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Abstract: In this paper, a novel treatment for fuzzy continuous static games (FCSGs) is introduced.
This treatment is based on the fact that, as well as having a fuzzy number, the fuzziness is applied
to the control vectors to deal with high vagueness and imprecision in a continuous static game. The
concept of the α-level set used for converting the FCSGs to a deterministic problem α-FCSGs. An
active-set strategy is used with Newton’s interior point method and a trust-region strategy to insure
global convergence for deterministic α-FCSGs problems from any starting point. A reduced Hessian
technique is used to overcome the difficulty of having an infeasible trust-region subproblem. The
active-set interior-point trust-region algorithm has new features; it is easy to implement and has rapid
convergence. Preliminary numerical results are reported.
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1. Introduction

Game theory has been evolving since 1920 and continues to this day. In 1928, Van Neumann [33]
proved the central theorem of matrix games for the first time. In 1981, Vincent and Grantham [34]
introduced various game formulations. The more general case is achieved assuming that there are
multiple decision-makers, each with their cost criterion. We have now entered the realm of game
theory, with the game taking on a more general form when numerous decision-makers are present. This
generalization introduces the competition concept among system controllers, referred to as “players”,
and the optimization problem under consideration is a “game”. Each player in the game has control
over a subset of the system parameters known as his control vector and attempts to minimize his
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cost function subject to specific constraints. Applications of game theory can be found in engineering,
economics, biology, and various other fields. There are three types of games: matrix games, continuous
static games, and differential games see [2,29]. In this paper, we will consider continuous static games,
in which decision possibilities are not required to be discrete, and costs are also related in a continuous
rather than discrete manner. Because there is no time history involved in the relationship between costs
and decisions, the game is referred to as static and so, a fuzzy treatment of continuous static games is
presented in this paper.

In many branches and fields of study, such as engineering, economics, and others, fuzzy set theory
has evolved in various ways over the last 60 years. Zadeh [37] and Goguen [19] published the first
papers on the theory of fuzzy sets. The fuzzy set theory was developed to solve problems with some
vague and uncertain. Sakawa and Yano [30] proposed an interactive method for solving
multi-objective non-linear programming problems with fuzzy parameters in both the objective
function and constraints. Osman and El-Banna [28] studied the stability of multi-objective nonlinear
programming problems involving fuzzy parameters. Nash equilibrium fuzzy continuous static games
were introduced by El-Banna et al. [8]. A cooperative fuzzy game-theoretic approach to multiple
objective designs was introduced by Dhingra and Rao [4]. Kassem and Ammar [24] also presented a
study of multi-objective fuzzy nonlinear programming problems with fuzzy parameters. Ammar [1]
also studies the stability of multi-objective non-linear programming problems with fuzzy parameters
in both the objectives and constraints. Khalifa and Zeineldin [22] presented an interactive approach to
solving cooperative continuous static games with fuzzy parameters in the objective functions. Khalifa
and Zeineldin [23] also published a novel study of cooperative continuous static games in a fuzzy
environment.

In this paper, We introduce a multi-player fuzzy continuous static game. The cost functions and
constraints in this game both have fuzzy parameters. To deal with high vagueness and imprecision in
a continuous static game, these fuzzy parameters are also applied to the control vectors. The concept
of the α-level set is used to transform the FCSGs into a deterministic problem α-FCSGs. To obtain
an α-Pareto optimal solution to the deterministic problem α-FCSGs, an active-set strategy is used with
Newton’s interior point method and a trust-region technique. This method converges quadratically
to α-Pareto optimal solutions from any starting point. For the detailed exposition, the reader review
[10, 16, 25, 26, 35, 36].

A projected Hessian method which is suggested by [3,27] and used by [12,13,16,18], utilizes in this
paper to treat the difficulty of having an infeasible trust-region subproblem. In this method, the trial
step is decomposed into two components and each component is computed by solving a trust-region
unconstrained subproblem.

In this paper, we use the symbol f jk = f j(x̃k), j = 1, · · · , p, hk = h(x̃k), gk = g(x̃k), ` jk = ` j(x̃k, λk),
∇x̃` jk = ∇x̃` j(x̃k, λk), and so on. Finally, We use ‖.‖ to denote the Euclidean norm ‖.‖2.

The paper is organized as follows. In Section 2, some basic fuzzy concepts and how the problem
FCSGs are converted to a deterministic problem α-FCSGs are discussed. A detailed description of the
main steps of the active-set technique with Newton’s interior point method, trust-region algorithm, and
the main steps for the algorithm to solve the α-FCSGs problem are presented in Section 3. In Section 4,
numerical results are reported. Finally, Section 5 contains concluding remarks.
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2. Theoretical fuzzy foundations

Fuzzy set theory has been developed for solving problems in which descriptions of activities and
observations are imprecise, vague, and uncertain. The term “fuzzy” refers to a situation in which there
are no well-defined boundaries of the set of activities or observations to which the descriptions apply.

A fuzzy set is a class of objects with membership grades. A membership function, which assigns to
each object a grade of membership, is associated with each fuzzy set. Usually, the membership grades
are in [0, 1]. When the grade of the membership for an object in a set is one, this object is absolutely
in that set when the grade of the membership function is zero, the object is not in that set. Borderline
cases are assigned numbers between zero and one. A fuzzy number is defined differently by many
authors such as [31, 32].

Before presenting our approach to the problem FCSGs, we present some definitions which belong
to a convex fuzzy type.

Definition 2.1. (Fuzzy number) Let < be the set of real numbers. A fuzzy number β̃ is a mapping
µβ̃ : <→ [0, 1] with the following properties

(1) µβ̃ is upper semi continuous membership function.
(2) β̃ is convex fuzzy set.
(3) β̃ is normal. That is, ∃β0 ∈ < for which µβ̃(β0) = 1.
(4) sup β̃ = β ∈ < : µβ̃(β) > 0 is a support of the β̃.

