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Abstract: In the spectral clustering methods, different from the network division based on edges, some 

research has begun to divide the network based on network motifs; the corresponding objective 

function of partition also becomes related to the motif information. But, the related research on the 

directed weighted network needs to be further deepened. The weight of the network has a great 

influence on the structural attributes of the network, so it is necessary to extend the motif-based 

clustering to the weighted network. In this paper, a motif-based spectral clustering method for directed 

weighted networks is proposed. At the same time, this paper supplements the method of obtaining 

matrix expressions of the motif adjacency matrix in directed unweighted networks and provides a 

method to deal with the weight of networks, which will be helpful for the application research of motifs. 

This clustering method takes into account the higher-order connectivity patterns in networks and 

broadens the applicable range of spectral clustering to directed weighted networks. In this method, the 

motif-based clustering of directed weighted networks can be transformed into the clustering of the 

undirected weighted network corresponding to the motif-based adjacency matrix. The results show 

that the clustering method can correctly identify the partition structure of the benchmark network, and 

experiments on some real networks show that this method performs better than the method that does 

not consider the weight of networks. 
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1. Introduction  

Network science can help us to understand complex systems, and a common task of the analysis 

of networks is clustering [1]. The process of dividing a set into groups of similar elements is called 

clustering. Spectral clustering [2] is based on the spectral graph theory. By selecting some partition 

criterion [3,4], the objective function can be generated. The minimization of the objective function is 

closely related to the eigenvalues and eigenvectors of the Laplacian matrix [5]. Eventually, the problem 

becomes using the eigenvectors of the Laplacian matrix to divide the network. Spectral clustering has 

become a very popular clustering algorithm [6,7]. Unfortunately, most spectral clustering algorithms 

only operate on undirected networks because the adjacency matrix of a directed network is asymmetric. 

A common approach to clustering in directed networks is to build a symmetric adjacency matrix from 

the original asymmetric matrix [8].  

The network motif [9] is a pattern of some kind of interconnection found in a complex network 

that is significantly higher than the number of interconnections in a random network. For the 13 three-

node motifs of directed networks, according to the types of motifs, they can be divided into triangular 

motifs (closed subgraphs) and two-hop-path motifs (open subgraphs). In recent years, the traditional 

clustering method has begun to consider the motif of networks [10]. On the basis of ensuring the 

internal similarity of the subgraph [11], the traditional graph division should make sure the number of 

edges to be cut is as small as possible. While motif-based clustering takes into account the higher-order 

structure of the networks. The motif-based graph division should ensure that the nodes in the cluster 

should be involved in more instances of the motif and avoid cutting the instances of the motif as much 

as possible. Thus, the objective function of the cluster has also changed. Benson et al. [12] converted 

conductance to motif-based conductance in the partition of directed unweighted networks and 

generalized the motif-based spectral clustering to the directed networks by the motif adjacency matrix.  

The motif adjacency matrix, which is a symmetric matrix, contains the information of a certain 

higher-order link pattern in the networks. For the three-node motif, Benson et al. [12] obtained the 

matrix expressions of motif adjacency matrices of triangular motifs (closed subgraphs) based on matrix 

operations. On this basis, the matrix operational method to obtain the matrix expressions of motif 

adjacency matrices for the remaining two-hop-path motifs (open subgraphs) is supplemented in this 

paper, and we use the lower triangular matrix to simplify the calculation difficulty. Therefore, the motif 

adjacency matrix expressions of all motifs in the directed network can be obtained by matrix operations.  

Spectral clustering methods based on motifs are becoming increasingly important [13–15]. It is 

natural to search for motif-based applications for the weighted cases since weights are one of the 

important factors to describe the association between nodes and have a significant impact on the 

clustering effect of networks. For the directed weighted networks, most of the methods are to weight 

the motif [16–18]. In addition, a directed weighted network can be mapped to a directed unweighted 

network with multi-links which has the same adjacency matrix with it for analysis [19]. In this paper, 

a weighted network is considered as an unweighted network with multi-links, and by using the 

adjacency matrix as a bridge, the network can be mapped to an unweighted multilayer network. 

This paper supplements the method of constructing matrix expressions of the motif adjacency 

matrix as we use the lower triangular matrix to simplify the expressions of motif adjacency matrices. 

And, this paper proposes a motif-based clustering algorithm for directed weighted networks (WMCA). 

The WMCA is tested on a benchmark network. Selecting two cluster evaluation indexes, the clustering 

effect of the WMCA method is compared with that of the method in [12] without considering the 

network weight on three real networks. 
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2. Introduction to motif and motif-based clustering 

2.1. The three-node motif of directed networks 

The motif used in this paper is a connected subgraph with three vertices. A certain connection 

relation of three nodes can be encoded by a binary coding matrix 𝐻3×3 . Without considering the 

position order of nodes, 𝐻 corresponds to a form of a connected subgraph, and the form of a connected 

subgraph is defined as a class of motif M. Figure 1 shows the types of three-node motifs in directed 

networks and their corresponding coding matrices. In the coding matrices, select the left node as 

node 1, the upper node as node 2 and the lower node as node 3. 

The composition of the motifs is independent of the position order of the nodes, so the 

representation of the coding matrix is not unique. A connected subgraph with three vertices may have 

multiple coding matrices; the encoding matrices belonging to the same type of motif are permutation 

similarity. Take M7 as an example; its encoding matrix has three kinds, as shown in Figure 2(a). In the 

network shown in Figure 2(b), there are two motif instances of M7. At the same time, motif instances 

of other types in the network are shown in Figure 2(c). 

