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1. Introduction

Stochastic differential equations (SDEs) are used to describe phenomena in the context of natural
science and engineering. To consider models of phenomena whose future states depend not only on the
present states but also on the past states, stochastic differential delay equations (SDDEs) are used. For
example, we refer to [1], in which the delay market model is studied. The study of SDDEs was started
in a previous paper [2], in which Ito and Nisio considered SDEs that depend on infinite past processes.
Following the paper, many properties of SDDEs have been discovered. Refer to the paper by Ivanov et
al. [3] for a survey.

Because solutions of SDDEs are influenced by past events, they do not have Markov properties.
This makes representations of solutions complicated; therefore, approximate solutions of SDDEs have
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been studied.
In [4], the strong discrete time approximation of an SDDE with a single constant time delay

is studied. Under the global Lipschitz condition, the explicit solutions for linear stochastic delay
equations are given. The global Lipschitz condition has been relaxed to the local Lipschitz condition
in [5] and [6]. However, studies of SDDEs with a single constant time delay are still ongoing under the
global Lipschitz condition (cf. [7] and [8]).

As mentioned in [9], when we consider approximate solutions of SDEs, it is important to know the
error rate of convergence of approximate solutions to the exact solutions. In [10] and [11], Kanagawa
obtained the rate of convergence of Euler–Maruyama approximate solutions of SDEs in the L2-mean
and Lp-mean for some p ≥ 2, respectively. In [12], we stated the rate of convergence in the L2-mean
for SDDEs with a single delay function. In [13], we studied the cases of SDDEs with multiple delay
functions and stated the rate of convergence in the L2-mean. However, in [12] and [13], the results
were given without detail of proof.

The Euler–Maruyama approximation scheme for SDEs is implemented by a step function, which
is a discretization of Brownian motion B(t). The random increments are given by ∆Bn = B(tn) −
B(tn−1), n = 1, 2, . . ., and the values provided by pseudo-random variables. Brownian motion, however,
moves the time interval [tn−1, tn]. With the awareness of such issues, Kanagawa proposed a method
of confidence interval estimations to predict the exact solutions in [14]. His method is supported
by stochastic analysis ([10] and [11]) and Chebyshev’s inequality. Through confidence interval
estimations, we can expect sample paths of solutions of SDEs in each time interval (see Figure 6
in [9] and [15]). We remark that it is not possible to obtain confidence intervals by generating many
trajectories using simulation studies and measuring the results, because we cannot obtain information
on the behavior of {B(t), t ∈ (tn−1, tn)}. Refer to Chapter 11 in [16], [9], [17] and [18] for details on
simulation studies for SDEs. In the case of SDDEs, the confidence interval estimations for the Euler–
Maruyama approximate solutions were studied in [12] and [13] only for the special case of SDDEs,
which have no drift terms following [14] and [15].

This paper is a continuation of our previous works [12] and [13]. In this paper, we consider SDDEs
under the global Lipschitz condition containing multiple delay functions. In this sense, the model
considered in this paper is an extension of those in [4], [7] and [8]. The purpose of this paper is two-
fold. The first is to state a convergence theorem in the Lp-mean for some p ≥ 2 following the method
by Kanagawa ([11]). We remark that the convergence theorem showed in this paper includes the results
in [12] and [13]. The second is to present the confidence interval estimations for the general case of
SDDEs, which have diffusion terms and drift terms.

This paper is organized as follows. In the following section, we provide a setting of the SDDE
and its Euler–Maruyama approximation scheme. After that we state our main theorem, i.e., the rate of
convergence in the Lp-mean for some p ≥ 2. In Section 3, we provide confidence interval estimations
for the Euler–Maruyama approximate solutions of SDDEs for the general case and the special case. In
Section 4, we present numerical examples of confidence interval estimations provided in Section 3. In
Section 5, we provide proofs for the general case of SDDEs. We also provide the proofs for the special
case of SDDEs.
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2. Setting of SDDE and its solution

2.1. Setting of SDDE

Let (Ω,F , P) be a complete probability space. On the space, we provide a filtration {Ft}t≥0 that
satisfies the usual conditions; that is, it is right continuous and F0 contains all P-null sets. We denote
such a space by (Ω,F , P;Ft). Let B(t) = t(B1(t), . . . , Bm(t)) be an m-dimensional standard Brownian
motion on (Ω,F , P;Ft). Let τ > 0 and C([−τ, 0];Rn) denotes the space of continuous functions ξ :
[−τ, 0] → Rn with norms generated by sup−τ≤t≤0 |ξ(t)|. Additionally, CFt([a, b];Rn) denotes the family
of Ft-measurable C([a, b];Rn)-valued random variables.

