
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(6): 13637–13646.
DOI: 10.3934/math.2023692
Received: 17 December 2022
Revised: 13 March 2023
Accepted: 20 March 2023
Published: 10 April 2023

Research article

Neighbor sum distinguishing total choice number of IC-planar graphs with
restrictive conditions

Fugang Chao1,2 and Donghan Zhang1,2,∗

1 School of Mathematics and Computer Application, Shangluo University, Shangluo, Shaanxi
726000, China

2 Engineering Research Center of Qinling Health Welfare Big Data, Universities of Shaanxi
Province, Shangluo 726000, China

* Correspondence: Email: zhang dh@mail.nwpu.edu.cn.

Abstract: A neighbor sum distinguishing (NSD) total coloring φ of G is a proper total coloring such
that

∑
z∈EG(u)∪{u} φ(z) ,

∑
z∈EG(v)∪{v} φ(z) for each edge uv ∈ E(G). Pilśniak and Woźniak asserted that

each graph with a maximum degree ∆ admits an NSD total (∆ + 3)-coloring in 2015. In this paper,
we prove that the list version of this conjecture holds for any IC-planar graph with ∆ ≥ 10 but without
five cycles by applying the discharging method, which improves the result of Zhang (NSD list total
coloring of IC-planar graphs without five cycles).
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1. Introduction

Only simple graphs are considered in the paper. For any graph theory notation undefined here we
follow [1].

Let G =
(
V(G), E(G)

)
be a simple graph. For a vertex u ∈ V(G), we denote the set of edges

incident with u by EG(u). The degree and the neighborhood of u are denoted by dG(u) and NG(u),
respectively. We use δ(G) and ∆(G) (or ∆) to represent the minimum degree and the maximum degree
of G, respectively.

Let k ≥ 0 be an integer and T (G) = V(G) ∪ E(G). A neighbor sum distinguishing (NSD) total
coloring of G is a mapping φ : T (G)→ {1, 2, · · · , k} such that for any two adjacent or incident elements
z1, z2 ∈ T (G), φ(z1) , φ(z2) and for every edge uv ∈ E(G),

∑
z∈EG(u)∪{u} φ(z) ,

∑
z∈EG(v)∪{v} φ(z). The NSD
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total chromatic number of G is χt
Σ
(G) = min{k | G has an NSD k-total coloring}. In 2015, Pilśniak and

Woźniak [2] introduced an important conjecture about the NSD total chromatic number as follows.

Conjecture 1.1. [2] For every graph G, χt
Σ
(G) ≤ ∆(G) + 3.

Conjecture 1.1 was proved to hold for many special classes of graphs, such as complete graphs,
bipartite graphs, subcubic graphs [2], planar graphs with ∆ ≥ 10 [3] and planar graphs with ∆ ≥ 7 but
without five cycles [4] and so on.

In 2008, Alberson [5] introduced the concept of IC-planar graphs. A graph is called an IC-planar
graph if the graph has a drawing in the plane such that each edge is crossed at most once and two pairs
of crossing edges share no common end vertex.

Conjecture 1.1 also holds for some special IC-planar graphs, such as IC-planar graphs with ∆ ≥ 12
[6], IC-planar graphs with ∆ ≥ 7 but without triangles [7] and IC-planar graphs with ∆ ≥ 10 but
without adjacent triangles [8].

A mapping L of G is called a k-list total assignment of G if it assigns to each member z ∈ T (G) a set
L(z) with |L(z)| = k. For a k-list total assignment L of G, a mapping φ is called an NSD total L-coloring
of G if the φ is an NSD total coloring of G and for each z ∈ T (G), φ(z) ∈ L(z). The NSD total choice
number of G is cht

Σ(G) = min{k | G has an NSD total L-coloring for any k-list total assignment L}.
Accordingly, the list version of Conjecture 1.1 is as follows.

Conjecture 1.2. [2] For every graph G, cht
Σ(G) ≤ ∆(G) + 3.