2.2. Motif-based spectral clustering of directed unweighted networks 

Consider a directed unweighted network with 𝑛 nodes and a motif M; 𝑊𝑀 = (𝑤𝑖𝑗
𝑀)

𝑛×𝑛
 is called 

the motif adjacency matrix [12], which 𝑤ij
𝑀  represents the number of instances of M in which 𝑖 and 𝑗 

participate jointly. The adjacency matrix of the directed unweighted network is not a symmetric matrix, 

while the motif adjacency matrix is a symmetric matrix, and its element values reflect the similarity 

between node pairs.  

Benson et al. [12] proposed a general motif-based clustering algorithm (MCA). And, they prove 

that, when the specific conductance is selected as the objective function, the conductance of the 

directed unweighted network is equal to the conductance of the undirected weighted network 

corresponding to the motif adjacency matrix, which is called the motif conductance. The node group 

that makes the motif conductance minimum is the optimal division. Then the partition of the directed 

unweighted network is converted to the partition on the undirected weighted network that the motif 

adjacency matrix corresponds to. Thus, based on the motif adjacency matrix to form the normalized 

motif Laplacian matrix, classical spectral clustering method can be used. And the motif conductance 

is defined as:  

𝜑𝑀
(𝐺)𝑆 =

𝑐𝑢𝑡𝑀(𝐺)𝑆 ,𝑆

𝑚𝑖𝑛(𝑣𝑜𝑙𝑀(𝐺)𝑆,𝑣𝑜𝑙𝑀(𝐺)𝑆)
, (1) 

where 𝑐𝑢𝑡𝑀(𝐺)𝑆, 𝑆 represents the number of the motif instances with at least one endpoint in 𝑆 and 

one endpoint in 𝑆, and 𝑣𝑜𝑙𝑀(𝐺)𝑆 represents the number of instances of M formed by nodes in 𝑆. The 

lower the conductance, the better the clustering.  



13800 

AIMS Mathematics Volume 8, Issue 6, 13797–13814. 

 

Figure 1. The types of three-node motifs and the coding matrices. 

 

Figure 2. Instances of motif M7 and other motifs in a network. 

3. Motif-based spectral clustering in directed weighted networks 

This section introduces the motif-based spectral clustering method in directed weighted networks. 

The main process is shown in the Figure 3. In this section, the method of forming the expression motif 

adjacency matrix in directed unweighted networks is firstly introduced. Then, the method to deal with 

the weight of the network is introduced in order to form the motif adjacency matrix of the directed 

weighted network. Finally, based on the motif adjacency matrix, the directed weighted network can be 

clustered. 
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Figure 3. Flow chart of motif-based spectral clustering method in directed weighted network. 

3.1. The expression of motif adjacency matrix in directed unweighted network 

When the spectral clustering method is extended to the directed network, a symmetric matrix 

containing node similarity information is needed to form the Laplacian matrix. The adjacency matrix 

of directed network is asymmetric, while the motif adjacency matrix of the network is symmetric, and 

contains the information of higher-order connectivity between nodes. Therefore, spectral clustering 

can be realized on the directed weighted network through the motif adjacency matrix. So, forming 

motif adjacency matrix of the directed network becomes an important tool to the motif-based clustering. 

Benson et al. [12] give a method of obtaining the expressions of the motif adjacency matrix for 

triangular motifs (7 types) through matrix operation, and use the k-clique enumeration algorithm to 

obtain the motif adjacency matrix of two-hop paths motifs (6 types). This paper supplements the 

method of obtaining the motif adjacency matrix by matrix operation for the two-hop paths motifs, so 

that the motif adjacency matrix of any kind of motif can be obtained by matrix operation. 

For a directed unweighted network 𝐺  with adjacency matrix 𝐴 , let 𝐵  and 𝑈  be the adjacency 

matrix of graphs formed by bidirectional edges and unidirectional edges, respectively [12]. Formally, 

𝐵 = 𝐴 ∘ 𝐴𝑇 , 𝑈 = 𝐴 − 𝐵, where “∘” means the Hadamard product of matrices. In mathematics, the 

Hadamard product is a special binary operation, where each element 𝑖, 𝑗 is the product of elements 𝑖, 𝑗  

of the two original matrices [20]. That is, suppose 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛
 and 𝐵 = (𝑏𝑖𝑗)𝑚×𝑛

 , then the 

Hadamard product of them is 𝐶 = 𝐴 ∘ 𝐵 = (𝑎𝑖𝑗 ∗ 𝑏𝑖𝑗)𝑚×𝑛
. When 𝐺 is regarded as an undirected graph 

𝐺̄, let 𝐹̄ be the adjacency matrix corresponding to the complement graph of 𝐺̄. An element value of 1 

in 𝐹̄ indicates that there is no edge connected between the corresponding node pair in the graph 𝐺, so 
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𝐹̄ can be called edge-missing matrix. In terms of the matrices 𝑈, 𝐵, and 𝐹̄, matrix expressions of 13 

motif adjacency matrices can be established. Let 𝑋, 𝑌, 𝑍   represent one of 𝑈, 𝐵  and 𝐹̄ . The central 

computational kernel in these computations is 𝑋𝑌 ∘ 𝑍, which means these operations are similar in 

form, that is, multiply two matrices and then take the Hadamard product with a third matrix. 