We next provide a setting of an SDDE. We first introduce delay functions as follows:
(D) (i) Let δi(t) be a Borel measurable function such that

−τ ≤ δi(t) ≤ t for i = 1, . . . , `. (2.1)

(ii) For each δi, we assume that

|δi(t) − δi(s)| ≤ ρ|t − s|, s, t ≥ 0 for some positive constant ρ. (2.2)

Initial data are given by information for t ≤ 0, which is denoted by {ξ(t),−τ ≤ t ≤ 0} ∈
CF0([−τ, 0];Rn). For ξ, we assume the following:

(P) (i) For some p ≥ 2, there exists K0 < ∞ such that

sup
−τ≤t≤0

E[|ξ(t)|p] = K0. (2.3)

(ii) For the same p in (2.3), there exist K1 > 0 and γ ∈ (0, 1] such that

E[|ξ(t) − ξ(s)|p] ≤ K1(t − s)γ, −τ ≤ s < t ≤ 0. (2.4)

Let f (x0, . . . , x`) and g(x0, . . . , x`) be B(Rn) ⊗ B(Rn×`)-measurable functions with values in Rn and
Rn×m, respectively. Let T be a positive constant. We consider the following n-dimensional SDDE:

dX(t) = f (X(t), . . . , X(δ`(t)))dt + g(X(t), . . . , X(δ`(t)))dB(t), 0 ≤ t ≤ T,

X(t) = ξ(t), −τ ≤ t ≤ 0. (2.5)

For the functions f and g, we assume the following:
(H) For any x0, . . . , x`, x0, . . . , x` ∈ Rn, there exists K2 > 0 such that

| f (x0, . . . , x`) − f (x0, . . . , x`)|
2
∨ |g(x0, . . . , x`) − g(x0, . . . , x`)|2

≤K2(|x0 − x0|
2 + · · · + |x` − x`|2), (2.6)

where a ∨ b := max{a, b}.
We remark that (H) implies that

| f (x0, . . . , x`)|2 ∨ |g(x0, . . . , x`)|2 ≤K(1 + |x0|
2 + · · · + |x`|2), (2.7)

where

K := 2(K2 ∨ | f (0, . . . , 0)|2 ∨ |g(0, . . . , 0)|2). (2.8)
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2.2. Euler–Maruyama approximation

We next explain the Euler–Maruyama approximation scheme for the SDDE (2.5). We set a time
step ∆ with an integer N such that

∆ := τ/N ≤
1

ρ + 1
. (2.9)

Using the time step, we provide a discrete approximate solution of the SDDE (2.5) by

y((k + 1)∆) =y(k∆) + f
(
y(k∆), . . . , y(I(`)

k∆∆)
)
∆ + g

(
y(k∆), . . . , y(I(`)

k∆∆)
)
∆Bk,

k = 0, 1, . . . ,N − 1,
y(t) =ξ(t), −τ ≤ t ≤ 0, (2.10)

where ∆Bk = B((k + 1)∆) − B(k∆) and I(i)
k∆ is the integer part of δi(k∆)/∆ for i = 1, 2, . . . , `.

We consider a continuous approximate solution. Let 1S (t) denote the indicator function of a subset
of time interval S . We set

z0(t) :=
∞∑

k=0

1[k∆,(k+1)∆)(t)y(k∆),

zi(t) :=
∞∑

k=0

1[k∆,(k+1)∆)(t)y(I(i)
k∆∆), i = 1, . . . , `, (2.11)

and define a continuous Euler–Maruyama approximate solution:

y(t) =


ξ(t), −τ ≤ t ≤ 0,

ξ(0) +

∫ t

0
f (z0(s), . . . , z`(s))ds +

∫ t

0
g(z0(s), . . . , z`(s))dB(s), 0 ≤ t ≤ T.

We remark that for each k, the discrete solution ȳ(k∆) and the continuous solution y(k∆) are the same.
Then, we obtain the rate of convergence in the Lp-mean as follows.

Theorem 2.1. For the SDE with multiple delays (2.5), we assume (D), (P) and (H). Then, for p ≥ 2 in
(P) there exist constants C1 and C2 such that

E
[

sup
0≤t≤T

|X(t) − y(t)|p
]

≤4p−1K p/2
2 T p(1 + cp)(` + 2)p/2−1(C1 + `C2) ∆γ · exp

[
4p−1K p/2

2 T p(1 + cp)(` + 2)p/2−1(` + 1)
]
, (2.12)

where cp =
pp(p+1)/2

2p/2(p−1)p(p−1)/2 .

Remark 2.1. We remark that rates of convergence of approximate solutions of SDEs in the Lp-mean
are given by the strong order to the power p/2 (e.g. Theorem 1 in [11]). For SDDEs, the rates of
convergence are influenced by not only p but also the Hölder continuous of initial data γ.

We provide the proof of Theorem 2.1 in the final section.
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3. Confidence interval estimations for approximate solutions

In this section, we consider confidence interval estimations for approximate solutions. Theorem 2.1
implies an error estimation for Euler-Maruyama approximate solutions of diffusion processes governed
by SDEs with multiple delays. The inequality (2.12) tells us

lim
∆→0

E
[

sup
0≤t≤T

|X(t) − y(t)|2
]

= 0.

The definition of time step (2.9) and Chebyshev’s inequality imply that for any ε > 0,

P
{

sup
0≤t≤T

|X(t) − y(t)| ≤ ε
}
≥1 − E

[
sup

0≤t≤T
|X(t) − y(t)|2

]
/ε2

≥1 − O(N−1)/ε2 as N → ∞.

