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1. Introduction

One of the specific features of most control systems for real technological processes is the presence
of a time lag. The effect of a time delay complicates stabilization and reduces the quality indicators
of automatic systems. Equations of this type are called differential-difference equations. An important
class of objects with a delay is formed by objects in which the delay is contained only in control signals.
These are the so-called objects with a delay in control. This class includes numerous production
processes in metallurgy, thermal power engineering, chemical, oil refining, paper, food and many other
industries.

Controllability and observability of systems with delay are studied in the works of Gabasov [10].
Researches have paid more attention to the problem of the synthesis of control systems for stationary
processes with delay. Methods for the parametric synthesis of continuous systems for the automatic
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control of objects with a delay for a given controller structure are given. It is noted that continuous
systems with typical controllers can provide a satisfactory quality of regulation with a small amount
of time delay. A certain improvement in the quality of control of objects with delay can be obtained
by using impulse controllers. Ya Tsypkin [19] showed that the introduction of an impulse element
into systems to control objects with a delay can significantly increase the stability margin. For many
processes with a delay, the use of systems with pulse-width modulation is the most appropriate. At
the same time, few studies addressed the issues of building pulse-width systems to control objects
with a delay. To control processes with a supremal delay, a controller called the Rezvik controller
was proposed. The controller of this type contains a block that implements the inverse operator of
the part of the object without delay, and an auxiliary positive feedback that contains a delay element.
Although the Resvik regulator allows some degree of lag compensation, it has serious drawbacks. The
first disadvantage is associated with the presence of positive feedback, which reduces stability, and the
second disadvantage is associated with the difficulty of its implementation. In this regard, the Resvik
controller does not have many applications. Among the various methods for controlling processes with
delay, the Smith method and optimal control methods have the widest range of application.

To solve control problems, it is important to know whether a given object has the property of being
controllable in terms of transferring from one given state to another. This is called the controllability
property. Another important property of an object that needs to be known when constructing optimal
control systems is observability. Due to the mass nature and importance of objects of this class, they are
the focus in the present work. Note that, as for systems without delay, an important tool for studying
the stability of systems with delay is the second method of Lyapunov. Here a significant contribution
was made by Krasovskii, who proposed, instead of the Lyapunov function, to consider functionals
with better properties. Absolute stability conditions for nonlinear systems with delay were studied.
In systems with significant delay, the possibility of occurrence of periodic regimes is greater than in
systems without delay [2].

The study of nonlinear dynamics in delayed systems of radiophysical and electronic nature is of
interest both for solving many traditional practical problems of radio electronics (e. g. transient theory,
excitation of parasitic oscillations, amplification and generation of short pulses, amplification of signals
with a complex spectral composition), and in connection with new prospective applications of chaotic
signals in communication systems, information processing, radar and electronic countermeasures. The
study of complex irregular behavior (spatio-temporal chaos) in such systems can serve as a key to solve
the problem of turbulence. The paper considers self-oscillatory systems with delay, models of devices
for vacuum microwave electronics and systems of parametrically interacting waves, and it discusses
the suppression of instabilities in such systems using chaos control methods.

Router queue management algorithms are modern and relevant problems that arise when building
information systems. Models are constructed in the form of a system of nonlinear differential
equations with variable delay. The general properties of these models and the corresponding solutions
of differential equations are investigated. The choice of buffering parameters can significantly affect
not only the speed of the communication channel, but also other transmission parameters, among
which is speed stability. In distributed automatic control systems, in particular, this leads to a loss of
stability of the control loop and/or a significant deterioration in the performance of control regulation.
In practical cases, periodic fluctuations in the data transfer rate are often observed, which are not well
understood, but significantly affect the operation of a distributed system. Some issues have not been
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studied sufficiently, especially in relation to distributed systems of automation and control, where the
task is not only to deliver information, but also hard time synchronization. In this context, of
particular interest are the cases when there are modes of periodic variation over a wide range of delay
in data transmission. From a mathematical point of view, there is a system of nonlinear differential
equations with a variable delay of a particular form that changes periodically. In the general case, this
theory is not sufficiently developed; some special cases are modeled in the article. In our article, we
consider this topic whereby we show that the regime of periodically varying delay naturally arises in
such systems.

