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1. Introduction

Numerous generalizations of the usual metric space have been established in the field of fixed point
theory over the past few decades. Researchers have proved fixed point theorems for Banach type
contractions, Kannan type contractions and several [1–3] other types of contraction mappings as a
result of the discovery of these generalized metric spaces. By adding a constant to the right-hand side
of the triangle inequality, Czerwik [4] proposed the concept of the fascinating generalized metric space
known as b-metric space. The b-metric space has a different topology than the usual metric space.
In 2017, Kamran et al. [5] extended the definition of b-metric spaces to extended b-metric spaces,
and proved the related fixed point theorem; see [6–8]. In 2018, Mlaiki et al. [9] further generalized
the extended b-metric spaces to controlled metric spaces by introducing a binary control function on
the right side of the triangle inequality. They also established the corresponding Banach fixed point
result in the same space. In 2019, Lattef [10] established a Kannan type fixed point result in controlled
metric spaces. In 2020, Ahmad et al. [11] established a fixed point result for Reich type contractions in
controlled metric spaces. As a further generalization of controlled metric spaces, Abdeljawad et al. [12]
introduced double controlled metric type spaces (DCMTS for short) by employing two binary control
functions on the right side of the triangle inequality. In 2020, Mlaiki [13] introduced double controlled
metric-like spaces as a further generalization of double controlled metric type spaces (DCMTS for
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short). He established the corresponding Banach type and Kannan type fixed point results in the
same space. He also provided some non-trivial examples and applications. The self distance need not
be zero in double controlled metric-like spaces (DCMLS), which makes them significantly different
from DCMTS. In [14], A. Tas established a fixed point result for Reich type contractions in DCMLS.
Since the Reich type contraction is a generalization of Banach type and Kannan type contractions, it
generalizes the results proved by Mlaiki in [13].

In this paper, we aim to establish a fixed point result for the Hardy-Rogers type contraction [15]
in DCMLS. The Hardy-Rogers type contraction is a generalization of the Reich type contraction and
various types of other contractions. It is interesting to explicitly state the several types of contractions
mentioned above.

Remark 1.1. Let (X, ζ) be a complete metric space and T : X → X be a self-map, and µ, τ ∈ X. The
fixed point theory of the following contraction mappings is well studied in the literature.

1) Banach Type: ζ(Fµ, Fτ) ≤ kζ(µ, τ) where k ∈ (0, 1).
2) Kannan Type: ζ(Fµ, Fτ) ≤ k[ζ(µ, Fµ) + ζ(τ, Fτ)] where k ∈ (0, 1

2 ).
3) Chatterjee Type: ζ(Fµ, Fτ) ≤ k[ζ(µ, Fτ) + ζ(τ, Fµ)] where k ∈ (0, 1

2 ).
4) Reich Type: ζ(Fµ, Fτ) ≤ αζ(µ, τ)+βζ(µ, Fµ)+γζ(τ, Fτ)] where α, β, γ ∈ (0, 1) with α+β+γ < 1.
5) Hardy-Rogers Type: ζ(Fµ, Fτ) ≤ αζ(µ, τ) + βζ(µ, Fµ) + γζ(τ, Fτ) + δζ(µ, Fτ) +ωζ(τ, Fµ) where

α, β, γ, δ, ω ∈ [0, 1) with α + β + γ + δ + ω < 1.

We observe that the Hardy-Rogers type contraction is a generalization of the Banach type (with α =

k, β = γ = δ = ω = 0), Kannan type (with α = 0, β = γ = k, δ = ω = 0), Chatterjee type (with
α = β = γ = 0, δ = ω = k) and Reich type contractions (with δ = ω = 0).

2. Preliminaries

We begin with a definition of the extended b-metric spaces introduced by Kamran et al. [5].

Definition 2.1. Let X be a non empty set and ψ1 : X × X → [1,+∞). A function ζ : X × X → [0,+∞)
is called an extended b-metric type if it satisfies:

1) ζ(µ, τ) = 0 if and only if µ = τ for all µ, τ ∈ X;
2) ζ(µ, τ) = ζ(τ, µ) for all µ, τ ∈ X;
3) ζ(µ, ρ) ≤ ψ1(µ, τ)[ζ(µ, τ) + ζ(τ, ρ)] for all µ, τ, ρ ∈ X.