Furthermore, let 𝐵𝐿 and 𝐹̄𝐿  denote the lower triangular matrices of 𝐵 and 𝐹̄, respectively, the matrix in 

some terms of the expression can be replaced by 𝐵𝐿 and 𝐹̄𝐿  
to simplify the calculation. For all three-

node motifs, the simplified formulations that form the motif adjacency matrix 𝑊𝑀  based on matrix 

operations in directed unweighted networks are shown in Table 1. 

Table 1. Simplified matrix formulations of the motif adjacency matrix. 

Moti

f 

Matrix computations 𝑊𝑀  

M1 𝐶 = 𝑈2 ∘ 𝑈𝑇  𝐶 + 𝐶𝑇  

M2 𝐶 = 𝐵𝐿𝑈 ∘ 𝑈𝑇 +𝐵𝐿
𝑇𝑈 ∘ 𝑈𝑇 +𝑈𝐵𝐿 ∘ 𝑈

𝑇 +𝑈𝐵𝐿
𝑇 ∘ 𝑈𝑇 + 𝑈2 ∘ 𝐵 𝐶 + 𝐶𝑇  

M3 𝐶 = 𝐵𝐿𝐵 ∘𝑈 + 𝐵𝐿
𝑇𝐵 ∘ 𝑈 +𝐵𝐿𝑈 ∘ 𝐵 + 𝐵𝐿

𝑇𝑈 ∘ 𝐵 + 𝑈𝐵𝐿 ∘ 𝐵 +𝑈𝐵𝐿
𝑇 ∘ 𝐵 𝐶 + 𝐶𝑇  

M4 𝐶 = 𝐵𝐿𝐵 ∘ 𝐵 +𝐵𝐿
𝑇𝐵 ∘ 𝐵 𝐶 

M5 𝐶 = 𝑈2 ∘ 𝑈 + 𝑈𝑈𝑇 ∘ 𝑈 +𝑈𝑇𝑈 ∘𝑈 𝐶 + 𝐶𝑇  

M6 𝐶 = 𝑈𝐵𝐿 ∘ 𝑈+ 𝑈𝐵𝐿
𝑇 ∘ 𝑈 + 𝐵𝐿𝑈

𝑇 ∘ 𝑈𝑇 +𝐵𝐿
𝑇𝑈𝑇 ∘ 𝑈𝑇 + 𝑈𝑇𝑈 ∘ 𝐵 𝐶 

M7 𝐶 = 𝑈𝑇𝐵𝐿 ∘ 𝑈
𝑇 +𝑈𝑇𝐵𝐿

𝑇 ∘ 𝑈𝑇 + 𝐵𝐿𝑈 ∘𝑈 + 𝐵𝐿
𝑇𝑈 ∘ 𝑈 + 𝑈𝑈𝑇 ∘ 𝐵 𝐶 

M8 𝐶 = 𝐹̄𝐿𝑈
𝑇 ∘ 𝑈𝑇 + 𝐹̄𝐿

𝑇𝑈𝑇 ∘ 𝑈𝑇 + 𝑈𝐹̄𝐿 ∘ 𝑈 + 𝑈𝐹̄𝐿
𝑇 ∘ 𝑈+ 𝑈𝑇𝑈 ∘ 𝐹̄ 𝐶 

M9 𝐶 = 𝑈𝑈 ∘ 𝐹̄ + 𝑈𝐹̄𝐿 ∘ 𝑈
𝑇 +𝑈𝐹̄𝐿

𝑇 ∘ 𝑈𝑇 + 𝐹̄𝐿𝑈 ∘ 𝑈𝑇 + 𝐹̄𝐿
𝑇𝑈 ∘𝑈𝑇  𝐶 + 𝐶𝑇  

M10 𝐶 = 𝑈𝑈𝑇 ∘ 𝐹̄ + 𝑈𝑇𝐹̄𝐿 ∘ 𝑈
𝑇 +𝑈𝑇𝐹̄𝐿

𝑇 ∘ 𝑈𝑇 + 𝐹̄𝐿𝑈 ∘ 𝑈 + 𝐹̄𝐿
𝑇𝑈 ∘ 𝑈 𝐶 

M11 𝐶 = 𝐵𝐿𝑈 ∘ 𝐹̄ + 𝐵𝐿
𝑇𝑈 ∘ 𝐹̄ + 𝑈𝐹̄𝐿 ∘ 𝐵 + 𝑈𝐹̄𝐿

𝑇 ∘ 𝐵 + 𝐹̄𝐿𝐵 ∘ 𝑈𝑇 + 𝐹̄𝐿
𝑇𝐵∘ 𝑈𝑇  𝐶 + 𝐶𝑇  

M12 𝐶 = 𝐵𝐿𝑈
𝑇 ∘ 𝐹̄ + 𝐵𝐿

𝑇𝑈𝑇 ∘ 𝐹̄ + 𝑈𝑇𝐹̄𝐿 ∘ 𝐵 +𝑈𝑇𝐹̄𝐿
𝑇 ∘ 𝐵 + 𝐹̄𝐿𝐵 ∘ 𝑈 + 𝐹̄𝐿

𝑇𝐵 ∘ 𝑈 𝐶 + 𝐶𝑇  

M13 𝐶 = 𝐵𝐿𝐵 ∘ 𝐹̄ + 𝐵𝐿
𝑇𝐵 ∘ 𝐹̄ + 𝐵𝐹̄𝐿 ∘ 𝐵 +𝐵𝐹̄𝐿

𝑇 ∘ 𝐵 + 𝐹̄𝐿𝐵 ∘ 𝐵 + 𝐹̄𝐿
𝑇𝐵 ∘ 𝐵 𝐶 

In the first part of the Supplementary, the Matlab algorithm for obtaining the expression of the 

motif adjacency matrix for M8-M13 is given. 