For more details see [31].

Definition 2.2. (A triangle membership) A triangle fuzzy number β̃ is a continuous fuzzy subset from
real line< whose membership function µβ̃(β) satisfies the following conditions

(1) µβ̃(β) is continuous function from< to closed interval [0, 1],
(2) µβ̃(β) = 0, if β < β1,
(3) µβ̃(β) is strictly increasing with constant rate on β1 ≤ β ≤ β2,
(4) µβ̃(β) is strictly decreasing on β2 ≤ β ≤ β3,
(5) µβ̃(β) = 0 if β3 < β.

Throughout this paper, a membership function in the following form will be elicited:

µβ̃(β) =



0 if β < β1,

β−β1
β2−β1

if β1 ≤ β ≤ β2,

β3−β

β3−β2
if β2 ≤ β ≤ β3,

0 if β3 < β.

(2.1)

Definition 2.3. (α-level set): The α-level set of the fuzzy parameters β̃, is an ordinary set Lα(β̃) for
which the degree of its membership function exceeds the level set α ∈ [0, 1] where

Lα(β̃) = {β ∈ < | µβ̃ ≥ α} = {β ∈ [β̃α
l
, β̃α

u] | µβ̃ ≥ α}. (2.2)
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For more details see [21].
In this paper, we will consider the following continuous static games with fuzzy cost functions and

fuzzy conditions
min f j(t̃, ṽ) j = 1, · · · , p
s.t. h(t̃, ṽ) = 0,

g(t̃, ṽ) ≤ 0,
t̃ ≥ 0, ṽ ≥ 0,

(2.3)

where f j, j = 1, · · · , p represents cost functions for players. The vectors t̃ ∈ <nt and ṽ ∈ <nv represent
fuzzy state and fuzzy controls respectively.

By using α-level, α ∈ [0, 1], the game problem 2.3 restructured as follows

min [ f l
j(t̃α, ṽα), f u

j (t̃α, ṽα)] j = 1, · · · , p
s.t. [hl(t̃α, ṽα), hu(t̃α, ṽα)] = 0,

[gl(t̃α, ṽα), gu(t̃α, ṽα)] ≤ 0,
t̃α ≥ 0, ṽα ≥ 0.

(2.4)

That is, the game problem 2.4 can be divided into the following two games which are defined as a
lower game and an upper game respectively

min f l
j(t̃α, ṽα) j = 1, · · · , p

s.t. hl(t̃α, ṽα) = 0
gl(t̃α, ṽα) ≤ 0,
t̃α ≥ 0, ṽα ≥ 0,

(2.5)

and
min f u

j (t̃α, ṽα) j = 1, · · · , p
s.t. hu(t̃α, ṽα) = 0

gu(t̃α, ṽα) ≤ 0,
t̃α ≥ 0, ṽα ≥ 0.

(2.6)

Both lower game problem 2.5 and upper game problem 2.6 represent a general nonlinear programming
problem concerning players j = 1, · · · , p. In general, problem 2.5 or 2.6 can be written as follows

minimize f j(x̃α), j = 1, · · · , p
subject to h(x̃α) = 0,

g(x̃α) ≤ 0,
ãα ≤ x̃α ≤ b̃α,

(2.7)

where x̃α = (t̃α, ṽα)T ∈ <n, n = nt + nv, ãα ∈ {<
⋃
{−∞}}n, b̃α ∈ {<

⋃
{+∞}}n, and ãα < b̃α. The

functions f j : <n → <, ∀ j = 1, · · · , p, h : <n → <mh , and g : <n → <mg are twice continuously
differentiable. We assume that mh < n and no restriction is assumed on mg.

Various approaches have been proposed to solve nonlinear programming problem 2.7 for all j =

1, · · · , p, see [9–12,15]. In the following section, we introduce the main steps for the active set strategy
with Newton’s interior point method and trust-region strategy to solve problem 2.7 for all j = 1, · · · , p.
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3. An active-set strategy with Newton’s interior-point and trust-region technique

In this section, firstly, we will introduce a detailed description of the active-set strategy to reduce
problem 2.7 to an equivalent equality-constrained optimization problem with bound on variable x̃α.
Secondly, Newton’s interior-point method is used to solve the equivalent equality-constrained
optimization problem with bound on variable x̃α. But Newton’s method may not converge to a
stationary point if the starting point is far away from the solution. To guarantee convergence from any
starting point, we will introduce in the third part of this section, a detailed description of the
trust-region algorithm. Finally, we will introduce steps for the main algorithm to solve game
problem 2.3.

3.1. An active-set strategy

Motivated by the active-set strategy in [6] and used by [11, 12, 14, 17, 18], we define a diagonal
matrix Y(x) ∈ <mg×mg , whose diagonal entries are

yi(x̃α) =

{
1 if gi(x̃α) ≥ 0,
0 if gi(x̃α) < 0.

(3.1)

Using the above diagonal matrix, problem (2.7) is reduced to the following equality-constrained
optimization problem with bound on variable x̃α

minimize f j(x̃α), j = 1, · · · , p
subject to h(x̃α) = 0,

g(x̃α)T Y(x̃α)g(x̃α) = 0,
ãα ≤ x̃α ≤ b̃α.

The above problem can be reduced to the following problem

minimize f j(x̃α) +
ρ

2‖Y(x̃α)g(x̃α)‖2 j = 1, · · · , p
subject to h(x̃α) = 0,

ãα ≤ x̃α ≤ b̃α,
(3.2)

where ρ represents a positive parameter. For the detailed exposition, the reader review [17, 18]. Let

` j(x̃α, λ) = f j(x̃α) + λT h(x̃α), (3.3)

and
` j(x̃α, λ; ρ) = ` j(x̃α, λ) +

ρ

2
‖Y(x̃α)g(x̃α)‖2, (3.4)

for all j = 1, · · · , p, where λ ∈ <mh represents a Lagrange multiplier vector associated with equality
constraint h(x̃α).