In this paper, we consider a nonlinear transmission problem with a delay term, for (x, t) ∈ Ω × R+
∂ttu − auxx + µ1 f1(∂tu) + µ2 f2(∂tu(t − τ)) = 0,

∂ttv − bvxx = 0 in (L1, L2) × R+,

(1.1)

where 0 < L1 < L2 < L3,Ω =]0, L1[∪]L2, L3[, a, b, µ1 and µ2 are positive constants and τ > 0 is a delay.
System (1.1) is subjected to the following boundary and transmission conditions

u(0, t) = u(L3, t) = 0,

u(Li, t) = v(Li, t), i = 1, 2,

aux(Li, t) = bvx(Li, t), i = 1, 2,

(1.2)

and the initial conditions

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) in Ω,

v(x, 0) = v0(x), ∂tv(x, 0) = v1(x) in ]L1, L2[,

u(t − τ) = f0(t − τ) in Ω × [0, τ].

(1.3)

For f1(s) = s, and in the absence of delay (µ2 = 0), Systems (1.1)–(1.3) were investigated in [5], for
Ω =]0, L1[, where the authors showed the exponential stability of the total energy. Zennir and Feng [21]
investigated a transmission problem in thermoelasticity and showed that the energy is exponentially
stable (see also [16, 17]). On the contrary, if µ1 = 0, that is, there exists only the delay part in the first
equation, the problems of (1.1)–(1.3) become unstable (see [6, 8]).

In [18], Nicaise and Pignotti examined the wave equation with a delay in the linear internal feedback

∂ttu − ∆xu + µ1∂tu + µ2∂tu(t − τ) = 0 in Ω × (0,∞),

u = 0 on ΓD × (0,∞),

∂u
∂ν

= 0 on ΓN × (0,∞).

(1.4)

They proved, under the assumption that µ2 < µ1, that the energy is exponentially stable. However,
for the opposite case (µ2 ≥ µ1), they were able to construct a sequence of delays for which the
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corresponding solution is unstable. The same results were obtained for the case when both the
damping and the delay are acting at the boundary.

In [2], Benaissa and Louhbi examined the problem (1.4) in the nonlinear situation. They proved the
global existence of solutions in Sobolev spaces.

In [3], Benaissa and Bahlil extended the results of [2] for the Timoshenko beam system for the case
when the waves propagation speeds are equal.

Benseghir [4] considered the problems (1.1)–(1.3) when f1 and f2 are linear. He proved, under the
assumption that µ2 < µ1, that the energy is exponentially stable.

In this article, we aim to investigate (1.1)–(1.3) and establish a general decay result under the
condition of a suitable relation between the weight of the delay term in the feedback, the weight of the
term without delay and the waves propagation speeds. The proof is based on the Lyapunov functional
method and makes use of some properties of convex functions, the generalized Young’s inequality
and Jensen’s inequality. The convexity arguments were introduced and developed by [7, 9, 11–14, 20]
and used, with appropriate modifications, in [1, 15, 22].

The paper is organized as follows. In Section 2 we prepare some needed results and lemmas. In
Section 3, we present and prove our generalized stability result.

2. Assumptions

First, we recall and use the following assumptions on the functions f1 and f2:
A1: We assume that the function f1 ∈ C(R,R) is a non-decreasing function such that there
exist ε1, c1, c2 > 0 and a convex and increasing function H : R+ −→ R+ of the
class C1(R+) ∩C2(]0,+∞[) satisfying that H(0) = 0 and that H is linear on [0, ε′] or(

H′(0) = 0 and H′′ > 0 on ]0, ε′]
)
,

such that
c1|s| ≤ | f1(s)| ≤ c2|s| i f |s| ≥ ε′, (2.1)

s2 + f 2
1 (s) ≤ H−1(s f1(s)) i f |s| ≤ ε′. (2.2)

f2 : R+ −→ R+ is an odd non-decreasing function of the class C1(R) such that there exist c3, α1, α2 > 0

| f ′2(s)| ≤ c3, (2.3)

α1s f2(s) ≤ F2(s) ≤ α2s f1(s), (2.4)

where
F2(s) =

∫ s

0
f2(r)dr,

α2µ2 ≤ α1µ1. (2.5)

As in [18] the new variable

z(x, ρ, t) = ∂tu(x, t − τρ), in Ω × (0, 1) × R+. (2.6)

Now, note that
∂tz(x, ρ, t) = ∂ttu(x, t − τρ)
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and
zρ(x, ρ, t) = −τ∂ttu(x, t − τρ).