3.2. The conversion of directed weighted networks 

Consider a directed weighted network, the data of all nodes in the network can be represented by 

its adjacency matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛
, where 𝑛 represents the number of nodes, 𝑎𝑖𝑗 represents the edge 

weight of node 𝑖 to 𝑗. When the value of 𝑎𝑖𝑗 is a nonnegative integer, the directed weighted network 
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can be converted to a directed unweighted multilayer network. 

Definition 1: let 𝐴 be a nonnegative matrix, define a mapping 𝜙(⋅) as follows: 

𝜙(𝐴) = 𝐴𝑙 {
= 𝜓(𝐴), 𝑙 = 1

= 𝜓(𝐴 − ∑ 𝐴𝑗
𝑙−1
𝑗=1 ), 1 < 𝑙 ≤ 𝑚𝑎𝑥 (𝐴)

, (2)  

where 𝜓(⋅)  means mapping non-zero elements in a matrix to 1, and 𝑚𝑎𝑥(⋅)  means taking the 

maximum value of the elements of a matrix.  

The Mapping 𝜙(⋅) maps matrix 𝐴 to a Boolean matrix sequence 𝐴𝑙 , 𝑙 = 1,2, . . . , 𝑚𝑎𝑥(𝐴). If the 

element values in 𝐴 are all nonnegative integers, then has 𝐴 = ∑𝑚𝑎𝑥(𝐴)𝐴𝑙
𝑙=1 . If such matrix 𝐴 is the 

adjacency matrix of the directed weighted network 𝐺, then each matrix 𝐴𝑙 can correspond to a directed 

unweighted network 𝐺𝑙, and 𝐴𝑙 is the adjacency matrix of the 𝐺𝑙. So, take the adjacency matrix as 

bridge, the mapping 𝜙(⋅) can map the network 𝐺 to a multilayer network, 𝐺 =∪
𝑙
𝐺𝑙. Thus,

 
the motif 

adjacency matrix in each layer of the multilayer network can be obtained by the method given in 

Table 1. Naturally, the motif adjacency matrix of the directed weighted network is the sum of the motif 

adjacency matrix of each layer. 

 

Figure 4. Mapping processing of directed weighted networks. 

The directed weighted network is mapped as a directed unweighted multilayer network as shown 

in Figure 4. Figure 4 shows a directed weighted network 𝐺 and its adjacency matrix 𝐴. Select M9 as 

the interested motif, and show each layer network of the multilayer network and its corresponding 

motif adjacency matrix corresponding to M9 in Figure 4. First-layer network is represented by 𝐺1 and 

its adjacency matrix is 𝐴1, second-layer network is represented by 𝐺2  and its adjacency matrix is𝐴2, 

and their motif adjacency matrices corresponding to M9 are denoted by 𝑊𝑀
1  and 𝑊𝑀

2  respectively. In 

the first layer network, nodes {1，3，5}，{2，3，4} form an instance of M9 respectively; in the 

second layer network, nodes {1，3，5}，{3，4，5}form an instance of M9 respectively. According 

to the definition of the motif adjacency matrix, the motif adjacency matrix of each layer network is 
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𝑊𝑀
1  and 𝑊𝑀

2  respectively. Then the motif adjacency matrix corresponding to M9 of 𝐺 is 𝑊𝑀 = 𝑊𝑀
1 +

𝑊𝑀
2 . 

In the first part of the Supplementary, a program is given to obtain the expression of motif 

adjacency matrix for weighted networks using Matlab algorithm. 

3.3. Motif-based clustering algorithm in directed weighted networks 

For directed weighted networks, computing the conductance of motif-based conductance can be 

translated into computing the conductance on the graph corresponding to the motif adjacency matrix. 

See second part of the Supplementary for proof. In this paper, choose the motifs which have more 

instances in the network as the motifs of interest. In the network, the motifs with more instances are 

considered as important motifs, which can represent the basic unit of the network structure and have a 

certain influence on the structure of the network, while the motifs with fewer instances in the network 

have a limited influence on the network structure. 

Consider the clustering based on the set of motifs {M1,M2,...,Mq}
  
for 𝑞  different motifs. Let 

𝑊𝑀𝑗
, 𝑗 = 1,2, . . . , 𝑞 be the motif adjacency matrix of Mj. And let 𝛼𝑗 be the weight of motif Mj. The 

value of 𝛼𝑗 is the ratio of the number of Mj  to the total number of 𝑞  interested motifs. Obviously, 

∑ 𝛼𝑗
𝑞
𝑗=1 = 1

 

and 𝛼𝑗 > 0. Then the motif adjacency matrix of the network is 𝑊𝑀 = ∑ 𝛼𝑗𝑊𝑀𝑗

𝑞
𝑗=1 . And 

the measures of cut and volume are simply linearly weighted sums. After forming the adjacency matrix, 

spectral clustering can be carried out according to the algorithm proposed by Benson et al. [12]. 

