
Ω

|η∆i
hu∇η|2dx.

Therefore, the proof of Lemma 2.2 is finished (note that 0 ≤ η ≤ 1 ). □

AIMS Mathematics Volume 8, Issue 6, 13889–13897.



13893

It is important to note that the quadratic gradient △u does not satisfy the condition for weak
solutions. Therefore, we plan to construct a test function using the spatial difference operator ∆i

h. Let
h < D and choose φ = ∆i∗

h (η2∆i
hu) as a test function in (5). Since u ∈ H1

0(Ω), we have φ ∈ H1
0(Ω), so

that ∫ ∫
ΩT
∂tu · ∆i∗

h (η2∆i
hu) + ∇u∇∆i∗

h (η2∆i
hu) + γ|u|p−2u∆i∗

h (η2∆i
hu)dxdt

=
∫ ∫
ΩT
ξ · ∆i∗

h (η2∆i
hu)dxdt.

(9)

Now we prove that∫ ∫
ΩT

∂tu∆i∗
h (η2∆i

hu)dxdt =
∫
Ω

(∆i
hu(x,T ))2

η2dx −
∫
Ω

(∆i
hu0)2
η2dx. (10)

It follows from Lemma 2.1 (2) that∫ ∫
ΩT

∂tu∆i∗
h (η2∆i

hu)dxdt =
∫ ∫

ΩT

∂t(∆i
hu)η2∆i

hudxdt,

such that ∫ ∫
ΩT

∂tu∆i∗
h (η2∆i

hu)dxdt =
1
2

∫ ∫
ΩT

∂t(∆i
hu)2
η2dxdt =

1
2

∫ ∫
ΩT

∂t((∆i
hu)2
η2)dxdt

Thus (10) follows. Combining (9) and (10) and using Lemma 2.1 (2) to
∫ ∫
ΩT
∇u∇∆i∗

h (η2∆i
hu)dxdt gives∫ T

0

∫
Ω
∇∆i

hu · ∇(η2∆i
hu)dxdt + γ

∫ T

0

∫
ΩT
|u|p−2u∆i∗

h (η2∆i
hu)dxdt

≤
∫ ∫
ΩT
ξ · ∆i∗

h (η2∆i
hu)dxdt +

∫
Ω

(∆i
hu0)2
η2dx.

(11)

Because ∫ T

0

∫
Ω
∇∆i

hu · ∇(η2∆i
hu)dxdt

= 2
∫ T

0

∫
Ω
η∇η · (∇∆i

hu)∆i
hudxdt +

∫ T

0

∫
Ω
η2(∇∆i

hu)2dxdt,

(11) can be written as∫ T

0

∫
Ω
η2(∇∆i

hu)2dxdt
≤

∫ ∫
ΩT
ξ · ∆i∗

h (η2∆i
hu)dxdt +

∫
Ω
|∆i

hu0|
2η2dx

−2
∫ T

0

∫
Ω
η∇η · (∇∆i

hu)∆i
hudxdt − γ

∫ T

0

∫
ΩT
|u|p−2u∆i∗

h (η2∆i
hu)dxdt.

(12)

Applying Holder and Young inequalities as well as Lemma 3.1,∫ ∫
ΩT
ξ · ∆i∗

h (η2∆i
hu)dxdt ≤ 2M2

0T |Ω| + 1
8

∫ ∫
ΩT
|∆i∗

h (η2∆i
hu)|2dxdt

≤ 2M2
0T |Ω| + 1

4

∫
Ω
η2|∇∆i

hu|2dx +
∫
Ω
|∇η|2|∆i

hu|2dx,
(13)

γ
∫ T

0

∫
ΩT
|u|p−2u∆i∗

h (η2∆i
hu)dxdt

≤ 2γ2(|u0|∞ + 1)2p−2T |Ω| + 1
4

∫
Ω
η2|∇∆i

hu|2dx +
∫
Ω
|∇η|2|∆i

hu|2dx,
(14)

2
∫ T

0

∫
Ω
η∇η · (∇∆i

hu)∆i
hudxdt

≤ 1
8

∫ T

0

∫
Ω
η2(∇∆i

hu)2dxdt + 8
∫ T

0

∫
Ω
|∇η|2(∆i

hu)2dxdt.
(15)
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Substituting (13), (14) and (15) (note that 0 ≤ η ≤ 1), it is clear to verify

3
8

∫ T

0

∫
Ω
η2(∇∆i

hu)2dxdt
≤ 2M2

0T |Ω| + 8
∫
Ω
|∇η|2|∆i

hu|2dx +
∫
Ω
|∆i

hu0|
2η2dx + 2γ2(|u0|∞ + 1)2p−2T |Ω|.

It follows from Lemma 2.1 (3) that∫ T

0

∫
Ω

|∇η|2(∆i
hu)2dxdt ≤ C

∫ T

0

∫
Ω

(∆i
hu)2dxdt ≤ C

∫ T

0

∫
Ω

(∇u)2dxdt,∫
Ω

(∆i
hu0)2
η2dxdt ≤

∫
Ω

(∇u0)2dxdt,

such that ∫ T

0

∫
Ω

(∇∆i
hu)2dxdt ≤ C

(∫ T

0

∫
Ω

(∇u)2dxdt +
∫
Ω

|∇u0|
2dxdt

)
.

This, from Lemma 2.1 (4), implies that∫ T

0

∫
Ω

|∆u|2dxdt ≤ C
(∫ T

0

∫
Ω

(∇u)2dxdt +
∫
Ω

|∇u0|
2dxdt

)
.