The Lagrangian function associated with problem (3.2) is defined as follows

L j(x̃α, λ, λa, λb) = ` j(x̃α, λ; ρ) − λT
a (x̃α − ãα) − λT

b (b̃α − x̃α), (3.5)

where the vectors λa, and λb are Lagrange multiplier vectors associated with inequality constraints
(x̃α − ãα) and (b̃α − x̃α) respectively.
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The first-order necessary conditions for a point x̃∗α to be a local minimizer of problem (3.2) are the
existence of multipliers λ∗ ∈ <mh , λa

∗ ∈ <n
+, and λb

∗ ∈ <n
+, such that (x̃∗α, λ

∗, λa
∗, λb

∗) satisfies

∇x̃α` j(x̃∗α, λ
∗; ρ∗) − λa

∗ + λb
∗ = 0, (3.6)

h(x̃∗α) = 0, (3.7)
ãα ≤ x̃∗α ≤ b̃α, (3.8)

and for all e corresponding to x̃(e)
α with finite bound, we have

λa
∗(e)

(x̃∗
(e)

α − ã(e)
α ) = 0, (3.9)

λb
∗(e)

(b̃(e)
α − x̃∗

(e)

α ) = 0, (3.10)

where
∇x̃α` j(x̃∗α, λ

∗; ρ∗) = ∇x̃α` j(x̃∗α, λ
∗) + ρ∗∇g(x̃∗α)Y(x̃∗α)g(x̃∗α), (3.11)

and
∇x̃α` j(x̃∗α, λ

∗) = ∇ f j(x̃∗α) + ∇h(x̃∗α)λ∗, (3.12)

for all j = 1, · · · , p.
To solve the equality-constrained optimization problem with bound on variable x̃α 3.2 for all j =

1, · · · , p, Newton’s interior-point method is introduced in the following section.

3.2. An interior-point technique

Motivated by the impressive computational performance of the interior-point technique in [5] and
introduced in [11, 12, 16], we define a diagonal matrix W(x) whose diagonal elements are

w(e)(x̃α) =


√

(x̃∗(e)
α − ã(e)

α ), if (∇x̃α` j(x̃α, λ; ρ))(e) ≥ 0 and ã(e)
α > −∞,√

(b̃(e)
α − x̃∗(e)

α ), if (∇x̃α` j(x̃α, λ; ρ))(e) < 0 and b̃(e)
α < +∞ ,

1, otherwise.

(3.13)

Using the scaling matrix W(x̃α), the first-order necessary conditions (3.7)–(3.10) reduced to the
following nonlinear system

W2(x̃α)∇x̃α` j(x̃α, λ; ρ) = 0, (3.14)
h(x̃α) = 0. (3.15)

Let D = {x̃α : ãα ≤ x̃α ≤ b̃α} and int(D) = {x̃α : ãα < x̃α < b̃α}. Systems (3.14) and (3.15) is continuous
but not everywhere differentiable. The non-differentiability occurs in two cases:

i) If w(e)(x̃α) = 0, then these points are avoided by restricting x̃α ∈ intD.
ii) If a variable x̃(e)

α has a finite lower bound and an infinite upper bound (or vice-verse)
and (∇x̃α` j(x̃α, λ; ρ))(e) = 0. So, we define a vector

η(e)(x̃α) =
∂(w(e)(x̃α))2

∂x̃(e)
α

, e = 1, . . . , n + 1,
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such that η(e)(x̃α) = 0 when (∇x̃α` j(x̃α, λ; ρ))(e) = 0. This is equivalent to

η(e)(x̃α) =


1, if (∇x̃α` j(x̃α, λ; ρ))(e) ≥ 0 and ã(e)

α > −∞,

−1, if (∇x̃α` j(x̃α, λ; ρ))(e) < 0 and b̃(e)
α < ∞,

0, otherwise.
(3.16)

Applying Newton’s method on the nonlinear systems (3.14) and (3.15), then we have

[W2(x̃α)∇2
x̃α` j(x̃α, λ; ρ) + diag(∇x̃α` j(x̃α, λ; ρ))diag(η(x̃α))]∆x̃α + W2(x̃α)∇h(x̃α)∆λ

= −W2(x̃α)∇x̃α` j(x̃α, λ; ρ), (3.17)
∇h(x̃α)T ∆x̃α = −h(x̃α), (3.18)

where
∇2

x̃α` j(x̃α, λ; ρ) = H + ρ∇g(x̃α)Y(x̃α)∇g(x̃α)T , (3.19)

and H is the Hessian of the Lagrangian function (3.3) or an approximation to it.
The diagonal matrix W(x) must be nonsingular, so we restrict x̃α ∈ int(D). Set ∆x̃α = W(x̃α)s in

both Eqs (3.17) and (3.18), and multiply both sides of the Eq (3.17) by W−1(x), we have

[W(x̃α)∇2
x̃α` j(x̃α, λ; ρ)W(x̃α) + diag(∇x̃α` j(x̃α, λ; ρ))diag(η(x̃α))]s + W(x̃α)∇h(x̃α)∆λ

= −W(x̃α)∇x̃α` j(x̃α, λ; ρ), (3.20)
(W(x̃α)∇h(x̃α))T s = −h(x̃α). (3.21)