The pair (X, ζ) is called an extended b-metric space.

Nabil Mlaiki et al. [9] proposed the following new generalization of extended b-metric spaces called
controlled metric type spaces.

Definition 2.2. Let X be a non empty set and ψ1 : X × X → [1,+∞). A function ζ : X × X → [0,+∞)
is called a controlled metric type if it satisfies

1) ζ(µ, τ) = 0 if and only if µ = τ for all µ, τ ∈ X;
2) ζ(µ, τ) = ζ(τ, µ) for all µ, τ ∈ X;
3) ζ(µ, ρ) ≤ ψ1(µ, τ)ζ(µ, τ) + ψ1(τ, ρ)ζ(τ, ρ) for all µ, τ, ρ ∈ X.

The pair (X, ζ) is called controlled a metric type space.
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In [12], Thabed Abdeljawad et al. proposed the following generalization of controlled metric type
space and named it a double controlled type metric space (DCMTS).

Definition 2.3. (DCMTS) Let X be a non empty set and ψ1, ψ2 : X × X → [1,+∞). A function
ζ : X × X → [0,+∞) is called a double controlled metric type if it satisfies:

1) ζ(µ, τ) = 0 if and only if µ = τ for all µ, τ ∈ X;
2) ζ(µ, τ) = ζ(τ, µ) for all µ, τ ∈ X;
3) ζ(µ, ρ) ≤ ψ1(µ, τ)ζ(µ, τ) + ψ2(τ, ρ)ζ(τ, ρ) for all µ, τ, ρ ∈ X.

The pair (X, ζ) is called a double controlled metric type space.

Example 2.1. [12] Let X = [0,+∞). Define ζ : X × X → [0,+∞) by

ζ(µ, τ) =


0, if and only if µ = τ,
1
µ
, if µ ≥ 1 and τ ∈ [0, 1),

1
τ
, if τ ≥ 1 and µ ∈ [0, 1),

1, if not.

Consider ψ1, ψ2 : X2 → [1,+∞) as

ψ1(µ, τ) =

 µ, if µ, τ ≥ 1,
1, if not,

and ψ2(µ, τ) =

1, if µ, τ < 1,
max{µ, τ}, if not.

The pair (X, ζ) is a double controlled metric type space.

In [13], Mlaiki et al. generalized double controlled metric type spaces (DCMTS) to double
controlled metric-like spaces (DCMLS) by weakening the condition (2.3) in Definition 2.3 such that
the self-distance is not required to be zero.

Definition 2.4. (DCMLS) Let X be a non empty set and ψ1, ψ2 : X × X → [1,+∞). A function ζ :
X × X → [0,+∞) is called a double controlled metric type if it satisfies:

1) ζ(µ, τ) = 0 implies µ = τ;
2) ζ(µ, τ) = ζ(τ, µ) for all µ, τ ∈ X;
3) ζ(µ, ρ) ≤ ψ1(µ, τ)ζ(µ, τ) + ψ2(τ, ρ)ζ(τ, ρ) for all µ, τ, ρ ∈ X.

The pair (X, ζ) is called a double controlled metric type space.

Every DCMLS is a DCMTS ; however, the converse is not true in general, as shown by the
following example.

Example 2.2. [13] Let X = [0,+∞). Define ζ : X × X → [0,+∞) by

d(µ, τ) =



0, if µ = τ , 0,
1
2 , if µ = τ = 0,
1
µ
, if µ ≥ 1 and τ ∈ [0, 1),

1
τ
, if τ ≥ 1 and µ ∈ [0, 1),

1, otherwise.
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Let ψ1, ψ2 : X × X → [1,+∞) be

ψ1(µ, τ) =

µ, if µ, τ ≥ 1,
τ, otherwise,

and

ψ2(µ, τ) =

µ, if µ, τ < 1,
max{µ, τ}, otherwise.

Then, it is easy to verify that (X, d) is a double controlled metric-like space. However, (X, d) is not a
double controlled metric type space.