This inequality provides only the order of the hazard rate; hence, more information is required to obtain
a confidence interval estimation. In this section, we present refined estimations for a general case and
a special case.

3.1. General case

Using the inequality (2.12) in Theorem 2.1 with p = 2, we obtain the following confidence interval
estimation.

Theorem 3.1. For the SDE with multiple delays (2.5), we assume (D), (P) and (H). Then, for any
ε > 0

P
[

sup
0≤t≤T

|X(t) − y(t)| ≤ ε
]
≥1 −

20
ε2 K2T 2(C1 + `C2)e20K2T 2(`+1)∆γ. (3.1)

Proof. Theorem 2.1 and Chebyshev’s inequality imply that

P
{

sup
0≤t≤T

|X(t) − y(t)| > ε
}
<

1
ε2 E

[
sup

0≤t≤T
|X(t) − y(t)|2

]
<

20
ε2 K2T 2(C1 + `C2)e20K2T 2(`+1)∆γ,

which proves Theorem 3.1. �

3.2. Special case

The expressions of constants C1 and C2 in Theorems 2.1 are complicated, and they are given in
(5.5) and (5.9), respectively (see also (5.7) in Lemma 5.3). For SDDEs which have no drift terms,
the expressions become simpler. We next consider the special case and provide confidence interval
estimations.

For the case f ≡ 0 in (2.5), the SDDE is given by

dX̃(t) = g
(
X̃(t), . . . , X̃(δ`(t))

)
dB(t), 0 ≤ t ≤ T,
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X̃(t) = ξ(t), −τ ≤ t ≤ 0. (3.2)

ỹ(t) denotes a discreate Euler–Maruyama approximate solution of X̃(t). Then, we obtain the following
confidence interval estimation.

Corollary 3.1. For the SDE with multiple delays (3.2), we assume (D), (P) and (H). Then, there exist
constants C̃1 and C̃2 such that, for any ε > 0

P
[

sup
0≤t≤T

∣∣∣X̃(t) − ỹ(t)
∣∣∣ ≤ ε] ≥ 1 −

8
ε2 K2T (C̃1 + `C̃2)e8K2T (`+1)∆γ, (3.3)

where

C̃1 = K{1 + C̃3(` + 1)}, C̃3 = 2(K0 + KT )e2KT (`+1),

and C̃2 is a constant which is given as follows:
for delay functions δi(t), i = 1, . . . , `,

C̃i
2 =



C̃1(ρ + 1), 0 ≤ I(i)
k∆∆ ≤ δi(t),

C̃1ρ, 0 ≤ δi(t) ≤ I(i)
k∆∆,

2C̃1(ρ + 1) + 2K1(ρ + 1)γ, I(i)
k∆∆ ≤ 0 ≤ δi(t),

2C̃1ρ + 2K1ρ
γ, δi(t) ≤ 0 ≤ I(i)

k∆∆,

K1(ρ + 1)γ, I(i)
k∆∆ ≤ δi(t) ≤ 0 or δi(t) ≤ I(i)

k∆∆ ≤ 0,

(3.4)

and we set

C̃2 := max
i=1,...,`

C̃i
2. (3.5)

4. Numerical examples

4.1. Multi-dimensional SDDE

Example 4.1. Recall that B(t) = t(B1(t), . . . , Bm(t)) is an m-dimensional standard Brownian motion.
Given an n-dimensional vector function f = ( f1, . . . , fn) and an n × m-matrix function g = (gi j), we
consider the following n-dimensional SDDE:

dXl(t) = fl(X(t), . . . , X(δ`(t)))dt +

m∑
j=1

gl j(X(t), . . . , X(δ`(t)))dB j(t), 0 ≤ t ≤ T, (4.1)

which is the l-th component of the n-dimensional SDDE. We assume that Lipschitz’s constant in (2.2)
is given by ρ = 10−1. To apply Theorem 3.1, we give the setting as follows:

Finish time: T = 1;
Time step: ∆ = 10−4;
Uniform boundedness of initial data: K0 = 10−1;
Hölder continuity of initial data: γ = 1,K1 = 10−1;
The constant K2 in (2.6) : K2 = 10−2(n−1).
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In the case of ` = n = 2, we set C2 as given in (5.9) (see also (5.7) in Lemma 5.3). Then, Theorem 3.1
implies that

P
{

sup
0≤t≤1
|X(t) − y(t)| ≤ 1.94 × 10−2

}
≥ 0.9.

Under the same setting as listed above, we present ε’s in (3.1) for other cases of ` and n with the
confidence levels 0.9 and 0.95 in Tables 1 and 2, respectively.