Obviously, Conjecture 1.2 implies Conjecture 1.1. Conjecture 1.2 was also shown to hold for many
special classes of graphs, such as subcubic graphs [9, 10], planar graphs with ∆ ≥ 13 [11], planar
graphs with ∆ ≥ 8 but without adjacent triangles [12] and IC-planar graphs with ∆ ≥ 14 [13] and so
on. Zhang [14] considered any IC-planar graph without five cycles and obtained the following result.

Theorem 1.1. [14] For every IC-planar graph G without five cycles,

cht
Σ(G) ≤ max{∆(G) + 3, 14}.

There are many results of neighbor distinguishing coloring. However given this kind of result the
case of a small ∆ is interesting and difficult. For the results in this regard, see [9, 10, 15, 16].

In this paper, we improve the result of Zhang [14] and obtain Theorem 1.2 as follows.

Theorem 1.2. Let G be an IC-planar graph without five cycles. Then

cht
Σ(G) ≤ max{∆(G) + 3, 13}.

2. Preliminaries

Let G be a simple graph. A vertex u of G is called an `-vertex (`+-vertex, `−-vertex) if dG(u) = `

(dG(u) ≥ `, dG(u) ≤ `). We denote the number of `-vertex (`+-vertex, `−-vertex) adjacent to u by n`G(u)
(n`

+

G (u), n`
−

G (u)). A cycle of length t (at least t, at most t) is called a t-cycle (t+-cycle, t−-cycle). In
particular, a (dG(v1), dG(v2), dG(v3))-cycle is a 3-cycle v1v2v3v1 when dG(v1) ≤ dG(v2) ≤ dG(v3). Let X
be a subset of T (G) and ψ : X → R be a mapping. For every u ∈ V(G), set

mψ(u) = Σz∈X∩(EG(u)∪{u})ψ(z).
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For any k-list total assignment L of G and every z ∈ T (G), set

S ψ(z) = L(z) \ {ψ(x) | x ∈ X and x is adjacent or incident with z in G}.

Lemma 2.1. [17] For an arbitrary field F, let P = P(x1, · · · , xn) be a polynomial in F[x1, . . . , xn] with
degree deg(P) =

∑n
k=1 ik, where ik ≥ 0 is an integer. Assume that cP(xi1

1 , · · · , x
in
n ) is the coefficient of

the monomial xi1
1 . . . xin

n in P. If S 1, . . . , S n are subsets of F with |S k| > ik and cP(xi1
1 , · · · , x

in
n ) , 0, then

there are s1 ∈ S 1, . . . , sn ∈ S n satisfying P(s1, . . . , sn) , 0.

For finite real number sets S 1, · · · , S m, set

S 1 ⊕ · · · ⊕ S m = {s1 + · · · + sm | si ∈ S i, si , s j,∀ i , j}.

Lemma 2.2. [18] Let m ≥ 2 be an integer and S 1, · · · , S m be m finite real number sets with |S i| = ni

and n1 ≥ · · · ≥ nm. Set

n′1 = n1 and n′i = min{n′i−1 − 1, ni}, for 2 ≤ i ≤ m.

If n′m > 0, then

|S 1 ⊕ · · · ⊕ S m| ≥

m∑
i=1

n′i −
1
2

m(m + 1) + 1.

3. Proof of Theorem 1.2

3.1. Unavoidable configurations

Let G be a counterexample to Theorem 1.2 with E(G) being minimal. Set k = max{∆(G) + 3, 13}.
Let u be a 4−-vertex of G. For any k-list total assignment L, if T (G) \ {u} exists a total coloring φ′

such that for any adjacent or incident elements z1, z2 ∈ T (G) \ {u}, φ′(v1) , φ′(v2); for any two adjacent
vertices v1, v2 ∈ V(G) \ {u}, mφ′(v1) , mφ′(v2) and for each z ∈ T (G) \ {u}, φ′(z) ∈ L(z), then there is a
color in L(u) to color u so that the resulting coloring φ obtained from φ′ is an NSD total L-coloring of G
since |S φ′(u)| ≥ k−2dG(u) ≥ 5 > dG(u), a contradiction. Thus, we will omit the colors of all 4−-vertices
in the process of constructing an NSD total L-coloring of G in the following.

Below, we discuss some local configurations of the counterexample G. Theorem 1.1 implies
Claim 3.1.

Claim 3.1. ∆(G) ≤ 10.