The steps of the motif-based clustering algorithms in directed weighted networks (WMCA) are 

as follows:  

Motif-based clustering algorithm in directed weighted networks (WMCA) 

Step 1 Form the motif adjacency matrix. Give a directed weighted network and 

𝑞motifs of interest to form the motif adjacency matrix 𝑊𝑀 . 

Step 2 Form the normalized motif Laplacian matrix. Construct the motif Laplacian 

matrix and normalize the motif Laplacian matrix 𝐿𝑀 = 𝐷
−1

2 (𝐷 − 𝑊𝑀
)𝐷

−1

2 , where 
𝐷 is the diagonal matrix and is defined as 𝐷𝑖𝑖 = ∑ 𝑤𝑖𝑗

𝑀𝑛
𝑗 . 

Step 3 Compute the spectral order 𝜎  of nodes. 𝜎  is sorted by 𝐷
−1

2 𝑧 , and 𝑧  is the 

eigenvector corresponding to the second smallest eigenvalue of 𝐿𝑀, that is, 𝜎𝑖 

is the node corresponding to the 𝑖𝑡ℎ smallest value of 𝐷
−1

2 𝑧. 

Step 4 Find the prefix set 𝜎  that minimizes the motif conductance, 𝑆 =

𝑎𝑟𝑔𝑚𝑖𝑛𝑟𝜑𝑀
(𝐺)𝑆𝑟, where 𝑆𝑟 = {𝜎1 , . . . , 𝜎𝑟}.  

Step 5 Find the smaller portion. If |𝑆| < |𝑆̄| , 𝑆  is the module obtained by the 

clustering, otherwise 𝑆̄ is. 

The algorithm divides the nodes into two clusters: 𝑆 and 𝑆. For the motif conductance, 𝜑𝑀 (𝐺)𝑆 =

𝜑𝑀 (𝐺)𝑆̄, so any set of nodes can be interpreted as a cluster.  

After obtaining the motif adjacency matrix of the directed weighted network, if multiple 
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clustering is required, one can obtain multiple clusters by combining the method of Ng et al. [6]: Take 

eigenvectors of 𝑘 smallest eigenvalues 𝑧1, 𝑧2, . . . , 𝑧𝑘 for 𝐿𝑀 in Step 2, and make 𝑦𝑖𝑗 =
𝑧𝑖𝑗

√∑ 𝑧𝑖𝑗
2𝑘

𝑗=1

 to form 

the matrix 𝑌. Then take the 𝑖𝑡ℎ row of the matrix 𝑌 to embed node 𝑖 into 𝑅𝑘 , and on the embedded 

nodes k-means clustering can be run. 

In Sections 3.1 and 3.2, the method to deal with the weight of directed weighted networks is 

proposed, and the method to obtain the motif adjacency matrix expression by matrix operation is 

supplemented and simplified. In Section 3.3, combine the motif adjacency matrix with the spectral 

clustering method to get two or more clusters in directed weighted networks. The motif adjacency 

matrix which contains the higher-order link information between nodes can also be used in other graph 

clustering of directed weighted networks. 

4. Experiments 

In this part, the clustering effect of WMCA method proposed in this paper is tested on a 

benchmark network with known partitions. Then, on the three real networks, the WMCA method and 

the MCA method (without considering the weight of the networks) proposed by Benson et al. [12] are 

respectively selected to cluster the networks and obtain multiple clusters. Two clustering evaluation 

metrics: Silhouette Coefficient (SC) [21] and Davies-Bouldin index (DBI) [22] are selected to compare 

the clustering effect of the two methods. 

4.1. Experiments on a benchmark social network with two clusters 

The performance of WMCA method is tested on the weighted Zachary karate club network [23], 

which is often used as a benchmark network to detect the effect of network partitioning. This network 

has two known divisions, and the weight of the edges represents the number of contexts in which 

interaction took place between the two individuals involved. When the network is used, the undirected 

edge is regarded as a bidirectional edge, so, there are only M13 and M4 motifs in the network, and the 

number of instances is 880 and 115, respectively. Table 2 presents some information on the Zachary 

karate club network. 

Table 2. Information on the weighted Zachary karate club network. 

Size Number of edges Maximum edge weight Motifs of interested 

34 156 7 M13, M4 

In Figure 5(a) shows the network diagram of the Zachary karate club network, where the thickness 

of the line reflects the size of the weight. The known division of the network is shown in Figure 5(b), 

the color of a node indicates its category. Use the WMCA method based on M13, M4 and the 

combination of them respectively to cluster the network, the clustering results of weighted network is 

obtained. Compared with the known partition results, in the M13 based clustering, node 9 is wrongly 

divided, as shown in Figure 5(c), while in the M4 based clustering, node 10 is divided into another 

group as shown in Figure 5(d). The clustering based on the combination of motif M4 and M13 gives 

the correct classification as shown in Figure 5(b). 
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Next, a further analysis of node 9 in the M13-based cluster and node 10 in the M4-based cluster 

is performed. The local network composed of first-order neighbors of the node is called first-order 

neighborhood network, and the first-order neighborhood network of nodes 9 and 10 are shown in 

Figure 6 respectively. The colors of the nodes in Figure 6 are the same as those in Figure 5. The set of 

white nodes represents cluster 𝑆 and the set of blue nodes represent cluster 𝑆.  

 

Figure 5. Weighted Zachary karate club network and the results of motif-based clustering. 

 

Figure 6. First-order neighborhood network of nodes. 