Table 1. Numerical results for n and ` on Example 4.1 with the confidence level 0.9.

n\` 1 2 3 4 5 10
2 1.068 × 10−2 1.944 × 10−2 3.028 × 10−2 4.404 × 10−2 6.156 × 10−2 2.470 × 10−1

3 8.760 × 10−4 1.444 × 10−3 2.038 × 10−3 2.684 × 10−3 3.399 × 10−3 8.314 × 10−3

4 8.742 × 10−5 1.440 × 10−4 2.030 × 10−4 2.671 × 10−4 3.379 × 10−4 8.224 × 10−4

Table 2. Numerical results for n and ` on Example 4.1 with the confidence level 0.95.

n\` 1 2 3 4 5 10
2 1.151 × 10−2 2.749 × 10−2 4.282 × 10−2 6.228 × 10−2 8.706 × 10−2 3.494 × 10−1

3 1.239 × 10−3 2.043 × 10−3 2.882 × 10−3 3.797 × 10−3 4.807 × 10−3 1.176 × 10−2

4 1.236 × 10−4 2.037 × 10−4 2.870 × 10−4 3.778 × 10−4 4.778 × 10−4 1.163 × 10−3

4.2. One-dimensional SDDE

We consider the following SDE with piecewise constant arguments (Example 1 in [19]):

dX(t) = {X(t) + X([t]) + X([t − 1])}dt + {X(t) + X([t − 1])}dB(t), 0 ≤ t ≤ 2,
X(t) = 1, −1 ≤ t ≤ 0.

Since the example above has piecewise constant time delays, the explicit solution is given by

X(t) =



exp
{ t

2
+ B(t)

} (
ξ(0) +

∫ t

0
e−

s
2−B(s)ds +

∫ t

0
e−

s
2−B(s)dB(s)

)
,

t ∈ [0, 1],

exp
{

t − 1
2

+ B(t) − B(1)
} (

X(1) + X(1)
∫ t

1
e−

s−1
2 −{B(s)−B(1)}}ds +

∫ t

0
e−

s−1
2 −{B(s)−B(1)}dB(s)

)
,

t ∈ [1, 2].

In the case of delay functions, the representations of explicit solutions of SDDEs by the stochastic
integral are complicated. In such a case, we consider approximate solutions for SDDEs.

Example 4.2. We consider the following one-dimensional SDDE with two-time delay functions.

dX(t) = {X(t) + X(δ1(t)) + X(δ2(t))}dt + {X(t) + X(δ1(t)) + X(δ2(t))}dB(t), (4.2)
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where Lipschitz’s constant in (2.2) is given by ρ = 10−1. To apply Theorem 3.1, we give the setting as
follows:

Finish time: T = 2;
Time step: ∆ = 10−4;
Uniform boundedness of initial data: K0 = 10−1;
Hölder continuity of initial data: γ = 1,K1 = 10−1;
The constant K2 in (2.6) : K2 = 10−2.

We set C2 in the same manner as that in Example 4.1. Then, Theorem 3.1 implies that

P
{

sup
0≤t≤1
|X(t) − y(t)| ≤ 0.15

}
≥ 0.9.

4.3. Special case

Example 4.3. We consider the SDDE (3.2). To apply Corollary 3.1, we give the setting as follows:
Finish time: T = 1;
Time step: ∆ = 10−4;
Lipschitz constant of the time delay: ρ = 10−1;
Uniform boundedness of initial data: K0 = 10−1;
Hölder continuity of initial data: γ = 1,K1 = 10−1;
The constant K2 in (2.6) : K2 = 10−2(n−1).

Under the conditions above, C̃2 in (3.5) is determined. In the case of ` = n = 2, we obtain that

P
{

sup
0≤t≤1

∣∣∣X̃(t) − ỹ(t)
∣∣∣ ≤ 8.04 × 10−3

}
≥ 0.9.

Under the same setting as listed above, we present ε’s in (3.3) for other cases of ` and n with the
confidence levels 0.9 and 0.95 in Tables 3 and 4, respectively.

Table 3. Numerical results for n and ` on Example 4.3 with the confidence level 0.9.

n\` 1 2 3 4 5 10
2 5.458 × 10−3 8.040 × 10−3 1.041 × 10−2 1.276 × 10−2 1.512 × 10−2 2.961 × 10−2

3 4.797 × 10−4 6.935 × 10−4 8.691 × 10−4 1.027 × 10−3 1.177 × 10−3 1.893 × 10−3

4 4.791 × 10−5 6.925 × 10−5 8.675 × 10−5 1.025 × 10−4 1.174 × 10−4 1.886 × 10−4

Table 4. Numerical results for n and ` on Example 4.3 with the confidence level 0.95.

n\` 1 2 3 4 5 10
2 7.718 × 10−3 1.137 × 10−2 1.472 × 10−2 1.804 × 10−2 2.145 × 10−2 4.187 × 10−2

3 6.784 × 10−4 9.808 × 10−4 1.229 × 10−3 1.453 × 10−3 1.664 × 10−3 2.678 × 10−3

4 6.775 × 10−5 9.794 × 10−5 1.227 × 10−4 1.450 × 10−4 1.660 × 10−4 2.667 × 10−4
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5. Proofs

5.1. Proof of Theorem 2.1.

Lemma 5.1. Under the assumptions (P) (i) and (H),

sup
t∈[−τ,T ]

E[|y(t)|p] ≤ 3p−1 {K0 + C3T } · exp{3p−1C3(` + 1)T }, (5.1)

where

C3 = K p/2(` + 2)p/2−1

T p−1 + T p/2−1
{

p(p − 1)
2

}p/2 . (5.2)

Proof. (i) For the case −τ ≤ t ≤ 0,

E[|y(t)|p] ≤ sup
−τ≤t≤0

E[|ξ(t)|p] = K0.