Example 2.3. [13] Let X = {a, b, c} and define ζ : X × X → [0,+∞) by

ζ(a, a) = ζ(b, b) = 0, ζ(c, c) =
1

10
,

ζ(a, b) = ζ(b, a) = 1,

ζ(a, c) = ζ(c, a) =
1
2
,

ζ(b, c) = ζ(c, b) =
2
5
.

Define ψ1, ψ2 : X × X → [1,+∞),

ψ1(a, a) = ψ1(b, b) = ψ1(c, c) = ψ1(a, c) = 1, ψ1(a, b) =
11
10
, ψ1(b, c) =

8
5
,

ψ2(a, a) = ψ2(b, b) = ψ2(c, c) = 1, ψ2(a, b) =
11
10
, ψ2(a, c) =

3
2
, ψ2(b, c) =

5
4
.

Then, it is easy to verify (X, ζ) is a double controlled metric-like space but not a double controlled
metric type space.

We recall the topology of double controlled metric-like spaces.

Definition 2.5. [13] Let (X, ζ) be a double controlled metric-like space. For each sequence {θn} ∈ X,
we say

1) that {θ} is a Cauchy sequence if lim
n,m→∞

d (θn, θm) exists and is finite,

2) that {θn} converges to θ if lim
n→∞

d (θn, θ) = 0,
3) that (X, θ) is complete if every Cauchy sequence in X is convergent to some point in X.

Mlaiki [13] established the following Banach and Kannan type fixed point results in DCMLS .

Theorem 2.1. Let (X, ζ) be a complete double controlled metric like space (DCMLS) with ψ1, ψ2 :
X × X → [1,+∞). Let F : X → X be a mapping such that

ζ(Fµ, Fτ) ≤ kζ(µ, τ),

for all µ, τ ∈ X, where k ∈ (0, 1). For θ0 ∈ X, take θn = Fnθ0. Suppose that

sup
m≥1

lim
i→∞

ψ1 (θi+1, θi+2)
ψ1 (θi, θi+1)

ψ2 (θi+1, θm) <
1
k
.

In addition, assume that, for every µ ∈ X, we have that limn→∞ ψ1(µ, θn) and limn→∞ ψ2 (θn, µ) exist and
are finite. Then, F has a unique fixed point.
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Theorem 2.2. Let (X, ζ) be a complete double controlled metric like space (DCMLS) with ψ1, ψ2 :
X × X → [1,+∞). Let F : X → X be a mapping such that

ζ(Fµ, Fτ) ≤ k[ζ(µ, Fµ) + ζ(τ, Fτ)].

for all µ, τ ∈ X, where k ∈ (0, 1
2 ). For θ ∈ X, take θ = Fnθ0. Suppose that

sup
m≥1

lim
i→∞

ψ1 (θi+1, θi+2)
ψ1 (θi, θi+1)

ψ2 (θi+1, θm) <
1 − k

k
.

In addition, assume that, for every µ ∈ X, we have that limn→∞ ψ1(µ, θn) exists and is finite, and
limn→∞ ψ2 (θn, µ) < 1

k . Then, F has a fixed point. Moreover, if ζ(θ, θ) = 0 for every fixed point θ, then
the fixed point is unique.

In [14], A. Tas generalized Theorems 2.1 and 2.2 by proving the following theorem for the Reich
type contraction.

Theorem 2.3. Let (X, ζ) be a complete double controlled metric like space (DCMLS) with ψ1, ψ2 :
X × X → [1,+∞). Let F : X → X be a mapping satisfying the Reich condition, that is,

ζ(Fµ, Fτ) ≤ αζ(µ, τ) + βζ(µ, Fµ) + γζ(τ, Fτ),

where α, β, γ ∈ (0, 1) with α + β + γ < 1. Let α+β

1−γ = h for all µ, τ ∈ X. For θ ∈ X, take θn = Fnθ0.
Suppose that

sup
m≥1

lim
i→∞

ψ1 (θi+1, θi+2)
ψ1 (θi, θi+1)

ψ2 (θi+1, θm) <
1
h
.

In addition, assume that, for every µ ∈ X, we have that limn→∞ ψ1(µ, θn) exists finitely, and
limn→∞ ψ2 (µ, θn) < 1

γ
. Then, F has a unique fixed point.