Claim 3.2. Let u be an `-vertex of G. Then each one of the following statements holds.
(1) n5−

G (u) = 0 when ` ≤ 5.
(2) n4−

G (u) ≤ ` − 6 when 6 ≤ ` ≤ 7.
(3) n3−

G (u) ≤ ` − 6 when 8 ≤ ` ≤ 9, furthermore, n4−
G (u) ≤ ` − 6 when n3−

G (u) ≥ 1.

Proof. (1) Suppose to be contrary that the 5−-vertex u is adjacent to one 5−-vertex v. Without loss
of generality, set dG(u) = dG(v) = 5. For any k-list total assignment L of G, G′ has an NSD total
L′-coloring φ′, where G′ = G − uv and L′ is the restriction of L on G′. By erasing the colors on u and v
from the coloring φ′, we obtain the coloring φ′′. Then

|S φ′′(u)| ≥ k − 2 × (5 − 1) ≥ 5,
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|S φ′′(v)| ≥ k − 2 × (5 − 1) ≥ 5,
|S φ′′(uv)| ≥ k − (5 − 1) − (5 − 1) ≥ 5.

Let φ be a mapping on T (G) with φ(u) = x1, φ(v) = x2, φ(uv) = y1 and φ(z) = φ′′(z) for every
z ∈ T (G) \ {u, v, uv}, and set

P = P(x1, x2, y1) = (x1 − x2)(x1 − y1)(x2 − y1)
∏

z∈NG(u)

(
mφ(u) − mφ(z)

)
·

∏
z∈NG(v)\{u}

(
mφ(v) − mφ(z)

)
.

Then deg(P) = 12. Set
P0 = x4

1x4
2y4

1.

Then deg(P0) = deg(P) = 12 and cP(P0) = −20 via MATHEMATICA. By Lemma 2.1, there are
s1 ∈ S φ(u), s2 ∈ S φ(v) and s3 ∈ S φ(uv) such that P(s1, s2, s3) , 0. Thus we can obtain an NSD total
L-coloring φ of G with φ(u) = s1, φ(v) = s2, φ(uv) = s3 and φ(z) = φ′′(z), a contradiction.

(2) and (3) Set N4−
G (u) = {v1, . . . , vi} with dG(v1) ≤ · · · ≤ dG(vi) ≤ 4. Obviously, (2) and (3) hold

when N4−
G (u) = ∅. Below, let N4−

G (u) , ∅. Set G′i = G − {uv1, . . . , uvi}. For any k-list total assignment L
of G, G′i has an NSD total L′-coloring φ′i , where L′ is the restriction of L on G′i . By erasing the colors
on u, v1, . . . , vi from the coloring φ′i , we obtain the coloring φ′′i . Then

|S φ′′i
(u)| ≥ k − 2 × (` − i),

|S φ′′i
(uv j)| ≥ k − (` − i) − (dG(v j) − 1) (1 ≤ j ≤ i).

Suppose that (2) is false. Note that 6 ≤ ` ≤ 7. Fix i = ` − 5. Then

|S φ′′i
(u)| ≥ k − 2 × (` − (` − 5)) ≥ 3,

|S φ′′i
(uv j)| ≥ k − (` − (` − 5)) − (dG(v j) − 1) ≥ 5 (1 ≤ j ≤ ` − 5).

By lemma 2.2, we have{
|S φ′′i

(u) ⊕ S φ′′i
(uv1)| ≥ 3 + 5 − 1

2 × 2 × 3 + 1 > 6 − 1 if ` = 6.
|S φ′′i

(u) ⊕ S φ′′i
(uv1) ⊕ S φ′′i

(uv2)| ≥ 3 + 4 + 5 − 1
2 × 3 × 4 + 1 > 7 − 2 if ` = 7.

Suppose that (3) is false. Note that 8 ≤ ` ≤ 9. Fix i = ` − 5. Then dG(v1) ≤ 3 and

|S φ′′i
(u)| ≥ k − 2 × (` − (` − 5)) ≥ 3,

|S φ′′i
(uv1)| ≥ k − (` − (` − 5)) − (dG(v1) − 1) ≥ 6,

|S φ′′i
(uv j)| ≥ k − (` − (` − 5)) − (dG(v j) − 1) ≥ 5 (2 ≤ j ≤ ` − 5).