(ii) For the case 0 ≤ t ≤ T ,

E[|y(t)|p]

=E
[∣∣∣∣∣∣ξ(0) +

∫ t

0
f (z0(s), . . . , z`(s))ds +

∫ t

0
g(z0(s), . . . , z`(s))dB(s)

∣∣∣∣∣∣p
]

≤3p−1
{

E[|ξ(0)|p] + E
[∣∣∣∣∣∣
∫ t

0
f (z0(s), . . . , z`(s))ds

∣∣∣∣∣∣p
]

+ E
[∣∣∣∣∣∣
∫ t

0
g(z0(s), . . . , z`(s))dB(s)

∣∣∣∣∣∣p
]}

=:3p−1(I1 + I2 + I3).

Using Hölder’s inequality and the inequality (2.7), we obtain

I2 ≤tp−1 · E
[∫ t

0
| f (z0(s), . . . , z`(s))|pds

]
≤K p/2tp−1E

[∫ t

0
{1 + |z0(s)|2 + · · · + |z`(s)|2}p/2ds

]
≤K p/2(` + 2)p/2−1tp−1E

[∫ t

0
{1 + |z0(s)|p + · · · + |z`(s)|p}ds

]
.

Using Burkholder–Davis–Gundy’s inequality, we obtain

I3 ≤tp/2−1
{

p(p − 1)
2

}p/2

E
[∫ t

0
|g(z0(s), . . . , z`(s))|pds

]
≤K p/2tp/2−1

{
p(p − 1)

2

}p/2

E
[∫ t

0
{1 + |z0(s)|2 + · · · + |z`(s)|2}p/2ds

]
≤K p/2(` + 2)p/2−1tp/2−1

{
p(p − 1)

2

}p/2

E
[∫ t

0
{1 + |z0(s)|p + · · · + |z`(s)|p}ds

]
.
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Thus,

I2 + I3 ≤ K p/2(` + 2)p/2−1

tp−1 + tp/2−1
{

p(p − 1)
2

}p/2 {t + (` + 1)
∫ t

0
sup
−τ≤u≤s

E[|y(u)|p]ds
}

≤ C3

{
t + (` + 1)

∫ t

0
sup
−τ≤u≤s

E[|y(u)|p]ds
}
.

Using Gronwall’s lemma, we obtain

sup
−τ≤t≤T

E[|y(t)|p] ≤ 3p−1 {K0 + C3T } · exp{3p−1C3(` + 1)T }. �

Following Lemma 5.1, we set

C4 := 3p−1 {K0 + C3T } · exp{3p−1C3(` + 1)T }, (5.3)

which does not depend on ∆.

Lemma 5.2. Under the assumptions (D), (P) (i) and (H), for any t ∈ [0,T ]

E[|y(t) − z0(t)|p] ≤ 2p−1K p/2(` + 2)p/2−1

∆p−1 + ∆p/2−1
{

p(p − 1)
2

}p/2 {1 + C4(` + 1)}∆. (5.4)

Proof. For a fixed t, there exists k such that t ∈ [k∆, (k + 1)∆). We remark that z0(t) = ȳ(k∆). In the
same manner as those for showing Lemma 5.1, we obtain

E[|y(t) − z0(t)|p] = E[|y(t) − ȳ(k∆)|p]

≤E
[∣∣∣∣∣∣
∫ t

k∆
f (z0(s), . . . , z`(s))ds +

∫ t

k∆
g(z0(s), . . . , z`(s))dB(s)

∣∣∣∣∣∣p
]

≤2p−1
{

E
[∣∣∣∣∣∣
∫ t

k∆
f (z0(s), . . . , z`(s))ds

∣∣∣∣∣∣p
]

+ E
[∣∣∣∣∣∣
∫ t

k∆
g(z0(s), . . . , z`(s))dB(s)

∣∣∣∣∣∣p
]}

≤2p−1K p/2(` + 2)p/2−1

∆p−1 + ∆p/2−1
{

p(p − 1)
2

}p/2 E
[∫ t

k∆
{1 + |z0(s)|p + · · · + |z`(s)|p} ds

]
≤2p−1K p/2(` + 2)p/2−1

∆p−1 + ∆p/2−1
{

p(p − 1)
2

}p/2 {1 + C4(` + 1)}∆. �

Following Lemma 5.2, we set

C1 := 2p−1K p/2(` + 2)p/2−1

1 +

{
p(p − 1)

2

}p/2 {1 + C4(` + 1)}, (5.5)

which does not depend on ∆ either.