Our goal is to generalize Theorem 2.3 in double controlled metric like spaces (DCMLS) for Hardy-
Rogers type contractions. By Remark 1.1, we see that the Reich type contraction is a special case of
the Hardy-Rogers contraction.

3. Main result

The following result is analogous to the Hardy-Rogers type fixed point theorem.

Theorem 3.1. Let (X, ζ) be a complete double controlled metric like space (DCMLS) with ψ1, ψ2 :
X × X → [1,+∞). Let F : X → X be a mapping satisfying the Hardy-Rogers contraction, that is,

ζ(Fµ, Fτ) ≤ αζ(µ, τ) + βζ(µ, Fµ) + γζ(τ, Fτ) + δζ(µ, Fτ) + ωζ(τ, Fµ), (3.1)

for all µ, τ ∈ X, and α, β, γ, δ, ω ∈ [0, 1), α + β + γ + δ + ω < 1. For θ0 ∈ X, define a sequence {θn} by
θn = Fnθ0. Suppose that the following conditions are satisfied:

1) sup
m≥1

lim
i→∞

[α + β + δψ1(xi, θi+1)]ψ2 (θi+1, θm)
1 − γ − δψ2(θi+1, θi+2) − ωψ1(θi+1, θi+2) − ωψ2(θi+2, θi+1)

ψ1 (θi+1, θi+2)
ψ1 (θi, θi+1)

< 1;
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2) lim
n→∞

n∏
k=0

ψ1 (θn, θn+1) [α + β + δψ1(xn−k−1, θn−k)]
1 − γ − δψ2(θn−k, θn−k+1) − ωψ1(θn−k, θn−k+1) − ωψ2(θn−k+1, θn−k)

= 0;

3) 1 − γ − δψ2(θn, θn+1) − ωψ1(θn, θn+1) − ωψ2(θn+1, θn) > 0;
4) For every µ ∈ X, lim

n→∞
ψ1(µ, θn), lim

n→∞
ψ1(θn, µ), lim

n→∞
ψ2(µ, θn) exist finitely, and lim

n→∞
ψ2(θn, µ) <

1
γ + δ

.

Then, F has a fixed point. In addition, if α + δ + ω , 1 and β = γ = 0, then the fixed point of F is
unique.

Proof. Let θ0 ∈ X. Define a sequence {θn} in X with θn = Fnθ0 so that θn+1 = Fθn for all n ∈ N. Letting
µ = θn−1 and τ = θn in the Hardy-Rogers contraction, we have

ζ(θn, θn+1) = d(F(θn−1), Fθn)
≤ αζ(θn−1, θn) + βζ(θn−1, Fθn−1) + γζ(θn, Fθn)
+ δζ(θn−1, Fθn) + ωζ(θn, Fθn−1)
≤ αζ(θn−1, θn) + βζ(θn−1, θn) + γζ(θn, θn+1)
+ δζ(θn−1, θn+1) + ωζ(θn, θn).

(3.2)

Note that in DCMLS, ζ(θn, θn) , 0 in general. By applying the triangle inequality, we obtain

ζ(θn, θn) ≤ ψ1(θn, θn+1)ζ(θn, θn+1) + ψ2(θn+1, θn)ζ(θn+1, θn) (3.3)

and
ζ(θn−1, θn+1) ≤ ψ1(θn−1, θn)ζ(θn−1, θn) + ψ2(θn, θn+1)ζ(θn, θn+1). (3.4)

Using inequality (3.3) and (3.4) in (3.2), we get

ζ(θn, θn+1) ≤ αζ(θn−1, θn) + βζ(θn−1, θn) + γζ(θn, θn+1)
+ δ

[
ψ1(θn−1, θn)ζ(θn−1, θn) + ψ2(θn, θn+1)ζ(θn, θn+1)

]
+ ω

[
ψ1(θn, θn+1)ζ(θn, θn+1) + ψ2(θn+1, θn)ζ(θn+1, θn)

]
.

(3.5)

Rearranging inequality (3.5), we get

(1 − γ − δψ2(θn, θn+1) − ωψ1(θn, θn+1) − ωψ2(θn+1, θn))ζ(θn, θn+1)
≤ [α + β + δψ1(θn−1, θn)]ζ(θn−1, θn).

