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Abstract: In this paper, we study the following problems with a general nonlinearity: − ∆pu − ∆qu + V(εx)(|u|p−2u + |u|q−2u) = f (u), in RN ,

u ∈ W1,p(RN) ∩W1,q(RN), in RN ,

where ε > 0 is a small parameter, 2 ≤ p < q < N, the potential V is a positive continuous function
having a local minimum. f : R→ R is a C1 subcritical nonlinearity. Under some proper assumptions of
V and f , we obtain the concentration of positive solutions with the local minimum of V by applying the
penalization method for above equation. We must note that the monotonicity of f (s)

sp−1 and the so-called
Ambrosetti-Rabinowitz condition are not required.
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1. Introduction and main results

In this paper, we investigate the concentration of positive solutions for the following double-phase
problems with a general nonlinearity: − ∆pu − ∆qu + V(εx)(|u|p−2u + |u|q−2u) = f (u), in RN ,

u ∈ W1,p(RN) ∩W1,q(RN), in RN ,
(1.1)

where ε > 0 is a small parameter, 2 ≤ p < q < N, the potential V is a positive continuous function
having a local minimum. f : R→ R is a C1 subcritical nonlinearity.

The content of this paper is closely related to the double phase problems, we briefly introduce
the development of this research. It is common knowledge that the first contributions to this field
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are due to Ball [9], in relationship with problems in nonlinear elasticity and composite materials.
The double-phase problem (1.1) is motivated by numerous local and nonlocal models arising in
mathematical physics. For example, we can refer to Born-Infeld equation [11, 12] which appears in
electromagnetism, electrostatics and electrodynamics as a model based on a modification of Maxwell’s
Lagrangian density:

− div
 ∇u(

1 − 2|∇u|2
)1/2

 = h(u) in Ω.

In fact, according to the Taylor formula, we obtain that

(1 − x)−1/2 = 1 +
x
2
+

3
2 · 22 x2 +

5!!
3! · 23 x3 + · · · +

(2n − 3)!!
(n − 1)!2n−1 xn−1 + · · · for |x| < 1.

Taking x = 2|∇u|2 and adopting the first order approximation, we get a particular case of the
problem (1.1) for p = 2 and q = 4.

When p = q, the problem (1.1) becomes p-Laplace equation:

−εp∆pu + V(x)|u|p−2u = f (u) in RN . (1.2)

Elliptic problems like (1.2), in the semilinear case which corresponds to p = 2, arise from the problem
of obtaining standing waves for the nonlinear Schrödinger equations given by

iℏ
∂ψ

∂t
+
ℏ2

2
∆ψ − V(x)ψ + f (ψ) = 0, (t, x) ∈ R × RN ,

where i is the imaginary unit and ℏ is the Planck constant. Further backgrounds for these equations can
be found in [13, 41] and references therein. Gloss in [23] studied existence and asymptotic behavior
of positive solutions by using penalization for quasilinear elliptic equations of (1.2). Note that, f is a
subcritical nonlinearity without Ambrosetti-Rabinowitz condition( (AR) condition in short):

0 < θ
∫ u

0
f (s)ds ≤ f (u)u for θ ∈ (p, p∗).

In [21], by using a variational approach based on the local mountain-pass theorem, the author proved
the existence and concentration of positive bound states of the equation involving critical growth:
f (u) = g(u) + up∗−1 in (1.2). However this g requires the (AR) condition and the monotonicity of f (s)

sp−1 .

In [24], He and Li studied the following elliptic problem:{
−εp∆pu + V(z)|u|p−2u − f (u) = 0 in Ω,
u = 0 on ∂Ω, u > 0 in Ω, N > p > 2,

whereΩ is a possibly unbounded domain in RN with empty or smooth boundary, ε is a small parameter.
f ∈ C1 (R+,R) is of subcritical and V : RN → R is a locally Hölder continuous function. As a result,
they obtained the existence and concentration of weak solutions by penalization method.