Lemma 5.3. Under the assumptions (D), (P) and (H), for any t ∈ [0,T ]

E[|y(δi(t)) − zi(t)|p] ≤ Ci
2∆

γ, i = 1, . . . , `, (5.6)
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where Ci
2 is given as follows:

Ci
2 =



2p−1K p/2(` + 2)p/2−1
(
(ρ + 1)p−1 + (ρ + 1)p/2−1

{
p(p−1)

2

}p/2
)
{1 + C4(` + 1)}(ρ + 1),

0 ≤ I(i)
k∆∆ ≤ δi(t),

2p−1K p/2(` + 2)p/2−1
(
ρp−1 + ρp/2−1

{
p(p−1)

2

}p/2
)
{1 + C4(` + 1)}ρ,

0 ≤ δi(t) ≤ I(i)
k∆∆,

2p−1
{
2p−1K p/2(` + 2)p/2−1

(
(ρ + 1)p−1 + (ρ + 1)p/2−1

{
p(p−1)

2

}p/2
)
{1 + C4(` + 1)}(ρ + 1)

+K1(ρ + 1)γ
}
,

I(i)
k∆∆ ≤ 0 ≤ δi(t),

2p−1
{
K1ρ

γ + 2p−1K p/2(` + 2)p/2−1
(
(ρ + 1)p−1 + (ρ + 1)p/2−1

{
p(p−1)

2

}p/2
)
{1 + C4(` + 1)}ρ

}
,

δi(t) ≤ 0 ≤ I(i)
k∆∆,

K1(ρ + 1)γ, I(i)
k∆∆ ≤ δi(t) ≤ 0 or δi(t) ≤ I(i)

k∆∆ ≤ 0.
(5.7)

Proof. (I) Case in which 0 ≤ I(i)
k∆∆ ≤ δi(t):

For a fixed t ∈ [0,T ], there exists k such that t ∈ [k∆, (k + 1)∆). Then,

y(δi(t)) − zi(t) = y(δi(t)) − y(I(i)
k∆∆).

As δi(t) − I(i)
k∆∆ ≤ (ρ + 1)∆,

E[|y(δi(t)) − zi(t)|p]

≤2p−1

E
∣∣∣∣∣∣
∫ δi(t)

I(i)
k∆∆

f (z0(s), . . . , z`(s))ds

∣∣∣∣∣∣p
 + E

∣∣∣∣∣∣
∫ δi(t)

I(i)
k∆∆

g(z0(s), . . . , z`(s))dB(s)

∣∣∣∣∣∣p


≤2p−1K p/2(` + 2)p/2−1

{(ρ + 1)∆}p−1 + {(ρ + 1)∆}p/2−1
{

p(p − 1)
2

}p/2 {1 + C4(` + 1)}(ρ + 1)∆.

This inequality and ∆ < 1 imply a constant Ci
2 for this case.

(II) Case in which 0 ≤ δi(t) ≤ I(i)
k∆∆:

As I(i)
k∆∆ − δi(t) ≤ δi(k∆) − δi(t) ≤ ρ∆,

E[|y(δi(t)) − zi(t)|p]

≤2p−1

E


∣∣∣∣∣∣∣
∫ I(i)

k∆∆

δi(t)
f (z0(s), . . . , z`(s))ds

∣∣∣∣∣∣∣
p + E


∣∣∣∣∣∣∣
∫ I(i)

k∆∆

δi(t)
g(z0(s), . . . , z`(s))dB(s)

∣∣∣∣∣∣∣
p


≤2p−1K p/2(` + 2)p/2−1

(ρ∆)p−1 + (ρ∆)p/2−1
{

p(p − 1)
2

}p/2 {1 + C4(` + 1)}ρ∆.

(III) Case in which I(i)
k∆∆ ≤ 0 ≤ δi(t):
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As δi(t) ≤ δi(t) − I(i)
k∆∆ ≤ (ρ + 1)∆, Lemma 5.2, and (P) (ii) imply that

E[|y(δi(t)) − zi(t)|p]

≤2p−1
{
E

[
|y(δi(t)) − ξ(0)|p

]
+ E[|ξ(0) − ξ(I(i)

k∆∆)|p]
}

≤2p−1
{

2p−1K p/2(` + 2)p/2−1

δi(t)p−1 + δi(t)p/2−1
{

p(p − 1)
2

}p/2 {1 + C4(` + 1)}δi(t)

+ K1(−I(i)
k∆∆)γ

}
≤2p−1

{
2p−1K p/2(` + 2)p/2−1

(ρ + 1)p−1∆p−γ + (ρ + 1)p/2−1∆p/2−γ
{

p(p − 1)
2

}p/2 {1 + C4(` + 1)}(ρ + 1)

+ K1(ρ + 1)γ
}
∆γ.

(IV) Case in which δi(t) ≤ 0 ≤ I(i)
k∆∆:

As I(i)
k∆∆ ≤ I(i)

k∆∆ − δi(t) ≤ δi(k∆) − δi(t) ≤ ρ∆, in the same manner as that in case (III) we obtain

E[|y(δi(t)) − zi(t)|p]

≤2p−1
{
E

[
|y(δi(t)) − ξ(0)|p

]
+ E[|ξ(0) − ξ(I(i)

k∆∆)|p]
}

≤2p−1
{

K1ρ
γ + 2p−1K p/2(` + 2)p/2−1

(ρ + 1)p−1∆p−γ + (ρ + 1)p/2−1∆p/2−γ
{

p(p − 1)
2

}p/2
{1 + C4(` + 1)}ρ

}
∆γ.