Thus,
τ∂tz(x, ρ, t) + zρ(x, ρ, t) = 0, in Ω × (0, 1) × R+. (2.7)

Then, Problem (1.1) is equivalent to

∂ttu − auxx + µ1 f1(∂tu) + µ2 f2(z(x, 1, t)) = 0,

∂ttv − bvxx = 0, in (L1, L2) × R+,

τ∂tz(x, ρ, t) + zρ(x, ρ, t) = 0, in Ω × (0, 1) × R+,

(2.8)

with the initial conditions

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) in Ω,

v(x, 0) = v0(x), ∂tv(x, 0) = v1(x) in (L1, L2),

z(x, 0, t) = ∂tu in Ω × R+,

z(x, ρ, 0) = f0(x,−ρτ) in Ω × (0, 1),

(2.9)

and the transmission conditions

u(0, t) = u(L3, t) = 0,

u(Li, t) = v(Li, t), i = 1, 2,

aux(Li, t) = bvx(Li, t), i = 1, 2.

(2.10)

3. Stability

Here, we consider the question of asymptotic behavior for (1.1)–(1.3). To this end, let ξ be a positive
constant such that

τ
µ2(1 − α1)

α1
< ξ < τ

µ1 − α2µ2

α2
. (3.1)

We define the total energy associated with the solution of the problems (2.8)–(2.10) by

E(t) = 1
2

∫
Ω
∂tu2dx + a

2

∫
Ω

u2
xdx + 1

2

∫ L2

L1
∂tv2dx + b

2

∫ L2

L1
v2

xdx + ξ
∫

Ω

∫ 1

0
F2(z(x, ρ, t))dρdx. (3.2)

The main result reads as follows.

Theorem 3.1. Let (u, v, z) be the solution of (2.8)–(2.10). Assume that the hypothesis (A1) holds and

a
b
<

L3 + L1 − L2

2(L2 − L1)
. (3.3)
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Then there exist positive constants C1–C3 and ε0, such that

E(t) ≤ C1H−1
1 (C2t + C3), ∀t ≥ 0, (3.4)

where

H1(t) =

∫ 1

t

1
H2(s)

ds, (3.5)

and

H2(t) =


t if H is linear on [0, ε′],

tH′(ε0t) if H′(0) = 0 and H′′ > 0 on ]0, ε′].
(3.6)

The proof of Theorem 3.1 will be carried out through the following Lemmas.

Lemma 3.1. Let (u, v, z) be the solution of (2.8)–(2.10). Assume that µ1 ≥ µ2. Then, the energy
functional defined by (3.2) satisfies

∂tE(t) −
(
µ1 −

ξα2
τ
− µ2α2

) ∫
Ω
∂tu f1(∂tu)dx −

(
ξ

τ
α1 − µ2(1 − α1)

) ∫
Ω

z(x, 1, t) f2(z(x, 1, t))dx.

Proof. Multiplying the first equation in (2.8) by ∂tu, the second equation by ∂tv and using integration
by parts, we get

1
2∂t

(∫
Ω
∂tu2dx + a

∫
Ω

u2
xdx +

∫ L2

L1
∂tv2dx + b

∫ L2

L1
v2

xdx
)

= −µ1

∫
Ω
∂tu f1(∂tu)dx − µ2

∫
Ω
∂tu f2(z(x, 1, t))dx.

(3.7)
On the other hand, multiplying (2.8)3 by ξ f2((z(x, ρ, t)), we can then integrate the result over Ω× (0, 1),
to obtain

ξ
∫

Ω

∫ 1

0
z′(x, ρ, t) f2(z(x, ρ, t))dρdx = −

ξ

τ

∫
Ω

∫ 1

0
∂
∂ρ

F2(z(x, ρ, t))dρdx,

= −
ξ

τ

∫
Ω

(F2(z(x, 1, t)) − F2(z(x, 0, t)))dx.