By lemma 2.2, we have{
|S φ′′i

(u) ⊕ S φ′′i
(uv1) ⊕ · · · ⊕ S φ′′i

(uv3)| ≥
∑6

t=3 t − 1
2 × 4 × 5 + 1 > 8 − 3 if ` = 8.

|S φ′′i
(u) ⊕ S φ′′i

(uv1) ⊕ · · · ⊕ S φ′′i
(uv4)| ≥

∑6
t=2 t − 1

2 × 5 × 6 + 1 > 9 − 4 if ` = 9.

Under each of the above two assumptions, there are s1 ∈ S φ′′i
(u) to color u and s j+1 ∈ S φ′′i

(uv j)
(1 ≤ j ≤ i) to color uv j such that the resulting coloring φ obtained from φ′′i satisfies mφ(u) , mφ(z)
for each z ∈ NG(u) \ {v1, . . . , vi}. Since v1, . . . , vi are 4−-vertices, φ is an NSD total L-coloring of G, a
contradiction.

With the similar proof to that of Claim 3.2 (1), we can obtain the below Claim 3.3.
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Claim 3.3. Let C be an (`1, `2, `3)-cycle of G. Then (`1, `2, `3) , (5−, 6−, 6−).

Let H be a graph obtained from G by deleting all 2−-vertices. For each vertex u ∈ V(H), we have

dH(u) = dG(u) − n2−
G (u).

By Claim 3.2, the following Claim 3.4 is immediate.

Claim 3.4. Let u be an `-vertex of H. Then each of the following statements holds.
(1) ` ≥ 3.
(2) ` = dG(u) when 3 ≤ dG(u) ≤ 6.
(3) ` ≥ 6 when dG(u) ≥ 7.
(4) n3

H(u) + n4
H(u) ≤ ` − 6 when 6 ≤ ` ≤ 7.

(5) n3
H(u) ≤ ` − 6 when 8 ≤ ` ≤ 9.

By Claims 3.2 and 3.3, we can directly obtain the below Claim 3.5.

Claim 3.5. Let C be an (`1, `2, `3)-cycle of H. Then

(`1, `2, `3) ∈ {(3, 7+, 7+), (4, 7+, 7+), (5+, 6+, 6+)}.

On a planar graph, if the boundary of a face is a t-cycle (resp., t+-cycle, t−-cycle, (`1, `2, `3)-cycle),
then the face is called a t-face (resp., t+-face, t−-face, (`1, `2, `3)-face). A 3-face with vertex
set {v1, v2, v3} is denoted by [v1v2v3]. A face is said to be incident with the vertices and edges in its
boundary.

Through the rest, we assume that the counterexample G is embedded on a plane with every edge
crossed by at most one other edge and the minimal crossings. By turning all crossings of G into new 4-
vertices on the plane, we obtain a plane graph G× called the associated plane graph of G. To make a
difference, we call a vertex u false vertex if u ∈ V(G×) \ V(G) and real vertex otherwise in G×. A face
is called false face if it is incident with a false vertex and real face otherwise in G×.

Let H× be the associated plane graph of H. For a vertex u ∈ V(H), set

ft(u) = the number of real 3-faces incident with u,
f×(u) = the number of false 3-faces incident with u.

The follwing Claim 3.6 is immediate as G (and thus H) is an IC-planar graph without 5-cycles.

Claim 3.6. Let u be a real vertex of H× with dH×(u) ≥ 4. Then each of the following statements holds.
(1) 0 ≤ f×(u) ≤ 2.
(2) ft(u) ≤ b2dH× (u)

3 c if u is not adjacent to any false 4-vertex.
(3) ft(u) ≤ b2dH× (u)−3

3 c if u is adjacent to one false 4-vertex and dH×(u) ∈ {0, 2}(mod3).
(4) ft(u) ≤ b2dH× (u)−3

3 c if f×(u) = 2 and dH×(u) ≡ 1(mod3); ft(u) ≤ b2dH× (u)−6
3 c if f×(u) = 2 and

dH×(u) ∈ {0, 2}(mod3).
(5) ft(u) ≤ b2dH× (u)−4

3 c if u is adjacent to one 4-cycle in H.