Notice that, Eqs (3.20) and (3.21) are equivalent to the first-order necessary conditions of the following
the sequential quadratic programming problem

minimize ` j(x̃α, λ; ρ) + (W(x̃α)∇x̃α` j(x̃α, λ; ρ))T s + 1
2 sT Bs

subject to h(x̃α) + (W(x̃α)∇h(x̃α))T s = 0,
(3.22)

where

B = G(x̃α) + ρW(x̃α)∇g(x̃α)Y(x̃α)∇g(x̃α)T W(x̃α), (3.23)

and

G(x̃α) = W(x̃α)H(x̃α)W(x̃α) + diag(∇x̃α` j(x̃α, λ; ρ))diag(η(x̃α)). (3.24)

Although Newton’s method converges quadratically to a stationary point under reasonable
assumptions, it may not converge at all if the starting point is far away from the solution. To guarantee
convergence from any starting point, a trust-region globalization strategy is used. The trust-region
globalization strategy can induce strong global convergence. It is more robust when it deals with
rounding errors. It does not require the Hessian of the objective function must be positive definite or
the objective function of the model must be convex. Also, some criteria are used to test whether the
trial step is acceptable or not. If it is not acceptable, then the subproblem must be resolved with a
reduced trust-region radius.

In the following section, we present the main steps of the trust-region technique for solving the
problem (3.22).

AIMS Mathematics Volume 8, Issue 6, 13706–13724.
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3.3. Outline of the trust-region strategy

Trust-region strategy is a very successful approach to ensure global convergence to the stationary
point from any starting point. The trust-region subproblem which is associated with problem 3.22 is
the following

minimize ` j(x̃αk , λk; ρk) + (Wk∇x̃α` j(x̃αk , λk; ρk))T s + 1
2 sT Bks

subject to hk + (Wk∇hk)T s = 0,
‖s‖ ≤ δk,

(3.25)

where δk is the radius of the trust-region.
Notice that, in subproblem 3.25 there may be no intersecting points between the linearized

constraints hk + (Wk∇hk)T s = 0 and the inequality constraint ‖s‖ ≤ δk, see [7]. Byrd-Omojokun [3, 27]
has overcome this difficulty by decomposing the trial step sk into two orthogonal components. The
first component is the normal component sn

k to improve the feasibility and the second component is
the tangential componentst

k to improve optimality.

• To obtain the normal component sn
k

The normal component sn
k is computed by solving the following trust-region subproblem

minimize 1
2‖hk + (Wk∇hk)T sn‖2

subject to ‖sn‖ ≤ ζδk,
(3.26)

for some ζ ∈ (0, 1).
In the proposed method, a dogleg technique is used to approximate the solution curve of

subproblem 3.26 by a piecewise linear function connecting the Cauchy point and Newton point. The
main steps for the dogleg method are clarified in the following algorithm

Algorithm 3.1. (To compute sn
k)

Step 1. Evaluate tncp
k as follows

tncp
k =



‖Wk∇hkhk‖
2

‖(Wk∇hk)T Wk∇hkhk‖2
if ‖Wk∇hkhk‖

3

‖(Wk∇hk)T Wk∇hkhk)‖2 ≤ δk

and ‖(Wk∇hk)T Wk∇hkhk)‖ > 0,

δk
‖Wk∇hkhk‖

otherwise.

(3.27)

Step 2. Compute the normal Cauchy step sncp = −tncp
k Wk∇hkhk.

Step 3. If ‖sncp‖ = δk, then set sn
k = sncp.

Else
If Wk∇hkhk + Wk∇hk∇hT

k Wksncp = 0, then set sn
k = sncp.

Else, solving the following subproblem to compute Newton step snl f

minimize 1
2‖hk + Wk∇hT

k snl f ‖2.

If ‖snl f ‖ ≤ δk, then set sn
k = snl f .

Else, compute sn
k by dogleg between sncp and snl f .

End if; End if; End if.

AIMS Mathematics Volume 8, Issue 6, 13706–13724.
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• To obtain the tangential step st
k

Let q(Wks) be the quadratic form of the function (3.4) and defined as follows

q(Wks) = ` j(x̃αk , λk; ρk) + (Wk∇x̃α` j(x̃αk , λk; ρk))T s +
1
2

sT Bks. (3.28)

Then ∇qk(Wksn
k) = Wk∇x̃α` j(x̃αk , λk; ρk) + Bksn

k .
Once obtaining the normal component sn

k , the following subproblem is used to obtain the tangential
step which is defined by st

k = Zk s̄t
k such that Zk is a matrix whose columns form a basis for the null

space of (Wk∇hk)T .

minimize [ZT
k ∇qk(Wksn

k) + Bksn
k]T s̄t + 1

2 s̄tT ZT
k BkZk s̄t

subject to ‖Zk s̄t‖ ≤ ∆k,
(3.29)

where ∆k =

√
δ2

k − ‖s
n
k‖

2.
Again, the dogleg technique is used to solve subproblem 3.29. The main steps for the dogleg method

to obtain st
k are clarified in the following algorithm

Algorithm 3.2. (To compute st
k)

Step 1. Compute ttcp
k as follows

ttcp
k =



‖ZT
k ∇qk(Wk sn

k )‖2

(ZT
k ∇qk(Wk sn

k ))T B̄kZT
k ∇qk(Wk sn

k ) if ‖ZT
k ∇qk(Wk sn

k )‖3

(ZT
k ∇qk(Wk sn

k ))T B̄kZT
k ∇qk(Wk sn

k ) ≤ ∆k

and (ZT
k ∇qk(Wksn

k))T B̄kZT
k ∇qk(Wksn

k) > 0,

∆k
‖ZT

k ∇qk(Wk sn
k )‖ otherwise,

(3.30)

such that B̄k = ZT
k BkZk.

Step 2. Compute the Cauchy step s̄tcp = −ttcp
k ZT

k ∇qk(Wksn
k).