(3.6)

By the condition (3.1) of Theorem 3.1, we have

1 − γ − δψ2(θn, θn+1) − ωψ1(θn, θn+1) − ωψ2(θn+1, θn) > 0,

and thus we obtain

ζ(θn, θn+1) ≤
α + β + δψ1(θn−1, θn)

1 − γ − δψ2(θn, θn+1) − ωψ1(θn, θn+1) − ωψ2(θn+1, θn)
ζ(θn−1, θn). (3.7)

For convenience, we let

Rn =
α + β + δψ1(θn−1, θn)

1 − γ − δψ2(θn, θn+1) − ωψ1(θn, θn+1) − ωψ2(θn+1, θn)
, (3.8)
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so that we have

ζ(θn, θn+1) ≤ Rnζ(θn−1, θn)
≤ RnRn−1ζ(θn−2, θn−1)
≤ RnRn−1Rn−2ζ(θn−3, θn−2)
...

≤ RnRn−1Rn−2 . . .R0d(θ0, θ1)

≤

n∏
k=0

Rn−kd(θ0, θ1).

(3.9)

We further let

Pn =

n∏
k=0

Rn−k, (3.10)

so that inequality (3.9) becomes

ζ(θn, θn+1) ≤ Pnζ(θ0, θ1). (3.11)

Now, for all m, n ∈ N with m > n, we have

ζ (θn, θm) ≤ ψ1 (θn, θn+1) ζ (θn, θn+1) + ψ2 (θn+1, θm) ζ (θn+1, θm)

≤ ψ1 (θn, θn+1) ζ (θn, θn+1)

+ ψ2 (θn+1, θm)ψ1 (θn+1, θn+2) ζ (θn+1, θn+2)

+ ψ2 (θn+1, θm)ψ2 (θn+2, θm) ζ (θn+2, θm)

≤ ψ1 (θn, θn+1) ζ (θn, θn+1)

+ ψ2 (θn+1, θm)ψ1 (θn+1, θn+2) ζ (θn+1, θn+2)

+ ψ2 (θn+1, θm)ψ2 (θn+2, θm)ψ1 (θn+2, θn+3) ζ (θn+2, θn+3)

+ ψ2 (θn+1, θm)ψ2 (θn+2, θm)ψ1 (θn+3, θm) ζ (θn+3, θm)
...

≤ ψ1 (θn, θn+1) ζ (θn, θn+1)

+

m−2∑
i=n+1

 i∏
j=n+1

ψ2

(
θ j, θm

)ψ1 (θi, θi+1) ζ (θi, θi+1)

+

m−1∏
i=n+1

ψ2 (θi, θm) ζ (θm−1, θm) .

(3.12)
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Using inequality (3.11) in (3.12), we get

ζ (θn, θm) ≤ ψ1 (θn, θn+1) Pnζ(θ0, θ1)

+

m−2∑
i=n+1

 i∏
j=n+1

ψ2

(
θ j, θm

)ψ1 (θi, θi+1) Piζ(θ0, θ1)

+

m−1∏
i=n+1

ψ2 (θi, θm) Pm−1ζ(θ0, θ1)

≤ ψ1 (θn, θn+1) Pnζ (θ0, θ1)

+

m−1∑
i=n+1

 i∏
j=0

ψ2

(
θ j, θm

)ψ1 (θi, θi+1) Piζ (θ0, θ1) .

(3.13)

We used the fact that ψ1(µ, τ) ≥ 1 and ψ2(µ, τ) ≥ 1. Let

Sp =

p∑
i=0

 i∏
j=0

ψ2

(
θ j, θm

)ψ1 (θi, θi+1) Piζ (θ0, θ1) . (3.14)

Therefore, inequality (3.13) becomes,

ζ (θn, θm) ≤ [ψ1 (θn, θn+1) Pn + (Sm−1 − Sn)]ζ (θ0, θ1) . (3.15)

Now, consider

Gi =

 n∏
j=0

ψ2

(
θ j, θm

)ψ1 (θi, θi+1) Piζ (θ0, θ1) , (3.16)

so that we have

Gi+1

Gi
=

Pi+1

Pi
ψ2 (θi+1, θm)

ψ1 (θi+1, θi+2)
ψ1 (θi, θi+1)

. (3.17)

We further have

Pi+1

Pi
=

i+1∏
k=0

Ri+1−k

i∏
k=0

Ri−k

=
Ri+1RiRi−1Ri−2Ri−2 . . .R1R0

RiRi−1Ri−2Ri−2 . . .R1R0

= Ri+1

=
α + β + δψ1(xi, θi+1)

1 − γ − δψ2(θi+1, θi+2) − ωψ1(θi+1, θi+2) − ωψ2(θi+2, θi+1)
.