In Figure 6(a), considering the combination of nodes belonging to a cluster and node 9, the 

instances with node 9 participating of the M13 and M4 and their number are shown in Table 3, 

respectively. From Table 3 can know that: the strength of this higher-order link form between nodes 9, 

1 and 3 is higher than that between nodes 9, 31, 33, and 34 when considering it based on the M13. And 

this is the opposite when considered based on M4. In Figure 6(b), node 10 is only linked to node 3, 34, 

and they form an instance of motif M13, and this does not impact to M4-based clustering. When the 
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degree of node is considered, the similarity between node 10 and nodes in cluster 𝑆 is higher; while 

considering M4-based clustering, the similarity between node 10 and nodes in the two clusters is the 

same because node 10 does not form an instance of M4. 

Table 3. The instances of M13 and M4 with node 9 participating. 

M13 M4 

The nodes Number The nodes Number 

1, 3, 9 3 1, 3, 9 2 

9, 31, 34 0 9, 31, 34 3 

9, 31, 33 0 9, 31, 33 3 

9, 33 ,34 1 9, 33 ,34 3 

4.2. Experiments on some real networks 

Select three networks in The Koblenz network collection [24]. The information of networks is as 

follows: 

(1) Seventh graders network: This directed weighted network contains ratings of closeness between 

students at a school in Victoria. Students were asked to nominate their favorite classmates for three 

different activities. In the network, node represents students; If student A chooses student B to 

participate in an activity, there is an edge from A to B. The weights show how often this happens. 

(2) Highschool network: This directed weighted network includes friendships between boys at a small 

high school in Illinois. A node represents a boy, boy A chooses B as his friend, then there is an edge 

from A to B. The weights show how often this happens. 

(3) Caenorhabditis elegans (neural) network: This is a weighted network representing the neural 

network of Caenorhabditis elegans. In this version, the edges of the network are bidirectional, allows 

no multiple edges, and the given edge weights are the sum of the original edge weights. 

Calculate the number of various instances of motifs in these networks. Table 3 gives some basic 

information about those networks and the motifs that whose instances appear relatively more often and 

the number of motif instances in the network. Meanwhile, the frequencies of all motif instances in the 

networks are shown in Figure 7. 

To test the clustering effect of WMCA, the MCA method is selected for comparison. The motifs 

with more instances that appear in the network are selected as the motifs of interest to cluster the 

network. When using the MCA method, the networks are regarded as directed unweighted networks. 

In the non-weighted versions of these networks, the motifs M3, M6 and M11 are selected as the motifs 

of interest for seventh graders network, the selections of motifs for the other networks are shown in 

Table 4. For the WMCA method, the selections of motifs for the networks are shown in Table 4. 
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Figure 7. The frequencies of all motif instances in the networks. 

Table 4. Basic information about the networks. 

Network Size Number of edges Maximum edge weight Motifs 

Seventh graders 29 376 3 M8(464), M11(829), M12(471) 

Highschool 70 366 2 M9(324), M10(328), M12(427) 

Caenorhabditis elegans 

(neural) 

297 4296 72 M9(9111), M10(8138), M11(17884), 

M12(18224), M13(11496) 

WMCA and MCA method are applied to these networks respectively, and the common internal 

clustering evaluation indexes: Silhouette Coefficient (SC) [21] and Davies-Bouldin index (DBI) [22] 

are selected to evaluate the effect. SC ranges between −1 and 1, where a higher SC refers to a model 

with more coherent clusters. And the smaller the value of DBI, the better the clustering effect. Their 

formats are as follows: 

𝑆𝐶 =
1

𝑛
∑ 𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖),𝑏(𝑖)}
𝑛
𝑖=1 , (3) 

𝐷𝐵𝐼 =
1

𝐾
∑ 𝑚𝑎𝑥

𝑢≠𝑣
(
𝑠𝑢+𝑠𝑣

𝑑𝑢𝑣
)𝐾

𝑢,𝑣=1 , (4)  

where 𝑛  is the number of nodes, 𝑎(𝑖)  is the cluster cohesion which refers to the average distance 

between the node 𝑖 and all other nodes within the same cluster, and 𝑏(𝑖) is the cluster separation which 

refers to the average distance between the node 𝑖 and all other nodes in the nearest cluster. And 𝐾 is 

the number of clusters, 𝑠𝑢 and 𝑠𝑣 respectively represent intra-cluster dispersions for cluster 𝑢 and 𝑣, 

the average distance between each node within the cluster and its centroid. 𝑑𝑢𝑣  is the distance between 

is the distance between the centroid of cluster 𝑢 and 𝑣. 

Select the number of clusters within a certain range according to the number of network nodes. 

Under these number of clusters, the effect of two clusters is assessed by two evaluation metrics, 

respectively. The number of classifications 𝐾 and the corresponding value of two clustering evaluation 
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indexes are shown in Figure 8. Figure 8(a),(b),(c) correspond to the cluster evaluation values of the 

above three networks, respectively. On the whole, the SC value of WMCA is larger than that of MCA 

method, especially when the number of clusters gets bigger and bigger, and the DBI values of WMCA 

are generally smaller than those of the MCA method. Therefore, the clustering effect of the WMCA 

method is better than that of the MCA method. 

 

Figure 8. The number of different classifications and their corresponding SC and DBI value. 