Step 3. If ‖s̄tcp‖ = ∆k, then set st
k = Zk s̄tcp

k .
Else,
If ZT

k ∇qk(Wksn
k) + B̄k s̄tcp = 0, then set st

k = Zkstcp.
Else, solve the following subproblem to obtain Newton step s̄tl f

minimize [ZT
k ∇qk(Wksn

k)]T s̄tl f + 1
2 s̄tl f T

ZT
k BkZk s̄tl f .

If ‖stl f ‖ ≤ ∆k, then set st
k = Zk s̄tl f .

Else, compute st
k by dogleg between stcp and s̄tl f .

End if; End if; End if.

Once obtaining xk+1 = xk + Wksk, we need to restrict it in D to ensure that the diagonal matrix W(x)
nonsingular. So, we need the damping parameter ψk.

• To obtain the damping parameter ψk

AIMS Mathematics Volume 8, Issue 6, 13706–13724.
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The damping parameter ψk which is needed to ensure xk+1 ∈ intD is evaluated as follows.

ψ = min{min
i
{c(i)

k , σ
(i)
k }, 1}, (3.31)

where

c(i)
k =


ã(i)
α −x̃(i)

αk

W(i)
k s(i)

k
, if ã(i)

α > −∞ and W (i)
k s(i)

k < 0

1, otherwise,

and

σ(i)
k =


b̃(i)
α −x̃(i)

αk

W(i)
k s(i)

k
, if b̃(i)

α < ∞ and W (i)
k s(i)

k > 0

1, otherwise.

To check whether the scaled step ψkWksk will be accepted or not, we need a merit function that ties the
objective function and the constraints in such a way that progress in the merit function means progress
in solving the problem. The following augmented Lagrangian function is used as a merit function,
see [20].

Φ(x̃α, λ; ρ; r) = f (x̃α) + λT h(x̃α) +
ρ

2
‖Y(x̃α)g(x̃α)‖2 + r‖h(x̃α)‖2, (3.32)

where r represents the penalty parameter.
To test the scaled step, we need to solve the following subproblem to estimate the Lagrange

multiplier vector λk+1

minimize ‖∇ fk+1 + ∇hk+1λ + ρk∇gk+1Yk+1gk+1‖
2. (3.33)

To check whether the point (x̃αk+1 , λk+1), will be accepted in the next iterate or not we need to define the
following actual reduction and the predicted reduction.

The actual reduction Aredk in the merit function 3.32 in moving from (x̃αk , λk) to (x̃αk + sk, λk+1) is
defined as

Aredk = Φ(x̃αk , λk, ; ρk; rk) − Φ(x̃αk + ψkWksk, λk+1; ρk; rk).

Aredk can be written as,
The predicted reduction Predk in the merit function 3.32 is defined as follows

Predk = −(Wk∇x̃α` j(x̃αk , λk))Tψksk −
1
2
ψ2

k sT
k Gksk +

ρk

2
[‖Ykgk‖

2 − ‖Yk(gk + (Wk∇gk)Tψksk)‖2]

+rk[‖hk‖
2 − ‖hk + (Wk∇hk)Tψksk‖

2]. (3.34)

The predicted reduction can be written as

Predk = qk(0) − qk(Wkψksk) + rk[‖hk‖
2 − ‖hk + (Wk∇hk)Tψksk‖

2], (3.35)

where

qk(Wkψksk) = ` j(x̃αk , λk)+ (Wk∇x̃α` j(x̃αk , λk))Tψksk +
1
2
ψ2

k sT
k Gksk +

ρk

2
‖Yk(gk + (Wk∇gk)Tψksk)‖2. (3.36)

After computing the scaled step and updating the Lagrange multiplier, the penalty parameter is updated
to ensure that Predk ≥ 0.
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• To update the penalty parameter rk

To ensure that Predk ≥ 0, we need to update the penalty parameter rk by using the following algorithm

Algorithm 3.3. (To update rk)
If

Predk ≤
rk

2
[‖hk‖

2 − ‖hk + (Wk∇hk)Tψksk‖
2], (3.37)

set

rk =
2[qk(Wkψksk) − qk(0) + ∆λT

k (hk + (Wk∇hk)Tψksk)]
‖hk‖

2 − ‖hk + (Wk∇hk)Tψksk‖
2 + b0, (3.38)

where b0 > 0 is a small fixed constant.
Else, set rk+1 = rk.
End if.

For more details, see [12].
The scaled step Wkψksk is tested by comparing Predk against Aredk to know whether it is accepted.

Also, the radius of the trust region δk must be updated.

• To test the step sk and update δk

The framework to test the step sk and update δk is clarified in the following algorithm.

Algorithm 3.4. (To test the step sk and update δk)
Choose 0 < τ1 < τ2 < 1, 0 < β̂1 < 1 < β̂2, and δmin ≤ δ0 ≤ δmax.
While Aredk < τ1Predk or Predk ≤ 0.
Set δk = β̂1‖sk‖.
Go to algorithms 3.1 and 3.2 to compute a new trial step sk.
End while.
If Aredk

Predk
∈ [τ1, τ2).

Then accept the step sk.
Set δk+1 = max(δk, δmin).
End if.
If τ2 ≤

Aredk
Predk

≤ 1.
Set δk+1 = min{δmax,max{δmin, β̂2δk}} .
End if.

Let T predk be a tangential predicted decrease which is obtained by the tangential component st
k and

defined as follows
T predk = qk(Wksn

k) − qk(Wk(sn
k + Zk s̄t

k)).

In our method, the positive parameter ρk must be updated at every iteration.

• To update the positive parameter ρk

To update ρk, we use the following algorithm
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Algorithm 3.5. (To update ρk)
If

1
2

T predk ≥ ‖Wk∇gkYkgk‖min{‖Wk∇gkYkgk‖, δk}, (3.39)

Set ρk+1 = ρk.
Else, set ρk+1 = 2ρk.
End if.