When ε = 1 in problem (1.1), the main interest in this general class of problems has been due to the
fact that they arise from applications in physics and related sciences, such as biophysics, plasma physics
and chemical reaction, see for example [16]. In last decade, many authors paid their attention to seek
positive solutions, bounded states solutions, multiple solutions, see for instance [15,33,36,43] and the
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references therein. Perera-Squassina [37] studied double phase problems and stated an existence result
which was proved under different conditions by using Morse theory in terms of critical groups. The
corresponding eigenvalue problem of the double phase operator with Dirichlet boundary condition was
analyzed by Colasuonno-Squassina [17] who proved the existence and properties of related variational
eigenvalues. According to variational methods, Liu-Dai [34] treated double phase problems and proved
existence and multiplicity results.

Ambrosio in [4] dealt with the following problem

(−∆)s
pu + (−∆)s

qu + |u|p−2u + |u|q−2u = λh(x) f (u) + |u|q
∗−2u in RN .

Using suitable variational arguments and concentration-compactness lemma, the authors proved the
existence of a nontrivial non-negative solution for λ sufficiently large. Note that [4] dealt with the
constant potential, and then in [27], under proper assumptions, Isernia proved the existence of a positive
solution and a negative ground state solution for the following class of fractional p&q-Laplacian
problems with potentials vanishing at infinity:

(−∆)s
pu + (−∆)s

qu + V(x)(|u|p−2u + |u|q−2u) = K(x) f (u) in RN .

Recently, Alves, Ambrosio and Isernia [1] by applying minimax theorems and the Ljusternik-
Schnirelmann theory, they investigated the existence, multiplicity and concentration of nontrivial
solutions for (1.1) provided that ε is sufficiently small. Costa and Figueiredo [19] used Mountain Pass
Theorem and the penalization arguments introduced by Del Pino and Felmer’s associated to Lions’
Concentration and Compactness Principle to overcome the lack of compactness, and then showed
existence and concentration results for (1.1). Ambrosio and Rǎdulescu in [7] considered the following
class of fractional problems with unbalanced growth:(−∆)s

pu + (−∆)s
qu + V(εx)

(
|u|p−2u + |u|q−2u

)
= λ f (u), in RN ,

u ∈ W s,p
(
RN

)
∩W s,q

(
RN

)
, u > 0, in RN .

(1.3)

Applying suitable variational and topological arguments, they obtained multiple positive solutions for
ε > 0 that were sufficiently small as well as related concentration properties, in relationship with the set
where the potential V attains its minimum. In [45], Zhang et al. investigated the following perturbed
double phase problem with competing potentials:{

−ϵ p∆pu − ϵq∆qu + V(x)(|u|p−2u + |u|q−2u) = K(x) f (u), in RN ,

u ∈ W1,p(RN) ∩W1,q(RN), u > 0, in RN ,

where (1 < p < q < N). The authors assumed that the potentials V,K and the nonlinearity f are
continuous but are not necessarily of class C1. Under some natural hypotheses, using topological and
variational tools from Nehari manifold analysis and Ljusternik-Schnirelmann category theory, they
studied the existence of positive ground state solutions. Moreover, they determined two concrete sets
related to the potentials V and K as the concentration positions and described the concentration of
ground state solutions as ϵ → 0. Zhang et al. in [49] studied the following double phase problem(−∆)s

pu + (−∆)s
qu + V(εx)

(
|u|p−2u + |u|q−2u

)
= λ f (u) + |u|q

∗
s−2u, in RN ,

u ∈ W s,p
(
RN

)
∩W s,q

(
RN

)
, u > 0, in RN .
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They established the existence of multiple positive solutions as well as related concentration properties.
In [48], Zhang et al. considered the singularly perturbed double phase problems with nonlocal reaction,
they got the concentration result. For more results of the existence and concentration of solutions, we
refer to [8, 30, 46, 47] and the references therein.

It is worth mentioning that all the works above assumed that the nonlinearity satisfied Ambrosetti-
Rabinowitz condition, so the authors can use Nehari manifold to obtain the concentration and
multiplicity properties of solutions. [7, 49] are associated with fractional, but this it also true for s = 1.
On the other hand, the nonlinearities in these equations are not general, so by being motivated by the
above works, it is quite natural to ask if f (u) is a general nonlinearity which satisfies Beresticky-Lions
type assumptions, does the same results established for double phase problem? In the present paper,
we give an affirmative answer to this question.