Set

n4×( f ) = the number of false 4-vertices incident with the false face f in H×.

Claim 3.7. Let f be a false t-face of H×. Then n4×( f ) ≤ b t
3c.
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3.2. Discharging process

Let ω(H×) be the number of connected components of H×. For every member z ∈ V(H×) ∪ F(H×),
assign the weight w(z) = dH×(z) − 4. By Euler’s formula, we have∑

z∈V(H×)∪F(H×)

w(z) =
∑

z∈V(H×)∪F(H×)

(dH×(z) − 4) = −4(1 + ω(H×)).

In the following, we will apply the discharging method on H× to prove that H× (and thus H) does
not exist. And so G does not exist. To redistribute weights among vertices and faces, and keep the total
weights unchanged, we design the discharging rules are as follows:

(R1) Every real 3-vertex receives 1
3 from its each neighbor.

(R2) Every false 3-face receives 1 from its incident false 4-vertex.
(R3) Let [v1v2v3] be a real (`1, `2, `3)-face in H×.

(R3.1) If (`1, `2, `3) = (3, 7+, 7+) or (4, 7+, 7+), then [v1v2v3] receives 1
2 from every incident real

7+-vertex.
(R3.2) If (`1, `2, `3) = (5+, 6+, 6+), then [v1v2v3] receives 1

3 from every incident real 5+-vertex.

(R4) Every false 4-vertex receives 1 from its incident false 5+-face.
(R5) Let z be a false 4-vertex and x be a neighbor of z in H×.

(R5.1) Set dH×(x) = 6. Then z receives 2 − 1
3 ft(x).

(R5.2) Set dH×(x) = 7. Then z receives 8
3 −

1
3 ( ft(x) + n3

H×(x)).
(R5.3) Set dH×(x) = 8. Then z receives 4 − 1

2 ft(x) − 1
3n3

H×(x).
(R5.4) Set dH×(x) = 9. Then z receives 5 − 1

2 ft(x) − 1
3n3

H×(x).
(R5.5) Set dH×(x) = 10. Then z receives 6−max{12 ft(x) + 1

3n3
H×(x)| ft(z) ≤ 6 and ft(x) + n3

H×(x) ≤ 12}.

After redistributing weights by the discharging rules, we denote the new weight for each z ∈ V(H×)∪
F(H×) by w′(z). Since the total weights keep unchanged, we have∑

z∈V(H×)∪F(H×)

w′(z) =
∑

z∈V(H×)∪F(H×)

w(z) = −4(1 + ω(H×)) < 0.

Thus, there is a nonempty set Y ⊆ (V(H×) ∪ F(H×)) such that for every element z ∈ Y , we have

w′(z) < 0.

In the following, we will prove that such Y does not exist to obtain a contradiction.
Firstly, we choose arbitrarily an element z from F(H×). If z is a false 3-face, then w′(z) = 3−4+1 =

0 by (R2) since each false 3-face is incident with a false 4-vertex. If z is a real 3-face, then z is
an (`1, `2, `3)-face with (`1, `2, `3) ∈ {(3, 7+, 7+), (4, 7+, 7+), (5+, 6+, 6+)}. Thus, by (R3), it is easy to
verify w′(z) ≥ 0 . If z is a real 4+-face or a false 4-face, then w′(z) ≥ 0 since no rule is applied to it. If z
is a false t+-face with t ≥ 5, then w′(z) ≥ t − 4 − b t

3c ≥ 0 by (R4) and Claim 3.7. Thus the nonempty
set Y ∩ F(H×) = ∅.

Next, we pick arbitrarily a false 4-vertex z from V(H×)\V(H). Set NH×(z) = {u1, u2, u3, u4}. Then, up
to isomorphism, the configuration of the induced subgraph H×[{z}∪NH×(z)] is one of six configurations
in Figure 1. Note that z is adjacent to at least two real 6+-vertices by Claims 3.2 and 3.4.

AIMS Mathematics Volume 8, Issue 6, 13637–13646.