For more details see, [11, 12].
Finally, the algorithm is terminated when either ‖ZT

k Wk∇x̃α` j(x̃αk , λk)‖ + ‖Wk∇gkYkgk‖ + ‖hk‖ ≤ ε1

or ‖sk‖ ≤ ε2, for some ε1, ε2 > 0.

• A trust-region algorithm

A formal description of the trust-region algorithm to solve subproblem 3.25 is clarified as follows

Algorithm 3.6. (Trust-region algorithm)

Step 0. Starting with the point x̃α0 ∈ intD. Compute the following initial value Y0, W0, η0, and λ0.
Set ρ0 = 1, r0 = 1, and b0 = 0.1.
Choose θ > 0, ε1 > 0, ε2 > 0. Choose δmin, δmax, and δ0 such that δmin ≤ δ0 ≤ δmax.
Choose β̂1, β̂2, τ1, and τ2 such that 0 < β̂1 < 1 < β̂2, and 0 < τ1 < τ2 < 1. Set k = 0.
Step 1. If ‖ZT

k Wk∇x̃α` j(x̃αk , λk)‖ + ‖Wk∇gkYkgk‖ + ‖hk‖ ≤ ε1 , then stop the algorithm.
Step 2. (To evaluate the trial step sk)
a) Using algorithm 3.1 to obtain the normal component sn

k .
b) Using algorithm 3.2 to obtain the tangential step s̄t

k.
c) Set sk = sn

k + Zk s̄t
k.

Step 3. If ‖sk‖ ≤ ε2, then stop.
Step 4. a) Compute the damping parameter ψk using (3.31).
b) Set x̃αk+1 = x̃αk + Wkψksk.
Step 5. Compute Yk+1 which is defined by (3.1).
Step 6. Solve the following subproblem to obtain the lagrange multiplier vector λk+1

minimize ‖∇ fk+1 + ∇hk+1λ + ρk∇gk+1Yk+1gk+1‖
2.

Step 7. Using algorithm 3.3 to update the penalty parameter rk.
Step 8. Using algorithm 3.4 to test the trial step sk and update δk.
Step 9. Using algorithm 3.5 to update ρk.
Step 10. Using (3.13) to obtain Wk+1 and using (3.16) to obtain ηk+1.
Step 11. Set k = k + 1 and go to Step 1.

A trust-region algorithm 3.6 is proved theoretically in [11].
The main steps for solving the continuous static games with fuzzy cost functions and fuzzy

conditions 2.3 are clarified in the following algorithm.
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3.4. An active-set interior-point trust-region algorithm

The framework to solve the continuous static games with fuzzy cost functions and fuzzy
conditions 2.3 is summarized in the following algorithm.

Algorithm 3.7. (An active-set interior-point trust-region algorithm):
Step 1) Use α-level, α ∈ [0, 1] to restructure problem 2.3 to form 2.4.
Step 2) Dividing problem 2.4 into two problems, the lower problem 2.5 and the upper problem 2.6.
Step 3) Using the active set strategy with Newton’s interior point method and trust region algorithm 3.6
to solve the lower problem 2.5 for all j = 1, · · · , p.
Step 4) Using the active set strategy with Newton’s interior point method and trust region algorithm 3.6
to solve the upper problem 2.6 for all j = 1, · · · , p.

4. Numerical results

In this section, we will consider the following continuous static game with four players and fuzzy
rough

min f̃1 = −5̃t̃1 + 1̃ṽ1

min f̃2 = −3̃t̃2 + 1̃ṽ2

min f̃3 = −8̃t̃3 + 1̃ṽ3

min f̃4 = −5̃t̃4 + 1̃ṽ4

S .T. −3̃t̃1 + 1̃ṽ1 − 1̃ṽ2
1 − 1̃t̃1ṽ2 = 0̃

−2̃t̃2 + 1̃ṽ2 − 1̃ṽ2
2 − 2̃t̃2ṽ1 = 0̃

−5̃t̃3 + 1̃ṽ3 − 1̃ṽ2
3 − 2̃t̃3ṽ4 = 0̃

−4̃t̃4 + 1̃ṽ4 − 1̃ṽ2
4 − 4̃t̃4ṽ3 = 0̃

t̃1 + t̃2 ≤ 1̃
ṽ1 ≥ 0̃, ṽ2 ≥ 0̃, ṽ3 ≥ 0̃, ṽ4 ≥ 0̃
t̃1 ≥ 0̃, t̃2 ≥ 0̃, t̃3 ≥ 0̃, t̃4 ≥ 0̃,

where 0̃ = (α, 2 − α),1̃ = (α + 1, 3 − α), 2̃ = [(α + 2, 4 − α), 3̃ = (α + 3, 5 − α), 4̃ = (α + 4, 6 − α),
5̃ = (α + 5, 7 − α), 8̃ = (α + 8, 10 − α).
The above test problem can be divided into the lower game and upper game for every player as follows
For every player: the lower game

min f̃ l
1 = −(α + 5)t̃l

1 + (α + 1)ṽl
1

min f̃ l
2 = −(α + 3)t̃l

2 + (α + 1)ṽl
2

min f̃ l
3 = −(α + 8)t̃l

3 + (α + 1)ṽl
3

min f̃ l
4 = −(α + 5)t̃l

4 + (α + 1)ṽl
4

S .T. −(α + 3)t̃l
1 + (α + 1)ṽl

1 − (α + 1)ṽ2l

1 − (α + 1)t̃l
1ṽl

2 = α

−(α + 2)t̃l
2 + (α + 1)ṽl

2 − (α + 1)ṽ2l

2 − (α + 2)t̃l
2ṽl

1 = α

−(α + 5)t̃l
3 + (α + 1)ṽl

3 − (α + 1)ṽ2l

3 − (α + 2)t̃l
3ṽl

4 = α

−(α + 4)t̃l
4 + (α + 1)ṽl

4 − (α + 1)ṽ2l

4 − (α + 4)t̃l
4ṽl

3 = α

t̃l
1 + t̃l

2 ≤ (α + 1)
ṽl

1 ≥ α, ṽl
2 ≥ α, α ≤ ṽl

3 ≤ α + 1, α ≤ ṽl
4 ≤ α + 1

t̃l
1 ≥ α, t̃l

2 ≥ α, t̃l
3 ≥ α, t̃l

4 ≥ α.
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For every player: the upper game