Before stating our main result, we shall introduce the main hypotheses. Assume that the potential
V : RN → R is a continuous function fulfilling the following conditions which are always called del
Pino-Felmer type [20] conditions.

(V1) V ∈ C(RN ,R) such that V1 := inf
x∈RN

V(x) > 0.

(V2) There exists a bounded open set Λ ⊂ RN such that

V0 := inf
x∈Λ

V(x) < min
x∈∂Λ

V(x)

with V0 > 0, and 0 ∈ M := {x ∈ Λ : V(x) = V0}.

Moreover, the nonlinearity f : R → R is continuous, f (t) = 0 for t ≤ 0, and satisfies the following
hypotheses:

( f1) lim
t→0

f (t)
tp−1 = 0;

( f2) There exists ν ∈ (q, q∗) such that lim
|t|→+∞

f (t)
tν−1 < ∞;

( f3) There exists T > 0 such that F(T ) >
V0

p
T p +

V0

q
T q.

Theorem 1.1. Assume that (V1) − (V2) and ( f1) − ( f3) are satisfied. Then, for small ε > 0, there exists
a positive solution uε to (1.1) such that uε has a maximum point xε satisfying

lim
ε→0

dist (xε,M) = 0

and for any such xε, the function vε(x) = uε(εx + xε) converges uniformly as ε → 0 (up to a
subsequence) to a least energy solution of − ∆pu − ∆qu + V0(|u|p−2u + |u|q−2u) = f (u), in RN ,

u ∈ W1,p(RN) ∩W1,q(RN), in RN .

Moreover, we have
uε(x) ≤ C1e−C2 |x−xε | for all x ∈ RN , C1, C2 > 0.

We note that, to the best of our knowledge, there is no result on the existence and concentration of
positive bound state solutions for double-phase problems with Berestycki-Lions nonlinearity.
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We use a truncation approach to aprove our result. The main difficulties in the proof of Theorem 1.1
lie in two aspects:

(1) The nonlinearity f (u) does not satisfy (AR) condition and the fact that the function f (u)
uq−1 is not

increasing for u > 0 prevent us from obtaining a bounded Palais-Smale sequence and using the Nehari
manifold, respectively. Moreover, the arguments in [20] can not be applied in this paper;

(2) The unboundedness of the domain RN leads to the lack of compactness.
As we will see later, the above two aspects prevent us from using the variational method in a standard

way. In order to get over the above two difficulties, inspired by [13, 25], we recover the compactness
by penalization method which was first introduced in [14].

The plan of this paper is the following. In Section 2, we define some function spaces. Section 3
is devoted to study ground state solution for the limit problem of (1.1), and we give the proof of
Theorem 1.1 in the last section.

2. Variational setting

In this section, we fix the notations and recall some results for the uses later.
Let u : RN 7→ R. For 1 < p < q, let us define D1,p(RN) = C∞(RN)

|∇·|p
. We denote the following

fractional Sobolev space
W1,p(RN) := {u : |u|p < +∞, |∇u|p < +∞}

equipped with the natural norm

∥u∥W1,p(RN ) :=
(
|∇u|pp + |u|

p
p

)1/p
,

where | · |pp :=
∫
RN | · |

pdx.
For all u, v ∈ W1,p(RN),

⟨u, v⟩W1,p(RN ) :=
∫
RN

(
|∇u|p−2∇u∇v + |u|p−2uv

)
dx.

In this work we need to introduce the following Banach space

X = W1,p(RN) ∩W1,q(RN)

equipped with the norm
∥u∥X := ∥u∥W1,p(RN ) + ∥u∥W1,q(RN ).

Note that W1,r(RN) is a separable reflexive Banach space for all r ∈ (1,+∞), and so X is a separable
reflexive Banach space.