5. Conclusions 

Based on matrix multiplication and Hadamard product of matrices, this paper supplements the 

matrix expressions of motif adjacency matrix in directed unweighted networks. The central 

computational kernel in these computations is 𝑋𝑌 ∘ 𝑍. Then, through the relationship between the 

corresponding adjacency matrix of the networks, the directed weighted networks can be transformed 

into directed unweighted multilayer networks. The transformation of weighted networks in this paper 

is suitable for networks with integer weights. If the weights are not integers, the weights may need to 

be processed. Thus, the motif adjacency matrix of the network can be obtained, and the method of 

spectral clustering can be applied.  

The advantages of the methods proposed in this paper are as follows: firstly, it provides a 

convenient method to deal with the weight of the network, which will be helpful to the research of 

other weighted networks; secondly, the clustering method is applicable to both weighted and 

unweighted networks, and one can select one or more motifs of interest to divide the network; finally, 

it is very convenient to implement the method of obtaining the expression of motif adjacency matrix 

and other algorithms based on motif adjacency matrix for medium scale networks. When the networks 

are large and sparse, these computations become slower than standard fast triangle enumeration 

algorithms, the parallel algorithm of sparse matrix product can improve the efficiency of 
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calculation [25]. According to the structure of the motifs, the expression of the motif adjacency matrix 

based on matrix representation can also be extended to the cases of four-node motifs and higher order. 

Overall, the complexity of the WMCA algorithm is governed by the mapping of weighted 

networks, the computations of the motif adjacency matrix 𝑊𝑀 , an eigenvector, and the sweep cut 

procedure. When mapping a weighted network, it is necessary to traverse 𝑛 × 𝑛  elements of the 

adjacency matrix, whose time complexity is 𝑂(𝑛2) in theory. For forming a motif adjacency matrix, 

suppose 𝑋𝑛×𝑛, 𝑌𝑛×𝑛, 𝑍𝑛×𝑛 , the time complexity of matrix multiplication is 𝑂(𝑛3). In theory, the time 

complexity of the method shown in Table 1 is 𝑂(𝑛3). And the time complexity can be optimized to 

𝑂(𝑛2.376) [26] through the optimization of matrix operations. The complexity of the remaining steps 

is consistent with the method proposed by Benson et al, which is 𝑂 (𝑛
3

2). 

The method (WMCA) in this paper is to cluster nodes based on the participation of nodes in 

forming the motif, rather than the direct links between nodes. In this paper, the directed weighted 

network is decomposed into a multilayer network composed of directed unweighted networks. And it 

has been proved in the supporting materials of Benson et al. [12] that the motif-based spectral 

clustering of directed unweighted networks can be converted into the spectral clustering problem of 

undirected weighted networks corresponding to the motif-based adjacency matrix, and the motif 

adjacency matrix of multilayer networks is the sum of the motif adjacency matrix of each layer network. 

Therefore, the motif-based clustering of directed weighted network can also be solved by the spectral 

clustering method of undirected weighted network corresponding to the motif-based adjacency matrix. 

In essence, the methods that take the conductivity of the matrix (graph) as the optimization objective 

can adopt the hierarchical processing method proposed in this paper for the directed weighted network 

to carry out motif-based clustering. Sieranoja et al. [27] introduce two new algorithms K-algorithm 

and M-algorithm, they are adaptations of the k-means algorithm for graph clustering. The method is 

applicable to undirected networks. When the direction of the network needs to be considered, the 

undirected weighted network based on the motif adjacency matrix of network motifs may be helpful. 

While a certain kind of higher-order structure is being considered in networks, some lower-order links 

are being ignored. In the future research, the two may be combined to consider. And when there is 

more than one important motif of the network, it may be worth studying which one or several motifs 

have the best clustering effect. 
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Supplementary 

(1) The Matlab algorithm “W = UWMA (A, motif)” to form the expression of the motif adjacency 

matrix corresponding to the motif M8-M13 is shown in Figure 1. Referring to the method 

“W=MotifAdjacency (A, motif)” of Benson et al. [12] (http://snap.stanford.edu/higher-order/), Matlab 

algorithm, “W = UWMA (A, motif)”, that can form the expressions of motif adjacency matrix for all 

motifs can be given. Figure 1 also shows the algorithm “W = WMA (A, motif)” that forming the motif 

adjacency matrix for the directed weighted network. 

(2) In a directed weighted network, mapping 𝜙(⋅) maps the network to a multilayer network. Let 

𝐺𝑀  be the graph corresponding to the motif adjacency matrix, and 𝐺𝑙, 𝑊𝑀
𝑙 = (𝑤𝑖𝑗

𝑙 )
𝑛×𝑛

, 𝐷𝑙 = (𝑑𝑖𝑖
𝑙 )

𝑛×𝑛
 

and 𝐺𝑀
𝑙  respectively represent the network graph, the motif adjacency matrix, the degree matrix of the 

motif adjacency matrix and the graph corresponding to the motif adjacency matrix of the l-layer 

network. Let |𝛽| be the number nodes that make up the motif, and when the number of nodes that make  

up the motif is 3, |𝛽|=3. 

Proposition 1: Consider the motif M, after the weighted network is mapped to the multi-layer 

network, the motif-based cuts and volumes of the multi-layer network are respectively equal to the sum 

of the motif-based cuts and volumes of each layer network, i.e (1) 𝑐𝑢𝑡 (𝐺𝑀 )𝑆, 𝑆̄ = ∑ 𝑐𝑢𝑡(𝐺𝑀
𝑙 )𝑆𝑙 , 𝑆̄ , (2) 

𝑣𝑜𝑙(𝐺𝑀 )𝑆 = ∑ 𝑣𝑜𝑙(𝐺𝑀
𝑙 )𝑆𝑙 . 