min f̃ u
1 = −(7 − α)t̃u

1 + (3 − α)ṽu
1

min f̃ u
2 = −(α + 3)t̃u

2 + (α + 1)ṽu
2

min f̃ u
3 = −(α + 8)t̃u

3 + (α + 1)ṽu
3

min f̃ u
4 = −(α + 5)t̃u

4 + (α + 1)ṽu
4

S .T. −(5 − α)t̃u
1 + (3 − α)ṽu

1 − (3 − α)ṽ2u

1 − (3 − α)t̃u
1ṽu

2 = 2 − α
−(4 − α)t̃u

2 + (3 − α)ṽu
2 − (3 − α)ṽ2u

2 − (4 − α)t̃u
2ṽu

1 = 2 − α
−(7 − α)t̃u

3 + (3 − α)ṽu
3 − (3 − α)ṽ2u

3 − (4 − α)t̃u
3ṽu

4 = 2 − α
−(6 − α)t̃u

4 + (3 − α)ṽu
4 − (3 − α)ṽ2u

4 − (6 − α)t̃u
4ṽu

3 = 2 − α
t̃u
1 + t̃u

2 ≤ (3 − α)
ṽu

1 ≥ 2 − α, ṽu
2 ≥ 2 − α, 2 − α ≤ ṽu

3 ≤ 3 − α, 2 − α ≤ ṽu
4 ≤ 3 − α

t̃u
1 ≥ 2 − α, t̃u

2 ≥ 2 − α, t̃u
3 ≥ 2 − α, t̃u

4 ≥ 2 − α.

Using algorithm 3.7 which was implemented as a MATLAB code and run under MATLAB
version 7.10.0.499 (R2010a) to obtain an approximate solution for the lower-game problem and upper
game problem for every player at different values of α. The approximate solutions
at α = 0; 0.1; 0.3; 0.5; 0.7; 1 are clarified in Tables 1–6 respectively.

Table 1. Results at α = 0.

Player t̃1 t̃2 t̃3 t̃4 ṽ1 ṽ2 ṽ3 ṽ4 NI
f̃ l
1 = 0.0667 .0533 0 .0405 .0443 0.2 0 .3939 .447 5

f̃ u
1 = 8.6265 2.1164 2.2399 2 2 2.0628 2.0437 2.3197 2.3502 4

f̃ l
2 = 0.0417 0 .0694 .0405 .04433 0 0.16667 0.39396 .44698 6

f̃ u
2 = 4.925 2.0825 2.2151 2.017 2 2 2.0502 2.3145 2.347 9

f̃ l
3 = .05625 0.0256 .11361 .0305 0 .0990 .48346 .1875 0 5

f̃ u
3 = 14.174 2.0875 2.1765 2.110 2.175 2 2.2296 2.3093 2.2224 3

f̃ l
4 = .0125 .06171 0.09510 0 .0225 .31375 .48937 0 .1 5

f̃ u
4 = 8.2695 2.0857 2.1741 2.1277 2.1769 2 2.2305 2.2102 2.3230 3

Table 2. Results at α = 0.1.

Player t̃1 t̃2 t̃3 t̃4 ṽ1 ṽ2 ṽ3 ṽ4 NI
f̃ l
1 = .59519 .16266 .19521 .1 .1 .21308 .10005 .2916 .10004 9

f̃ u
1 = 8.8823 2.1297 2.2943 1.976 1.9 2.004 1.9 2.144 2.211 5

f̃ l
2 = .69613 .20653 .28109 .1 .1 .12612 .15932 .35415 .5128 6

f̃ u
2 = 3.9637 2.0105 2.0791 1.9 2.013 1.9 2.1462 2.1993 2.258 9

f̃ l
3 = .19087 0.13537 .1 .1 0.1 .6139 .1005 .56285 0.5499 11

f̃ u
3 = 15.039 2.0485 2.1210 2.124 2.156 1.9 2.1632 2.0664 1.9 4

f̃ l
4 = .032766 .11581 0.1 0.1 .1 .57804 .2546 .4006 .43385 11

f̃ u
4 = 8.6081 2.0453 2.1173 2.1406 2.1454 1.9 2.164 1.9 2.1362 4
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Table 3. Results at α = 0.3.

Player t̃1 t̃2 t̃3 t̃4 ṽ1 ṽ2 ṽ3 ṽ4 NI
f̃ l
1 = 2.3039 .5468 .591 .3 .3668 .457 .3 .5242 .5975 4

f̃ u
1 = 8.6480 2.0468 2.1911 1.8474 1.7 1.8762 1.7411 1.7 1.8318 7

f̃ l
2 = 1.4608 .51523 .5975 .3 .313 .3 .3931 .4982 .3 5

f̃ u
2 = 4.796 2.0125 2.0920 1.8347 1.7 1.7 1.8654 1.7 1.7419 8

f̃ l
3 = 1.9187 .55016 .50547 .3 .3087 .5572 .571 .4394 .5277 3

f̃ u
3 = 14.725 1.8296 1.8613 1.9912 1.7 1.8284 1.8318 1.7 1.7 6

f̃ l
4 = 1.0227 .48496 .5599 .3205 .3 .5576 .57141 .48169 .43636 3

f̃ u
1 = 6.6543 1.8329 1.8670 1.963 1.7 1.8006 1.7967 1.7 1.754 6

Table 4. Results at α = 0.5.