For any fixed ε ≥ 0, we also introduce the following Banach space

Xε :=
{

u ∈ X :
∫
RN

V(εx)(|u|p + |u|q)dx < +∞
}

equipped with the norm
∥u∥Xε := ∥u∥Vε,p + ∥u∥Vε,q,
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where ∥u∥tVε,t =
∫
RN

(
|∇u|t + V(εx)|u|t

)
dx for all t ∈ {p, q}. When V(x) = V0, we denote the following

Banach space

X0 :=
{

u ∈ X :
∫
RN

V0(|u|p + |u|q)dx < +∞
}

equipped with the norm
∥u∥X0 := ∥u∥V0,p + ∥u∥V0,q,

where ∥u∥tV0,t
=

∫
RN

(
|∇u|t + V0|u|t

)
dx for all t ∈ {p, q}. Finally, we consider

Xrad

(
RN
+

)
:= {u ∈ X0 : u(x) = u(|x|)} .

Lemma 2.1. (see [42, Theorem 2.8]) (General Minimax Principle) Let X be a Banach space. Let M0

be a closed subspace of the metric space M and Γ0 ⊂ C(M0, X). Define

Γ := {γ ∈ C(M, X) : γ|M0 ∈ Γ0}.

If φ ∈ C1(X,R) satisfies

a := sup
γ0∈Γ0

sup
u∈M0

φ(γ0(u)) < c := inf
γ∈Γ

sup
u∈M

φ(γ(u)) < ∞,

then, for every ε ∈ (0, (c − a)/2), δ > 0 and γ ∈ Γ such that sup
M
φ ◦ γ ≤ c + ε, there exists u ∈ X such

that

(a) c − 2ε ≤ φ(u) ≤ c + 2ε,
(b) dist(u, γ(M)) ≤ 2δ,
(c) ∥φ′(u)∥ ≤ 8ε

δ
.

3. The limiting problem

First of all, in order to make functional of the limiting problem equation to be C1 and let it is a
meaningful functional on X0, we modify f as in [10]. Let f̂ : R→ R be define as follows:

(i) if f (t) > 0 for all t ≥ T̂ , put f̂ (t) := f (t),
(ii) if there exists τ0 ≥ T̂ such that f (τ0) = 0, we put

f̂ (t) :=

 f (t), for t < τ0,

0, for t ≥ τ0,

where T̂ := sup{t ∈ [0,T ] : f (t) > V0tp−1 + V0tq−1}.

It is clear that f̂ satisfies the same assumptions as f and

0 ≤ lim inf
t→∞

f̂ (t)
tp ≤ lim sup

t→∞

f̂ (t)
tp < ∞.
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At the same time, note that, if (ii) occurs and u is a solution to (1.1) with f̂ (t), we can use (u − τ0)+ as
test function to obtain that u ≤ τ0 in RN , then u is solution to (1.1) with f (t). From now on, we replace
f by f̂ and keep the same notation f (t).

In this section we focus on the following limiting problem associated with (1.1) : − ∆pu − ∆qu + V0(|u|p−2u + |u|q−2u) = f (u), in RN ,

u ∈ W1,p(RN) ∩W1,q(RN), in RN .
(3.1)

We define the energy functional for the limiting problem (3.1) by

IV0(u) =
1
p

∫
RN
|∇u|pdx +

1
q

∫
RN
|∇u|qdx +

1
p

∫
RN

V0|u|pdx +
1
q

∫
RN

V0|u|qdx −
∫
RN

F(u)dx.

In view of [38], if u ∈ X0 is a weak solution to problem (3.1), then we have the following Pohozǎev
identity:

PV0(u) =
N − p

p

∫
RN
|∇u|pdx +

N − q
q

∫
RN
|∇u|qdx

+
N
p

∫
RN

V0|u|pdx +
N
q

∫
RN

V0|u|qdx − N
∫
RN

F(u)dx.

Lemma 3.1. IV0 possesses the Mountain-Pass geometry.

Proof. By ( f1) and ( f2), for all t ∈ R we get

| f (t)| ≤ ε|t|p−1 +Cε|t|q
∗−1

and
|F(t)| ≤

ε

p
|t|p−1 +

Cε

q
|t|q

∗

.