13643

u2

u1u4

u3

z

F1

u2

u1u4

u3

z

F2

u2

u1u4

u3

z

F3

u2

u1u4

u3

z

F4

u2

u1u4

u3

z

F5

u2

u1u4

u3

z

F6

Figure 1. Six different configurations of H×[{z} ∪ NH×(z)].

(1) Let the configuration of H×[{z} ∪ NH×(z)] be F1 in Figure 1. Since H is an IC-planar graph
without 5-cycles, z is incident with at least two false 5+-faces in H×. Thus, w′(z) ≥ 4−4+2−2· 13 = 4

3 > 0
by (R1) as z is adjacent to at most two real 3-vertices in H×.

(2) Let the configuration of H×[{z} ∪ NH×(z)] be F2 in Figure 1. Since H is an IC-planar graph
without 5-cycles, z is incident with at least one false 5+-face H×. Thus, w′(z) ≥ 4− 4 + 1 + 2×min{2−
1
3 × 3, 8

3 −
1
3 × 5, 4 − 1

2 × 4 − 1
3 × 2, 5 − 1

2 × 5 − 1
3 × 3, 6 − 1

2 × 6 − 6 · 1
3 } − 1 − 1

3 × 2 = 4
3 > 0 by (R1),

(R2), (R4), (R5) and Claims 3.1, 3.6 as z is adjacent to at most two real 3-vertices in H×.
(3) Let the configuration of H×[{z} ∪ NH×(z)] be F3 in Figure 1. Then w′(z) ≥ 4 − 4 + 2 × min{2 −

1
3 × 2, 8

3 −
1
3 × 4, 4− 1

2 × 4− 1
3 × 2, 5− 1

2 × 4− 1
3 × 3, 6− 1

2 × 5− 6 · 1
3 } − 2× 1− 1

3 × 2 = 0 by (R1), (R2),
(R5) and Claims 3.1, 3.6.

(4) Let the configuration of H×[{z} ∪ NH×(z)] be F4 in Figure 1. Since H is an IC-planar graph
without 5-cycles, z is incident with two false 5+-faces in H×. Thus, w′(z) ≥ 4− 4 + 2× 1 + 2×min{2−
1
3 × 3, 8

3 −
1
3 × 5, 4 − 1

2 × 4 − 1
3 × 2, 5 − 1

2 × 5 − 1
3 × 3, 6 − 1

2 × 6 − 6 · 1
3 } − 2 − 1

3 × 2 = 4
3 > 0 by (R1),

(R2), (R4), (R5) and Claims 3.1, 3.6.
(5) Let the configuration of H×[{z} ∪ NH×(z)] be F5 in Figure 1. Since H is an IC-planar graph

without 5-cycles, z is incident with one false 5+-face in H×. Note that ui (i = 1, 2, 3, 4) is incident with
at least one 4-cycle in H. Thus, w′(z) ≥ 4 − 4 + 1 + 2 ×min{2 − 1

3 × 2, 8
3 −

1
3 × 4, 4 − 1

2 × 4 − 1
3 × 2, 5 −

1
2 × 4 − 1

3 × 3, 6 − 1
2 × 5 − 6 · 1

3 } − 3 − 2
3 = 0 by (R1), (R2), (R4), (R5) and Claims 3.1, 3.6.

(6) Let the configuration of H×[{z} ∪ NH×(z)] be F6 in Figure 1. Note that z is adjacent to at least
three real 6+-vertices and at most one real 3-vertex by Claim 3.4.

(6.1) Assume that z is not adjacent to any real 3-vertex. Then w′(z) ≥ 4− 4 + 3×min{2− 1
3 × 2, 8

3 −
1
3 × 4, 4 − 1

2 × 3 − 1
3 × 2, 5 − 1

2 × 4 − 1
3 × 3, 6 − 1

2 × 5 − 6 · 1
3 } − 4 = 0 by (R2), (R5) and Claims 3.1, 3.6.