Then

ξ∂t

∫
Ω

∫ 1

0
F2(z(x, ρ, t))dρdx = −

ξ

τ

∫
Ω

F2(z(x, 1, t))dx +
ξ

τ

∫
Ω

F2(∂tu)dx. (3.8)

By (3.7) and (3.8) and using (2.4) yields

∂tE(t) ≤ −
(
µ1 −

ξα2
τ

) ∫
Ω
∂tu(x, t) f1(∂tu)dx − ξ

τ

∫
Ω

F2(z(x, 1, t))dx − µ2

∫
Ω
∂tu f2(z(x, 1, t))dx.

By F∗2, we denote the conjugate of the convex function F2 i.e., F∗2 = supt∈R+ (st − F2(t)). Then F∗2 is the
Legendre transform of F2, which is given by Daoulatli et al. [7]

F∗2(s) = s(F′2)−1(s) − F2

[
(F′2)−1(s)

]
, ∀s ≥ 0, (3.9)

and satisfies the following inequality

st ≤ F∗2(s) + F2(t), ∀s, t ≥ 0. (3.10)
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Then, from the definition of F2, we get

F∗2(s) = s f −1
2 (s) − F2

[
f −1
2 (s)

]
, ∀s ≥ 0. (3.11)

Hence

F∗2( f2(z(x, 1, t)) = z(x, 1, t) f2(z(x, 1, t) − F2(z(x, 1, t)) ≤ (1 − α1)z(x, 1, t) f2(z(x, 1, t). (3.12)

Using (3.9), (3.10) and (3.12), we have

∂tE(t) = −
(
µ1 −

ξα2
τ

) ∫
Ω
∂tu(x, t) f1(∂tu)dx − ξ

τ

∫
Ω

F2(z(x, 1, t))dx
+µ2

∫
Ω

(F2(∂tu) + f ∗2 ( f2(z(x, 1, t)))dx

≤ −
(
µ1 −

ξα2
τ
− µ2α2

) ∫
Ω
∂tu(x, t) f1(∂tu)dx

−
ξ

τ

∫
Ω

F2(z(x, 1, t))dx + µ2

∫
Ω

f ∗2 ( f2(z(x, 1, t)))dx.

Using (2.4) and (3.1), we obtain

∂tE(t) ≤ −
(
µ1 −

ξα2
τ
− µ2α2

) ∫
Ω
∂tu f1(∂tu)dx −

(
ξ

τ
α1 − µ2(1 − α1)

) ∫
Ω

z(x, 1, t) f2(z((x, 1, t)))dx.

This completes the proof.

Lemma 3.2. Let (u, v, z) be the solution of (2.8). Then the functional F1 defined by

F(t) =

∫
Ω

u∂tudx +

∫ L2

L1

v∂tvdx (3.13)

satisfies, along the solution, the estimate

∂tF(t) ≤
∫

Ω
∂tu2dx +

∫ L2

L1
∂tv2dx − (a − εc0)

∫
Ω

u2
xdx − b

∫ L2

L1
v2

xdx

+cµ1

∫
Ω

f 2
1 (∂tu)dx + cµ2

∫
Ω

f 2
2 (z(x, 1, t))dx.

Proof. By taking the time derivative of (3.13) and using (2.8), we get

∂tF(t) =
∫

Ω
∂tu2dx +

∫ L2

L1
∂tv2dx − a

∫
Ω

u2
xdx − b

∫ L2

L1
v2

xdx

−µ1

∫
Ω

u f1(∂tu)dx − µ2

∫
Ω

u f2(z(x, 1, t))dx.
(3.14)

By applying young’s and Poincaré’s inequalities, we have

∂tF(t) ≤
∫

Ω
∂tu2dx +

∫ L2

L1
∂tv2dx − (a − εc0)

∫
Ω

u2
xdx − b

∫ L2

L1
v2

xdx

+cµ1

∫
Ω

f 2
1 (∂tu)dx + cµ2

∫
Ω

f 2
2 (z(x, 1, t))dx,

where c0 is Poincaré’s constant. Then (3.14) is established.
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Now, inspired by [16], we introduce the functional

q(x) =


x − L1

2 , 0 ≤ x ≤ L1,

x − L2+L3
2 , L1 ≤ x ≤ L2,

L2−L3−L1
2(L2−L1) (x − L1) + L1

2 , L2 ≤ x ≤ L3.
(3.15)

Next, we define the functionals

D1(t) = −

∫
Ω

q(x)ux∂tudx, and D2(t) = −

∫ L2

L1

q(x)vx∂tvdx.