(3.18)

Using Eq (3.18) in (3.17), we obtain

Gi+1

Gi
=

[α + β + δψ1(θi, θi+1)]ψ2 (θi+1, θm)
1 − γ − δψ2(θi+1, θi+2) − ωψ1(θi+1, θi+2) − ωψ2(θi+2, θi+1)

ψ1 (θi+1, θi+2)
ψ1 (θi, θi+1)

. (3.19)
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By the condition (3.1) of Theorem 3.1, we have Gi+1
Gi

< 1. Therefore, by the ratio test, the limit of the
sequence {Sn} exists finitely, which implies that {Sn} is Cauchy.

By condition (3.1), we further obtain

lim
n→∞

ψ1 (θn, θn+1) Pn = lim
n→∞

ψ1 (θn, θn+1)
n∏

k=0

Rn−k

= lim
n→∞

n∏
k=0

ψ1 (θn, θn+1) (α + β + δψ1(xn−k−1, θn−k))
1 − γ − δψ2(θn−k, θn−k+1) − ωψ1(θn−k, θn−k+1) − ωψ2(θn−k+1, θn−k)

= 0.

(3.20)

Letting m, n tend to infinity in (3.15), we get

lim
m,n→∞

ζ (θn, θm) = 0. (3.21)

So, the sequence {θn} is Cauchy. SinceX is a complete double controlled metric-like space, there exists
s ∈ X such that {θn} converges to s, so

lim
n→∞

ζ (θn, s) = 0. (3.22)

Next, we prove that s is a fixed point of F, that is, F(s) = s.

ζ(s, Fs) ≤ ψ1(s, θn+1)ζ(s, θn+1) + ψ2(θn+1, Fs)ζ(θn+1, Fs)
= ψ1(s, θn+1)ζ(s, θn+1) + ψ2(θn+1, Fs)ζ(Fθn, Fs)
≤ ψ1(s, θn+1)ζ(s, θn+1) + ψ2(θn+1, Fs)

[
αζ(θn, s) + βζ(θn, Fθn)

+ γζ(s, Fs) + δζ(θn, Fs) + ωζ(s, Fθn)
]

= ψ1(s, θn+1)ζ(s, θn+1) + ψ2(θn+1, Fs)
[
αζ(θn, s) + βζ(θn, θn+1)

+ γζ(s, Fs) + δζ(θn, Fs) + ωζ(s, θn+1)
]

= ψ1(s, θn+1)ζ(s, θn+1) + ψ2(θn+1, Fs)
[
αζ(θn, s) + βζ(θn, θn+1)

+ γζ(s, Fs) + δ[ψ1(θn, s)ζ(θn, s) + ψ2(s, Fs)ζ(s, Fs)]
+ ωζ(s, θn+1)

]
.

(3.23)

Using the condition (3.1), and letting n tend to infinity in (3.23), we obtain

ζ(s, Fs) ≤ lim
n→∞

ψ2(θn+1, Fs)(γ + δ)ζ(s, Fs). (3.24)

Suppose that F(s) , s. By the condition (3.1) of Theorem 3.1, we have limn→∞ ψ2(θn+1, Fs) < 1
γ+δ

.
Thus the inequality (3.24) implies

0 < ζ(s, Fs) < ζ(s, Fs), (3.25)

which is a contradiction. This implies that F(s) = s.
Let α + δ + ω , 1 and β = γ = 0. Suppose that F has two fixed points, s and t. Then,

ζ(s, t) = ζ(Fs, Ft) ≤ αζ(s, t) + βζ(s, Fs) + γζ(t, Ft) + δζ(s, Ft) + ωζ(t, Fs)
= αζ(s, t) + βζ(s, s) + γζ(t, t) + δζ(s, t) + ωζ(t, s),

(3.26)
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which implies

(1 − α − δ − ω)ζ(s, t) ≤ βζ(s, s) + γζ(t, t). (3.27)

With α + δ + ω , 1 and β = γ = 0, the inequality (3.27) implies that ζ(s, t) = 0, which further implies
that s = t. �

Next, we state some special cases of Theorem 3.1.