(6.2) Assume that z is adjacent to one real 3-vertex. Then z is adjacent to three real 7+-vertices by
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Claim 3.4. Set dH×(u1) = 3. If dH×(u3) = 7, then u3 is not adjacent to any real 3-vertex in H× by Claim
3.4 since u3 is adjacent to u1 in H. Thus, w′(z) ≥ 4−4+(8

3−
1
3×3)+2×min{ 83−

1
3×4, 4− 1

2×3− 1
3×2, 5−

1
2 ×4− 1

3 ×3, 6− 1
2 ×5−6 · 1

3 }−4− 1
3 = 0 by (R1), (R2), (R5) and Claims 3.1 and 3.6. If 8 ≤ dH×(u3) ≤ 9,

then w′(z) ≥ 4−4+min{4− 1
2 ×3− 1

3 ×2, 5− 1
2 ×4− 1

3 ×3}+2×min{ 83 −
1
3 ×4, 4− 1

2 ×3− 1
3 ×2, 5− 1

2 ×4−
1
3 ×3, 6− 1

2 ×5−6 · 1
3 }−4− 1

3 = 1
6 > 0 by (R1), (R2), (R5) and Claims 3.1 and 3.6. If dH×(u3) = 10, then

w′(z) ≥ 4−4+(6− 1
2×5−5· 13 )+2×min{ 83−

1
3×4, 4− 1

2×3− 1
3×2, 5− 1

2×4− 1
3×3, 6− 1

2×5−6· 13 }−4− 1
3 = 0

by (R1), (R2), (R5) and Claims 3.1 and 3.6. By symmetry, we have w′(z) ≥ 0 when dH×(u2) = 3 or
dH×(u3) = 3 or dH×(u4) = 3.

By the analysis above (1)–(6), the nonempty set Y ∩ (V(H×) \ V(H)) = ∅.

Finally, we choose arbitrarily a real vertex z from V(H). Note that 3 ≤ dH×(z) ≤ 10 by Claims 3.1
and 3.4. If z is a real 3-vertex, then w′(z) = 3− 4 + 3× 1

3 = 0 by (R1) since z has three neighbors. If z is
a real 4-vertex, then w′(z) = 4− 4 = 0 since no rule is applied to it. If z is a real 5-vertex, then ft(z) ≤ 3
and n3

H×(z) + n4
H×(z) = 0 by Claims 3.2, 3.4 and 3.6. Thus, w′(z) ≥ 5 − 4 − 3 × 1

3 = 0 by (R2). In the
following, we consider that z is a real 6+-vertex.

Assume that z is not adjacent to any false 4-vertex. Then ft(z) ≤ b 2dH× (z)
3 c by Claim 3.6. If 6 ≤

dH×(z) ≤ 9, then w′(z) ≥ dH×(z)−4− (dH×(z)−6)× 1
3 −b

2dH× (z)
3 c× 1

2 ≥ 0 by (R2) and Claims 3.4 and 3.6.
If dH×(z) = 10, then w′(z) ≥ dH×(z)− 4−max{12 ft(z) + 1

3n3
H×(z)| ft(z) ≤ 6 and ft(z) + n3

H×(z) ≤ 13} ≥ 2
3 by

Claim 3.6.
Assume that z is adjacent to one false 4-vertex. Note that ft(z) ≤ 6 and ft(z) + n3

H×(z) ≤ 12 when
dH×(z) = 10. By (R3), (R5) and Claim 3.4, it is easy to verify w′(z) ≥ 0. Thus, the nonempty set
Y ∩ V(H) = ∅.

By the analysis above, the nonempty set Y ∩ (V(H×) ∪ F(H×)) = ∅, This is a contradiction. The
proof of Theorem 1.2 is completed.

4. Conclusions

Graph coloring is one of the important research contents of graph theory. In recent years, neighbor
distinguishing colorings have gradually become one of the research hotspots of graph coloring. The
paper is devoted to the study of neighbor sum distinguishing list total coloring of graphs. We proved
that cht

Σ(G) ≤ ∆(G) + 3 for every IC-planar graph with ∆ ≥ 10 but without 5-cycles, which implies that
Conjecture 1.2 holds for this class of graphs. There are many results about neighbor sum distinguishing
list total coloring. According to currently known results, it yields a question for further research as
follow:

Does Conjecture 1.2 hold for every IC-planar graph with 4 ≤ ∆ ≤ 9 but without 5-cycles?
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