Lemma 3.3. For any ε2 > 0, we have the following estimates

∂tD1(t) ≤ C(ε2)
∫

Ω
∂tu2dx +

(
a
2 + 2ε2

) ∫
Ω

u2
xdx + C(ε2)

∫
Ω

f 2
1 (∂tu)dx

−a
4 [(L3 − L2)u2

x(L2, t) + L1u2
x(L1, t)] + C(ε2)

∫
Ω

f 2
2 (z(x, 1, t))dx,

(3.16)

and

∂tD2(t) ≤ L2−L3−L1
4(L2−L1)

(∫ L2

L1
∂tv2dx + b

∫ L2

L1
v2

xdx
)

+ b
4

[
(L3 − L2)v2

x(L2, t) + L1v2
x(L1, t)

]
. (3.17)

Proof. Differentiating D1(t) with respect to t, we obtain

∂tD1(t) = −

∫
Ω

q(x)utx∂tudx −
∫

Ω

q(x)aux(uxx(x, t) − µ1 f1(∂tu) − µ2 f2(z(x, 1, t))dx. (3.18)

Integrating by parts, we have∫
Ω

q(x)utx∂tu dx = −
1
2

∫
Ω

q′(x)u2
t dx +

1
2

[
q(x)u2

t

]
∂Ω
. (3.19)

On the other hand, ∫
Ω

q(x)auxuxx dx = −
1
2

∫
Ω

aq′(x)u2
xdx +

1
2

[
aq(x)u2

x

]
∂Ω
. (3.20)

Then by Young’s and Poincaré’s inequalities, and by using the boundary conditions in (1.2), we have

∂tD1(t) ≤ C(ε2)
∫

Ω
∂tu2dx +

(
a
2 + 2ε2

) ∫
Ω

u2
xdx + C(ε2)

∫
Ω

f 2
1 (∂tu)dx − a

4 [(L3 − L2)u2
x(L2, t)

+L1u2
x(L1, t)] + C(ε2)

∫
Ω

f 2
2 (z(x, 1, t))dx

(3.21)

for any ε2 > 0.
In the same way, we take the derivative of D2(t) with respect to t, to obtain

∂tD2(t) = −
∫ L2

L1
q(x)vtx∂tvdx −

∫ L2

L1
q(x)vx∂ttvdx ≤ L2−L3−L1

4(L2−L1)

(∫ L2

L1
∂tv2dx + b

∫ L2

L1
v2

xdx
)

+b
4

[
(L3 − L2)v2

x(L2, t) + L1v2
x(L1, t)

]
.

(3.22)

This gives (3.17).
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Let us now, introduce the following functional related to the delayed term

I(t) =

∫
Ω

∫ 1

0
e−2τρF2(z(x, ρ, t))dρ dx. (3.23)

Then the following result in the next lemma holds.

Lemma 3.4. Let (u, v, z) be a solution of (2.8). Then

∂tI(t) ≤ −2I(t) −
e−2τ

τ

∫
Ω

F2(z(x, 1, t))dx +
1
τ

∫
Ω

F2(∂tu)dx. (3.24)

Proof. Taking the differentiation of (3.23) with respect to t and using (2.8)3, we have

∂tI(t) =
∫

Ω

∫ 1

0
e−2τρ∂tz(x, ρ, t) f2(z(x, ρ, t))dρdx

= −1
τ

∫
Ω

∫ 1

0
e−2τρzρ(x, ρ, t) f2(z(x, ρ, t))dρdx

= −1
τ

∫
Ω

∫ 1

0
e−2τρ ∂

∂ρ
F2(z(x, ρ, t))dρdx

= −1
τ

∫
Ω

∫ 1

0

[
∂
∂ρ

(
e−2τρF2(z(x, ρ, t))

)
dρdx + 2τe−2τρF2(z(x, ρ, t))

]
dρdx

= −1
τ

∫
Ω

(
e−2τF2(z(x, 1, t)) − F2(∂tu)

)
dx − 2

∫
Ω

∫ 1

0
e−2τρF2(z(x, ρ, t))dρdx

≤ −2I(t) − e−2τ

τ

∫
Ω

F2(z(x, 1, t))dx + 1
τ

∫
Ω

F2(∂tu)dx.