Corollary 3.1. With δ = ω = 0 in Theorem 3.1, we obtain Theorem 2.3 for the Reich contraction.

Note that the condition (3.1) of Theorem 3.1 reduces to lim
n→∞

(
α + β

1 − γ

)n

= 0, which is used in the proof of

Theorem 2.3.

Corollary 3.2. With β = γ = δ = ω = 0 in Theorem 3.1, we obtain Theorem 2.1 for the Banach
contraction.

Corollary 3.3. With α = δ = ω = 0, β = γ ∈ [0, 1
2 ) in Theorem 3.1, we obtain Theorem 2.2 for the

Kannan contraction.

Corollary 3.4. Since DCMLS are a generalization of DCMTS, Theorem 3.1 holds in DCMTS as well.

4. Applications

Finally, we provide few applications of our proven result.

Example 4.1. Let X = {3, 1, 5}. Consider a map ζ : X × X −→ [0,∞) defined by:

ζ(µ, τ) 3 1 5
3 0 10 6
1 10 0 4
5 6 4 1

Given ψ1, ψ2 : X × X −→ [1,+∞) as

ψ1(µ, τ) 3 1 5
3 1 11

10 1
1 11

10 1 6
5

5 1 6
5 1

and

ψ2(µ, τ) 3 1 5
3 1 11

10
7
6

1 11
10 1 1

5 7
6 1 1

it is easy to verify that (X, ζ) is a complete double controlled metric like space with control functions
ψ1 and ψ2.

Define a function F : X → X by

Fµ =

{
2, if µ = 3,
1, if µ ∈ {1, 5}.

Then, F has a fixed point.
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Proof. We take α = 1
5 , β = 1

3 , γ = 1
20 , δ = 1

20 , ω = 1
30 . Now, consider the following three cases to prove

the condition (3.1) of Theorem 3.1
Case 1. µ = 3, τ = 1, ζ(F3, F1) = ζ(5, 1) = 4 ≤ 77

15 = 1
5ζ(3, 1)+ 1

3ζ(3, 5)+ 1
10ζ(1, 1)+ 1

10ζ(3, 1)+ 1
30ζ(1, 5).

Case 2. µ = 3, τ = 5, ζ(F3, F5) = ζ(5, 1) = 4 < 139
30 = 1

5ζ(3, 5)+ 1
3ζ(3, 5)+ 1

10ζ(5, 1)+ 1
10ζ(3, 1)+ 1

30ζ(5, 5).
Case 3. µ = 1, τ = 5, ζ(F1, F5) = ζ(1, 1) = 0 < 11

5 = 1
5ζ(1, 5)+ 1

3ζ(1, 1)+ 1
10ζ(5, 1)+ 1

10ζ(1, 1)+ 1
30ζ(5, 1).

Let θ0 = 1 ∈ X. Then, θn = Fnθ0 = 1 for all n ≥ 1. Therefore, we have ψ1(θi, θ j) = ψ1(1, 1) = 1
and ψ2(θi, θ j) = ψ2(1, 1) = 1 for all indices i and j. The condition (3.1) of Theorem 3.1 becomes

sup
m≥1

lim
i→∞

α + β + δ

1 − γ − δ − ω − ω
=

19
22

< 1.

The condition (3.1) of Theorem 3.1 becomes

lim
n→∞

(
α + β + δ

1 − γ − δ − ω − ω

)n

= lim
n→∞

(
19
22

)n

= 0.

The condition (3.1) of Theorem 3.1 becomes

1 − γ − δψ2(θn, θn+1) − ωψ1(θn, θn+1) − ωψ2(θn+1, θn) =
11
15
, 0.