Player t̃1 t̃2 t̃3 t̃4 ṽ1 ṽ2 ṽ3 ṽ4 NI
f̃ l
1 = 3.6487 .82681 .93138 .5 .5 .5992 .5 .7633 .84622 6

f̃ u
1 = 5.962 1.5557 1.7086 1.5 1.5 1.6601 1.5401 1.7324 1.9338 6

f̃ l
2 = 2.115 .81646 .8529 .5 .5 .5 .58013 .6061 .8405 6

f̃ u
2 = 3.0869 1.5634 1.6605 1.5 1.5 1.5265 1.7541 1.7580 1.9714 8

f̃ l
3 = 3.7693 .58543 .6679 .5575 .5 .86199 .873 .6464 .5288 3

f̃ u
3 = 10.275 1.5 1.5741 1.5 1.5606 1.6202 1.7860 1.5899 1.5 4

f̃ l
4 = 1.7199 .5016 .504 .5082 .5 .865 .8751 .50005 .6867 4

f̃ u
4 = 5.627 1.5 1.5729 1.5 1.5646 1.6415 1.8204 1.5 1.8172 4

Table 5. Results at α = 0.7.

Player t̃1 t̃2 t̃3 t̃4 ṽ1 ṽ2 ṽ3 ṽ4 NI
f̃ l
1 = 2.6853 .71848 .76744 0.7 0.7 .82947 0.7 .74389 1.102 6

f̃ u
1 = 4.936 1.3 1.3218 1.3119 1.3 1.4148 1.8539 1.5761 1.816 4

f̃ l
2 = 1.5381 .7559 .78602 .7 .7 .7 .80597 0.7 1.0422 8

f̃ u
2 = 3.2477 1.4444 1.5664 1.3 1.3 1.3008 1.5165 1.574 1.8183 9

f̃ l
3 = 5.0726 .85777 .88314 .75304 .7 .88897 .81370 .86994 .7 4

f̃ u
3 = 8.9775 1.3592 1.4232 1.3 1.3364 1.3676 1.5349 1.3533 1.3 4

f̃ l
4 = 2.4321 .8546 .8849 .7229 .7 .8613 .77382 .7 .9164 4

f̃ u
4 = 5.1238 1.3585 1.4259 1.3 1.3735 1.4079 1.5645 1.3 1.5345 4
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Table 6. Results at α = 1.

Player t̃1 t̃2 t̃3 t̃4 ṽ1 ṽ2 ṽṽ3 ṽ4 NI
f̃ l
1 = 3.673 1 1.0487 1.0113 1.201 1.1635 1.6777 1.3718 1.6390 4

f̃ u
1 = 3.673 1 1.0487 1.0113 1.201 1.1635 1.6777 1.3718 1.6390 4

f̃ l
2 = 2.4998 1.1004 1.2685 1 1 1.0297 1.2871 1.2998 1.5464 5

f̃ u
2 = 2.5277 1.1034 1.2729 1 1 1.0256 1.2819 1.2987 1.5435 5

f̃ l
3 = 6.7625 1.0723 1.1429 1 1.0526 1.1431 1.4151 1.1187 1 4

f̃ u
3 = 6.7625 1.0723 1.1429 1 1.0526 1.1431 1.4151 1.1187 1 4

f̃ l
4 = 4.0403 1.0708 1.1422 1 1.1030 1.1669 1.4325 1 1.2888 4

f̃ u
4 = 4.0403 1.0708 1.1422 1 1.1030 1.1669 1.4325 1 1.2888 4

In algorithm 3.7, we choose the initial trust-region radius δ0 = max(‖sncp
0 ‖, δmin),

where δmin = 10−3. Also, We choose the maximum trust-region radius δmax = 103δ0 and the values of
the constants τ1 = .25, τ2 = 0.75, β̂1 = 0.5, β̂2 = 2, ε1 = 10−8, ε2 = 10−10.

Successful termination concerning algorithm 3.7 means that the termination condition of the
algorithm is met with ε1 = 10−8. On the other hand, unsuccessful termination means that the number
of iterations is greater than 500, the number of function evaluations is greater than 1000, or the length
of the trial step is less than ε2.

5. Conclusions

This paper presented a new technique to solve continuous static games. This technique introduced
a novel treatment for multi-player fuzzy continuous static games. This treatment is based on the fact
that as well as having a fuzzy number, the fuzziness is applied to the control vectors to deal with high
vagueness and imprecision in a continuous static game. The α-level set is used to convert the FCSGs
to deterministic upper and lower α-FCSGs problems. The α-Pareto optimal solutions for the
deterministic upper and lower α-FCSGs problems are obtained by using active-set interior-point
trust-region algorithm 3.7. This method converges quadratically to α-Pareto optimal solutions from
any starting point. A projected Hessian method is used to treat the difficulty of having an infeasible
trust-region subproblem where the trial step is decomposed into normal and tangent components and
each component is computed by solving a trust-region unconstrained subproblem.

An application to mathematical continuous static games with four players and fuzzy rough with
equilibrium constraints is given to clarify the effectiveness of the proposed approach. Numerical results
reflect the good behavior of algorithm 3.7 for the lower and upper α-FCSGs problems for every player
at different values of α.

In applying this methodology we cope with some known difficulties in handling such problems, as

• Using the active-set strategy reduces upper and lower α-FCSGs problems to equivalent equality
constrained optimization problems which allow using the methods that are used to solve equality
constrained optimization problems.
• Using Newton’s interior-point technique warrants the converges quadratically to a stationary

point.
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• A trust-region globalization strategy can induce strong global convergence and it is more robust
when they deal with rounding errors. It is a very important technique for solving unconstrained
and constrained optimization problems.
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