We define the Lyapunov functional

L(t) = NE(t) + I(t) + δ1F(t) + δ2D1(t) + δ3D2(t). (3.25)

where N, δ2, δ3 and δ4 are positive constants.
Proof of Theorem 3.1.

By the boundary conditions in (1.2), it is not hard to see that

a2u2
x(Li, t) = b2v2

x(Li, t) i = 1, 2. (3.26)

By combining (3.7), (3.14), (3.16), (3.17) and (3.24) and taking into account (3.26),

∂tL(t) ≤ (δ2c(ε2) + δ1)
∫

Ω

∂tu2dx +

((a
2

+ 2ε2

)
δ2 − (a − εc0)δ1

) ∫
Ω

u2
xdx

+

(
L2 − L3 − L1

4(L2 − L1)
δ3 + δ1

) ∫ L2

L1

∂tv2dx +

(
L2 − L3 − L1

4(L2 − L1)
bδ3 − bδ1

) ∫ L2

L1

v2
xdx

−

(
N

(
µ1 −

ξα2

τ
− µ2α2

)
−
α2

τ

) ∫
Ω

∂tu f1(∂tu)dx
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−

(
N(
ξ

τ
α1 − µ2(1 − α1)) + α1

e−2τ

τ
−C(δ1µ2 + δ2c(ε2))

)
×

∫
Ω

z(x, 1, t) f2(z(x, 1, t))dx

−(δ2 −
a
b
δ3)

a(L3 − L2)
4

u2
x(L2, t) − (δ2 −

a
b
δ3)

aL1

4
u2

x(L1, t)

+ (C(ε2)δ2 + cµ1δ1)
∫

Ω

f 2
1 (∂tu)dx.

At this point, we have to choose our constants very carefully, such that all this coefficients in (3.27)
will be negative.

Indeed, under the assumption of (3.3), we can always find δ1, δ2 and δ3 such that

L2 − L3 − L1

4(L2 − L1)
δ3 + δ1 < 0, δ2 >

a
b
δ3 δ1 >

δ2

2
. (3.27)

Finally, we keep in mind (3.1) and choose N large enough such that the coefficients in (3.27) are
negatives.

Consequently, from the above, we deduce that there exist positive constants d1 and d2 such that
(3.27) becomes

∂tL(t) ≤ −d1

∫
Ω

u2
xdx − d2

∫ L2

L1

(
∂tv2 + v2

x

)
dx + c

∫
Ω

(
∂tu2 + f 2

1 (∂tu)
)

dx. (3.28)

Then, (3.28) can became

∂tL(t) ≤ −dE(t) + c
∫

Ω

(
∂tu2 + f 2

1 (∂tu)
)

dx. (3.29)

The next lemma will be very useful, as it means that there is equivalence between the energy functional
and the appropriate Lyapunov function.

Lemma 3.5. For N,N > 1, we have that

β1L(t) ≤ E(t) ≤ β2L(t) (3.30)

holds for two positive constants β1 and β2.

The last term on the right hand side of (3.29) should be estimated. To this end, we define

Ω+ = {x ∈ Ω : |∂tu| ≥ ε′}, Ω− = {x ∈ Ω : |∂tu| ≤ ε′}.

From (2.1) and (2.2), it follows that∫
Ω+

(|∂tu|2 + | f1(∂tu)|2)dx ≤ µ1

∫
Ω+

∂tu. f1(∂tu)dx ≤ −µ1E′(t). (3.31)
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Case1. H is linear on [0, ε′]. In this case one can easily check that there exists µ′1 > 0 such that
| f1(s)| ≤ µ1|s| for all |s| ≤ ε′, thus

∫
Ω−

(|∂tu|2 + | f1(∂tu)|2)dx ≤ µ′1

∫
Ω−
∂tu. f1(∂tu)dx ≤ −µ′1E′(t). (3.32)

Substitution of (3.31) and (3.32) into (3.29) gives

(L(t) + µE(t))′ ≤ CH2(E(t)), (3.33)

where µ = c(µ1 + µ′1).
Case2. H′(0) = 0 and H′′ > 0 on ]0, ε′]. Since H is convex and increasing, H−1 is concave and
increasing. By virtue of (2.1), the reversed Jensen’s inequality for a concave function and (3.7), it
follows that ∫

Ω−
(|∂tu|2 + | f1(∂tu)|2)dx ≤

∫
Ω−

H−1(∂tu f1(∂tu))dx

≤ |Ω|H−1
(

1
|Ω|

∫
Ω−
∂tu f1(∂tu)dx

)
≤ CH−1(−C′E′(t)).