(V) Cases in which I(i)
k∆∆ ≤ δi(t) ≤ 0 or δi(t) ≤ I(i)

k∆∆ ≤ 0:
As |δi(t) − I(i)

k∆∆| ≤ (ρ + 1)∆,

E[|y(δi(t)) − zi(t)|p] ≤E
[∣∣∣ξ(δi(t)) − ξ(I

(i)
k∆∆)

∣∣∣p]
≤K1

∣∣∣δi(t) − I(i)
k∆∆

∣∣∣γ
≤K1(ρ + 1)γ∆γ. � (5.8)

Following Lemma 5.3, we set

C2 := max
i=1,...,`

Ci
2. (5.9)

Proof of Theorem 2.1. For any t1 ≤ T ,

E[ sup
0≤t≤t1

|X(t) − y(t)|p]

=E
[

sup
0≤t≤t1

∣∣∣∣∣∣
∫ t

0
{ f (X(s), . . . , X(δ`(s))) − f (z0(s), . . . , z`(s))} ds

+

∫ t

0
{g (X(s), . . . , X(δ`(s))) − g (z0(s), . . . , z`(s))} dB(s)

∣∣∣∣∣∣p
]
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≤2p−1E
[

sup
0≤t≤t1

∣∣∣∣∣∣
∫ t

0
{ f (X(s), . . . , X(δl(s))) − f (z0(s), . . . , z`(s))} ds

∣∣∣∣∣∣p
]

+ 2p−1E
[

sup
0≤t≤t1

∣∣∣∣∣∣
∫ t

0
{g (X(s), . . . , X(δ`(s))) − g (z0(s), . . . , z`(s))} dB(s)

∣∣∣∣∣∣p
]

=:2p−1(I4 + I5). (5.10)

Using Hölder’s inequality, for any t1 ≤ T we have

I4 ≤T p−1E

∣∣∣∣∣∣
∫ t1

0
{ f (X(s), . . . , X(δ`(s))) − f (z0(s), . . . , z`(s))}2 ds

∣∣∣∣∣∣p/2
 . (5.11)

Using Burkholder–Davis–Gundy’s inequality, for any ti ≤ T we have

I5 ≤T p−1cpE

∣∣∣∣∣∣
∫ t1

0
{g (X(s), . . . , X(δ`(s))) − g (z0(s), . . . , z`(s))}2 ds

∣∣∣∣∣∣p/2
 , (5.12)

where cp =
pp(p+1)/2

2p/2(p−1)p(p−1)/2 . The inequalities (5.11) and (5.12), and the assumption (H) imply that

(the right-hand side of (5.10))

≤2p−1K p/2
2 T p−1(1 + cp)(` + 2)p/2−1 · E

∫ t1

0

|X(s) − z0(s)|p +
∑̀
i=1

|X(δi(s)) − zi(s)|p
 ds


≤22(p−1)K p/2

2 T p−1(1 + cp)(` + 2)p/2−1

·

E

∫ t1

0

|X(s) − y(s)|p +
∑̀
i=1

|X(δi(s)) − y(δi(s))|p
 ds


+E

∫ t1

0

|y(s) − z0(s)|p +
∑̀
i=1

|y(δi(s)) − zi(s)|p
 ds




≤4p−1K p/2
2 T p−1(1 + cp)(` + 2)p/2−1

{
(` + 1)

∫ t1

0
E

[
sup

0≤r≤s
|X(r) − y(r)|p

]
ds

+T

E
[

sup
0≤s≤T

|y(s) − z0(s)|p
]

+
∑̀
i=1

E
[

sup
0≤s≤T

|y(δi(s)) − zi(s)|p
]
 . (5.13)

Lemma 5.2, Lemma 5.3 and Gronwall’s lemma imply that

(the right-hand side of (5.13))

≤4p−1K p/2
2 T p−1(1 + cp)(` + 2)p/2−1

{
(` + 1)

∫ t1

0
E

[
sup

0≤r≤s
|X(r) − y(r)|2

]
ds + T (C1∆ + `C2∆

γ)
}

≤4p−1K p/2
2 T p(1 + cp)(` + 2)p/2−1(C1∆ + `C2∆

γ) · exp
[
4p−1K p/2

2 T p(1 + cp)(` + 2)p/2−1(` + 1)
]

≤4p−1K p/2
2 T p(1 + cp)(` + 2)p/2−1(C1 + `C2) · exp

[
4p−1K p/2

2 T p(1 + cp)(` + 2)p/2−1(` + 1)
]
∆γ. �
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5.2. Proof of Corollary 3.1.