It is easy to verify that for every µ ∈ X, limn→∞ ψ1(µ, θn) = ψ1(µ, 1), limn→∞ ψ1(θn, µ) =

ψ1(1, µ), limn→∞ ψ2(µ, θn) = ψ2(µ, 1) exist finitely, and limn→∞ ψ2(θn, µ) = ψ2(1, µ) < 1
γ+δ

= 5 for
every µ ∈ X. Therefore, all the conditions of Theorem 3.1 are satisfied, and we conclude that F has a
fixed point given by µ = 1. �

Example 4.2. Consider the space of all continuous real valued functions X = C[0, 1], and
ζ(r(µ), h(µ)) : X × X −→ [0,+∞) is defined as

ζ(r(µ), h(µ)) = sup
µ∈[0,1]

|r(µ) − h(µ)|2.

Define the control functions ψ1, ψ2 : X × X → [1,+∞) by

ψ1 (r(µ), h(µ)) = 1 + sup
µ∈[0,1]

|r(µ)h(µ)|

and
ψ2 (r(µ), h(µ)) = 1, for all r, h ∈ X.

It is not difficult to see that (X, ζ) is a complete double controlled metric like space.

Theorem 4.1. Let X = C[0, 1] be the complete double controlled metric like space given in
Example 4.2. Consider the following Fredholm integral equation:

r(µ) =

∫ 1

0
l(µ, ω, r(µ))dω, (4.1)

where l(µ, ω, r(µ)) : [0, 1] × [0, 1] −→ R is a given continuous function satisfying the following
condition for all r(µ), h(µ) ∈ X, µ, ω ∈ [0, 1] :

|l(µ, ω, r(µ)) − l(µ, ω, h(µ))| ≤
√

H(µ)
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where

H(µ) = αd(r(µ), h(µ)) + βd(r(µ), Fr(µ)) + γd(h(µ), Fh(µ)),

F(r(µ)) =
∫ 1

0
l(µ, ω, r(µ))dω, and α, β, γ, ∈ [0, 1), α + β + γ < 1.

Then, the integral Eq (4.1) has a unique solution.

Proof. Let F : C[0, 1] −→ C[0, 1] be defined by F(r(µ)) =
∫ 1

0
l(µ, ω, r(µ))dω, and then

ζ(Fr(µ), Fh(µ)) = sup
µ∈[0,1]

|Fr(µ) − Fh(µ)|2

= sup
µ∈[0,1]

|

∫ 1

0
l(µ, ω, r(µ))dω −

∫ 1

0
l(µ, ω, h(µ))dω|2

≤ sup
µ∈[0,1]

∫ 1

0
|l(µ, ω, r(µ))dω − l(µ, ω, h(µ))|2dω

≤ sup
µ∈[0,1]

∫ 1

0
|
√

H(µ)|2dω

≤ sup
µ∈[0,1]

|H(µ)|
∫ 1

0
dω

≤ sup
µ∈[0,1]

H(µ)

≤ αd(r(µ), h(µ)) + βd(r(µ), Fr(µ)) + γd(h(µ), Fh(µ)).

(4.2)

It is not difficult to verify the other conditions of Theorem 3.1. Therefore, there is a function r ∈ C[0, 1]
such that Fr = r. This implies that the integral Eq (4.1) has a solution. �

5. Conclusions

In this paper, we have established a Hardy-Rogers type contraction mapping theorem in the setting
of double controlled metric like spaces. We have obtained some of the classical results as a special
case of our proven result. Following that, we presented an example to demonstrate the veracity of our
main result. Given that the study of various contraction mappings and the study of generalized metric
spaces are two key research fields in fixed point theory, we propose some open problems for future
work.

i) Consider replacing the Hardy-Rogers contraction given by condition (3.1) with some non-trivial
rational contraction generalizing other types of contractions, like Ciric contraction, Jaggi and Das
type contraction, etc.

ii) Establishing Theorem (3.1) in other generalized metric spaces like double controlled quasi metric
spaces, M-metric spaces, triple controlled metric spaces, rectangular metric spaces, and so on.

iii) Consider placing the constants α, β, γ, δ, ω in Theorem 3.1 with some special functions.
iv) Establishing new and non-trivial applications of Theorem 3.1.
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