(3.34)

A combination of (3.29), (3.31) and (3.34) yields

(L(t) + Cµ1E(t))′ ≤ −C3E(t) + C5H−1(−C′E′(t)), t ∈ R+. (3.35)

By H∗, we denote the conjugate of the convex function H, i.e.,

H∗(s) = sup
t∈R+

(st − H(t)).

Then H∗ is the Legendre transform of H, which is given by (see [1, 7])

H∗(s) = s(H′)−1(s) − H[(H′)−1(s)], ∀s ≥ 0, (3.36)

and which satisfies the following inequality

st ≤ H∗(s) + H(t), ∀s, t ≥ 0. (3.37)

The relation (3.36) and the facts that H′(0) = 0 and (H′)−1 and H are increasing functions yield

H∗(s) ≤ s(H′)−1(s), ∀s ≥ 0. (3.38)
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Making use of E′(t) ≤ 0, H′′(t) ≥ 0, (3.35) and (3.38) we derive the following for ε0 > 0 small enough[
H′(ε0E(t))(L(t) + Cµ1E(t)) + C5C′E(t)

]′
= ε0E′(t)H′′(ε0E(t))(L(t) + Cµ1E(t)) + H′(ε0E(t))(L′(t) + Cµ1E′(t)) + C5C′E′(t)

≤ −C3H′(ε0E(t))E(t) + C̃5H′(ε0E(t))H−1(−C′E′(t)) + C̃5C′E′(t)

≤ −C3H′(ε0E(t))E(t) + C̃5H∗(H′(ε0E(t)))

≤ −C3H′(ε0E(t))E(t) + C̃5H′(ε0E(t))ε0E(t)

≤ −C̃3H′(ε0E(t))E(t)

= −C̃3H2(E(t)).

(3.39)

We note that in the second inequality, we used (3.37) and 0 ≤ H′(ε0E(t)) ≤ H′(ε0E(0)). Let

L̃(t) =



L(t) + µE(t), if H is linear on[0, ε′],

H′(ε0E(t))(L(t) + Cµ1E(t)) + C5C′E(t),

if H′(0) = 0 and H′′ > 0 on ]0, ε′],

(3.40)

from (3.33) and (3.39), it follows that

L̃′(t) ≤ −c4H2(E(t)), ∀s ≥ 0. (3.41)

On the other hand, we can choose M > 0 larger as needed, and we find from Lemma (3.5) that E(t) is
equivalent to L(t). So, L̃′(t) is also equivalent to E(t). By the fact that H2 is increasing, we obtain

L̃′(t) ≤ −c4H2(L̃′(t)), ∀t ≥ 0. (3.42)

Noting that H′1 = −1/H2, (see [11]) we have the following from (3.42)

L̃′(t)H′1(L̃′(t)) ≥ c̃4 ∀t ≥ 0. (3.43)

A simple integration over (0, t) yields

H′1(L̃′(t)) ≥ H1(L̃′(0)) + c̃4t.

Then, using the fact that H−1
1 is decreasing, we have

L̃′(t) ≤ H−1
1

(
L̃′(0))̃c4t

)
. (3.44)

Consequently, the equivalence of L, L̃ and E, yields the estimate

E(t) ≤ ω1H−1
1 (ω2t + ω3) . (3.45)
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4. Conclusions

In the study of many physical phenomena and processes, a small or large parameter is often singled
out, therefore mathematical models of these phenomena or processes can be singularly perturbed by
dynamical systems. The study of the dynamics of equations of this type is of great interest.

Several types of singularly perturbed systems with an infinite-dimensional phase space are studied
in this work including equations with a large delay and equations of parabolic type with small diffusion.
For such systems, the problem is solved by investigating the local dynamics, i.e., the behavior of
the solutions in some small fixed neighborhood of the equilibrium state, and finding an asymptotic
approximation of the steady regimes.

The equations with delay considered in this paper arise naturally as mathematical models in many
applications, especially in biology, medicine, neurodynamics, radiophysics, electronics, laser physics,
information processing and transmission systems. Among them, an important place is occupied by
systems in which the delay time is relatively large.
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