We prove Corollary 3.1 in the following steps:
1st step (corresponding to Lemma 5.1)
For the case −τ ≤ t ≤ 0, we obtain that E[|̃y(t)|2] ≤ K0.
For the case 0 ≤ t ≤ T , we obtain that

E[|̃y(t)|2] =E

∣∣∣∣∣∣ξ(0) +

∫ t

0
g(z0(s), z1(s), . . . , zl(s))dB(s)

∣∣∣∣∣∣2


≤2
{

E[|ξ(0)|2] + E
[∫ t

0
|g(z0(s), z1(s), . . . , zl(s)|2dB(s)

]}
.

This inequality and Gronwall’s lemma imply that

sup
−τ≤t≤T

E[|̃y(t)|2] ≤ 2(K0 + KT )e2KT (`+1) = C̃3. (5.14)

2nd step (corresponding to Lemma 5.2)
We consider the approximate solution of SDDE (2.10) with f ≡ 0 and use the same notation

zi(t), i = 0, 1, . . . , ` in (2.11) in the following step. We obtain

E[|̃y(t) − z0(t)|2] ≤E

∣∣∣∣∣∣
∫ t

k∆
g(z0(s), z1(s), . . . , zl(s))dB(s)

∣∣∣∣∣∣2


≤KE
[∫ t

k∆
{1 + |z0(s)|p + · · · + |z`(s)|p} ds

]
≤K

{
1 + C̃3(` + 1)

}
∆ = C̃1∆. (5.15)

3rd step (corresponding to Lemma 5.3)
In the fifth case in (3.4), we can show that the constant C̃i

2 coincides with Ci
2 by using the inequality

(5.8) with p = 2.
We next provide the proof for the third case in (3.4). As δi(t) ≤ δi(t) − I(i)

k∆∆ ≤ (ρ + 1)∆, we have

E
[
|̃y(δi(t)) − zi(t)|2

]
≤2

{
E

[
|̃y(δi(t)) − ξ(0)|2

]
+ E

[∣∣∣∣ξ(0) − ξ
(
I(i)
k∆∆

)∣∣∣∣2]}
=:2{I6 + I7}. (5.16)

Using the estimation (5.15) with t = 0, we have

I6 ≤ C̃1(ρ + 1)∆. (5.17)

Using the estimate (5.8), we have

I7 ≤ K1(ρ + 1)γ∆γ. (5.18)

Then, (5.17) and (5.18) imply that

(Right-hand side of (5.16)) ≤ 2
{
C̃1(ρ + 1) + K1(ρ + 1)γ

}
∆γ.
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For the other three cases in (3.4), proofs are given in the same manner as those for showing the
cases (I), (II) and (IV) in the proof of Lemma 5.3.

We set C̃2 as (3.5). Then, for any t ∈ [0,T ] we have

E[|̃y(δi(t)) − zi(t)|2] ≤ C̃2∆
γ. (5.19)

4th step
In the case of f ≡ 0, we obtain that

E
[

sup
0≤t≤t1

∣∣∣X̃(t) − ỹ(t)
∣∣∣2]

≤4E
[∫ t1

0

∣∣∣∣g (
X̃(s), . . . , X̃(δ`(s))

)
− g (z0(s), . . . , z`(s))

∣∣∣∣2 ds
]

≤4K2E

∫ t1

0

∣∣∣X̃(s) − z0(s)
∣∣∣2 +

∑̀
i=1

∣∣∣X̃(δi(s)) − zi(s)
∣∣∣2 ds


≤8K2E

∫ t1

0

∣∣∣X̃(s) − ỹ(s)
∣∣∣2 +

∑̀
i=1

∣∣∣X̃(δi(s)) − ỹ(δi(t))
∣∣∣2 ds


+ 8K2E

∫ t1

0

|̃y(s) − z0(s)|2 +
∑̀
i=1

|̃y(δi(t)) − zi(s)|2
 ds


=:8K2(I8 + I9). (5.20)

For I8, we have

I8 ≤(` + 1)
∫ t1

0
E

[
sup

0≤r≤s

∣∣∣X̃(r) − ỹ(s)
∣∣∣2] ds. (5.21)

Using (5.14) and (5.19), we have

I9 ≤T

E
[

sup
0≤s≤T

|̃y(s) − z0(s)|2
]

+
∑̀
i=1

E
[

sup
0≤s≤T

|̃y(δi(t)) − zi(s)|2
]

≤T
(
C̃1∆ + `C̃2∆

γ
)
. (5.22)

(5.21), (5.22) and Gronwall’s lemma imply that

E
[

sup
0≤t≤T

|X̃(t) − ỹ(t)|2
]
≤ 8K2T

(
C̃1 + `C̃2

)
e8K2T (`+1)∆γ. (5.23)

This inequality and Chebyshev’s inequality imply (3.3). �

6. Conclusions

In this article, we consider the problem of Euler–Maruyama approximate solutions of SDEs with
multiple delay functions. The main result of this article is Theorem 2.1. In the theorem, we obtain
the rate of convergence of approximate solutions to the exact solutions. We have applied the results
to obtain confidence interval estimations for the approximate solutions. This information improves the
understanding of gaps between exact solutions of SDEs with multiple delays by applying stochastic
analysis and numerical solutions through simulation studies.
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