Theorem 3.1. If u ∈ L∞(0,T ; H1(Ω)), u0 ∈ H1(Ω), then for any Ω′ ⊂⊂ Ω,

||u||L∞(0,T ;H2(Ω′)) ≤ C
(
||u||L∞(0,T ;H1(Ω)) + ||u0||H1(Ω)

)
. (16)

4. Global regularity of solution

In this section, we examine the near-edge regularity of weak solutions. Suppose U is a neighborhood
containing x0 ∈ ∂Ω. Drawing inspiration from reference [12], we introduce a flattening operator Ψ,
which belongs to C2 to transform the proof process into an internal regularity problem in Section 3.
Theorem 4.1. Assume u ∈ L∞(0,T ; H1(Ω)) and u0 ∈ H1(Ω). For any x0 ∈ ∂Ω, if x0 belongs to U, then

||u||L∞(0,T ;H2(Ω∩U)) ≤ C
(
||u||L∞(0,T ;H1(Ω)) + ||u0||H1(Ω)

)
.

According to the finite-covers theorem, there are finite neighborhoods U1, U2, · · · ,UN , satisfies⋃N

i=1
Ui = ∂Ω,

such that
||u||L∞(0,T ;H2(Ω∩Ui)) ≤ C

(
||u||L∞(0,T ;H1(Ω)) + ||u0||H1(Ω)

)
, i = 1, 2, · · · ,N. (17)

Combining Theorem 4.1 and (17), we give the following global regular estimation.
Theorem 4.2. If u ∈ L∞(0,T ; H1(Ω)) and u0 ∈ H1(Ω), then

||u||L∞(0,T ;H2(Ω)) ≤ C
(
||u||L∞(0,T ;H1(Ω)) + ||u0||H1(Ω)

)
. (18)

Indeed, from the perspective of L∞(0,T ; H2(Ω)) norm estimation, we have a better result. Choose
∆u as a test function in (6), such that

1
2

∫ T

0

∫
Ω

|∂t∇u|2dxdt +
∫ T

0

∫
Ω

|∆u|2 + γ|u|p−2u · ∆udxdt =
∫ T

0

∫
Ω

ξ · ∆udxdt.
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Note that
∫ T

0

∫
Ω
|∂t∇u|2dxdt =

∫
Ω
|∇u(,T )|2dx −

∫
Ω
|∇u0|

2dx. Thus,∫ T

0

∫
Ω

|∆u|2 + γ|u|p−2u · ∆udxdt ≤
∫ T

0

∫
Ω

ξ · ∆udxdt +
∫
Ω

|∇u0|
2dx. (19)

Applying Holder and Young inequalities and combining with (8), we have

γ

∫ T

0

∫
ΩT

|u|p−2u · ∆udxdt ≤ 2γ2(|u0|∞ + 1)2p−2T |Ω| +
1
4

∫
Ω

|∆u|2dx. (20)

Combining with (4) also gives∫ T

0

∫
Ω

ξ · ∆udxdt ≤ 2M2
0T |Ω| +

1
4

∫ ∫
ΩT

|∆u|2dxdt. (21)

Substituting (20) and (21) in (19), one can get

1
2

∫ T

0

∫
Ω

|∆u|2dxdt ≤
∫
Ω

|∇u0|
2dx + 2γ2(|u0|∞ + 1)2p−2T |Ω| + 2M2

0T |Ω|.

Rearranging the above inequality, we prepare the following theorem which is better than the global
regular estimation in (18).
Theorem 4.3. If u0 ∈ H1(Ω), then

||u||L∞(0,T ;H2(Ω)) ≤ C,

where C depends on p, γ,
∫
Ω
|∇u0|

2dx, |u0|∞,T and |Ω|.

5. Conclusions

This paper discusses the regularity of weak solutions for a class of variational inequality problems
involving the fourth order parabolic operator. The existence of weak solutions is typically established
through first order energy estimates, which can be proven by selecting an appropriate test function
in the weak solution equation. As weak solutions exhibit higher-order norm estimates, scholars have
paid much attention to their regularity. However, constructing test functions using second-order partial
derivatives, which do not satisfy the conditions for weak solutions, is a challenge when proving the
regularity of these solutions. Nonetheless, the spatial difference operator retains the differential order
of the weak solution u, leading us to employ spatial difference operators and cutoff factors in test
function construction. In this paper, we have constructed a test function

φ = ∆i∗
h (η2∆i

hu)

using these operators, which satisfies the condition for weak solutions. Subsequently, we have used
the test function φ in (5) and the cutoff factor η to obtain inequality (11) which is a cornerstone for
general energy estimates. As variational inequalities are more complex than equal parabolic equations,
we have introduced a maximum monotone operator in weak solutions (5) and (11) based on [6,7]. We
have combined the Holder and Young inequalities to obtain an estimate of the internal regularity of the

AIMS Mathematics Volume 8, Issue 6, 13889–13897.



13896

weak solution without imposing any further existence conditions on the second partial derivative of the
weak solution u.

At present, this paper gives the limiting condition γ ≥ 0. Although this condition is not directly
used in this paper, according to literature [6,7], this condition ensures that u ∈ L∞(0,T,H1(Ω)) ∩
L∞(0,T, Lp(Ω)), ∂tu ∈ L∞(0,T, L2(Ω)). So this paper continues to use this restriction and we will try
to weaken it in the future.
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