Proof. (1) Known from the paper [12] that: 𝑐𝑢𝑡𝑀(𝐺𝑀
𝑙 )𝑆, 𝑆̄ = ∑ 𝑤𝑖𝑗

𝑙
𝑖∈𝑆,𝑗∈𝑆 , and𝑐𝑢𝑡 (𝐺𝑀 )𝑆, 𝑆̄ = ∑ 𝑤𝑖𝑗

𝑀
𝑖∈𝑆,𝑗∈𝑆 . 

Then ∑ 𝑐𝑢𝑡𝑀𝑙=1 (𝐺𝑀
𝑙 )𝑆, 𝑆 = ∑ ∑ 𝑤𝑖𝑗

𝑙
𝑖∈𝑆,𝑗∈𝑆𝑙=1 , and 𝑐𝑢𝑡(∑𝐺𝑀

𝑙 )𝑆, 𝑆 = ∑ 𝑤𝑖𝑗
𝑀

𝑖∈𝑆,𝑗∈𝑆 . 

And ∑ 𝑊𝑀
𝑙

𝑙 = 𝑊𝑀 , thus 𝑐𝑢𝑡(𝐺𝑀)𝑆, 𝑆 = ∑ 𝑐𝑢𝑡(𝐺𝑀
𝑙 )𝑆𝑙 , 𝑆. 

(2) It is known that [12]: 𝑣𝑜𝑙(𝐺𝑀
𝑙 )𝑆 = ∑ 𝑑𝑖𝑖

𝑙
𝑖∈𝑆 . 
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Then ∑ 𝑣𝑜𝑙𝑀(𝐺𝑀
𝑙 )𝑙 𝑆 = ∑ ∑ 𝑑𝑖𝑖

𝑙
𝑖∈𝑆𝑙 = ∑ ∑ ∑ 𝑤𝑖𝑗

𝑙𝑛
𝑗=1𝑖∈𝑆𝑙 , and 𝑣𝑜𝑙(𝐺𝑀)𝑆 = ∑ ∑ 𝑤𝑖𝑗

𝑀𝑛
𝑗=1𝑖∈𝑆 . 

And ∑ 𝑊𝑀
𝑙

𝑙 = 𝑊𝑀 , thus ∑ 𝑣𝑜𝑙(𝐺𝑀
𝑙 )𝑆𝑙 = 𝑣𝑜𝑙(𝐺𝑀)𝑆. 

 

Figure 1. The method of obtaining motif adjacency matrix by Matlab. 
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Proposition 2: In the multi-layer network, consider the three-node motifs, and the conductance 

of the directed weighted network is equivalent to the motif conductance of the network corresponding 

to the motif adjacency matrix, i.e 𝜑(𝐺)𝑆 = 𝜑𝑀
(𝐺)𝑆. 

Proof. Known from the paper [12] that 𝑣𝑜𝑙𝑀(𝐺𝑙 )𝑆 =
1

|𝛽|−1
𝑣𝑜𝑙(𝐺𝑀

𝑙 )𝑆, and𝑐𝑢𝑡𝑀(𝐺)𝑆, 𝑆̄ =
1

2
𝑐𝑢𝑡(𝐺𝑀 )𝑆, 𝑆̄.  

Then 𝑣𝑜𝑙𝑀(𝐺
𝑙)𝑆 =

1

|𝛽|−1
𝑣𝑜𝑙(𝐺𝑀

𝑙 )𝑆, 𝑐𝑢𝑡𝑀(𝐺
𝑙)𝑆, 𝑆 =

1

2
𝑐𝑢𝑡(𝐺𝑀

𝑙 )𝑆, 𝑆 . 

From Proposition 1 know: 𝑐𝑢𝑡𝑀(𝐺)𝑆, 𝑆 = ∑ 𝑐𝑢𝑡𝑀𝑙 (𝐺𝑙)𝑆, 𝑆, and 𝑣𝑜𝑙𝑀(𝐺)𝑆 = ∑ 𝑣𝑜𝑙𝑀𝑙 (𝐺𝑙)𝑆.  

Then 𝑐𝑢𝑡𝑀(𝐺)𝑆, 𝑆 = ∑ 𝑐𝑢𝑡𝑀𝑙 (𝐺𝑙)𝑆, 𝑆 =
1

2
∑ 𝑐𝑢𝑡(𝐺𝑀

𝑙 )𝑙 𝑆, 𝑆 =
1

2
𝑐𝑢𝑡(𝐺𝑀)𝑆, 𝑆, 

and 𝑣𝑜𝑙𝑀(𝐺)𝑆 = ∑ 𝑣𝑜𝑙𝑀𝑙=1 (𝐺𝑙)𝑆 =
1

|𝛽|−1
∑ 𝑣𝑜𝑙(𝐺𝑀

𝑙 )𝑙=1 𝑆 =
1

|𝛽|−1
𝑣𝑜𝑙(𝐺𝑀)𝑆.  

When |𝛽| = 3,  

( )
( )

( ) ( )

( )

( ) ( )( )
( )

1
,

2
1 1

min ,
2 2
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min ,

M

M

M M M
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G S

vol G S vol G S
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G S




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 
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 

=

=
.  

The proof is completed. 
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