So, for 2 ≤ p < q < N, we have

IV0(u) ≥
1
p

∫
RN

(|∇u|p + V0|u|p)dx +
1
q

∫
RN

(|∇u|q + V0|u|q)dx −
ε

p
|u|pp −

Cε

q∗
|u|q

∗

q∗

=
1
q

∫
RN

(|∇u|q + V0|u|q)dx +
V0 − ε

pV0

∫
RN

(|∇u|p + V0|u|p)dx −
Cε

q∗
|u|q

∗

q∗

=
1
q

[ ∫
RN

(|∇u|p + V0|u|p)dx +
∫
RN

(|∇u|q + V0|u|q)dx
]
−

Cε

q∗
|u|q

∗

q∗

=
1
q

(∥u∥pV0,p
+ ∥u∥qV0,q

) −C∥u∥q
∗

X0
,

where we used ε = ( 1
p −

1
q )pV0. Hence, there exist ρ, δ > 0 such that

IV0(u) ≥
1
q

(∥u∥qV0,p
+ ∥u∥qV0,q

) −C∥u∥q
∗

X0

≥
1

2q−1q
∥u∥qX0

−C∥u∥q
∗

X0
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≥ δ

for ∥u∥X0 = ρ.
Now, for all R > 0, we define

wR(x, y) :=


T if (x) ∈ B+R(0),
T

(
R + 1 −

√
|x|

)
if (x) ∈ B+R+1(0)\B+R(0),

0 if (x) ∈ RN
+\B

+
R+1(0).

It is easy to see that wR ∈ Xrad

(
RN
+

)
. We note that, according to ( f3), for R > 0 large enough it holds∫

RN

[
F (wR(x)) −

V0

p
wp

R(x) −
V0

q
wq

R(x)
]

dx ≥ 0.

Now, fix such an R > 0 and consider wR,θ(x) := wR

(
x
eθ

)
. Then,

IV0

(
wR,θ

)
=

1
p

e(N−p)θ
∫
RN
+

|∇u|pdx +
1
q

e(N−q)θ
∫
RN
+

|∇u|qdx

− eNθ
∫
RN

[
F (wR(x)) −

V0

p
wp

R(x) −
V0

q
wq

R(x)
]

dx

→ −∞ as θ → ∞.

This ends the proof. □

Hence, according to Lemma 3.1, we can define the Mountain-Pass level of IV0 by

cV0 := inf
γ∈ΓV0

sup
t∈[0,1]

IV0(γ(t)), (3.2)

where the set of paths is defined as

ΓV0 := {γ ∈ C([0, 1], X0) : γ(0) = 0 and IV0(γ(1)) < 0}. (3.3)

Obviously, cV0 > 0. Moreover, similar to [3], we note that

cV0 = cV0,rad,

where
cV0,rad := inf

γ∈ΓV0 ,rad
max
t∈[0,1]

IV0(γ(t))

and
ΓV0,rad :=

{
γ ∈ C

(
[0, 1], Xrad

(
RN
+

))
: γ(0) = 0, IV0(γ(1)) < 0

}
.

Next, we will construct a (PS) sequence {wn}
∞
n=1 for IV0 at the level cV0 that satisfies I′V0

(wn) → 0 as
n→ ∞, i.e.,

Proposition 3.1. There exists a sequence {wn}
∞
n=1 in X0 such that, as n→ ∞,

IV0(wn)→ cV0 , I′V0
(wn)→ 0, PV0(wn)→ 0. (3.4)
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Proof. Let we define ĨV0(θ, u) :=
(
IV0 ◦ Φ

)
(θ, u) for (θ, u) ∈ R×Xrad

(
RN
+

)
, whereΦ(θ, u) := u

(
x
eθ

)
. Here

R × Xrad

(
RN
+

)
is equipped with the standard norm

∥(θ, u)∥R×X0 :=
(
|θ|2 + ∥u∥2X0

) 1
2
.

According to Lemma 3.1 that ĨV0 has a mountain pass geometry, so we can define the mountain pass
level of ĨV0

c̃V0 := inf
γ̃∈Γ̃V0

max
t∈[0,1]

ĨV0 (̃γ(t)),

where
Γ̃V0 :=

{̃
γ ∈ C

(
[0, 1],R × Xrad

(
RN
+

))
: γ̃(0) = (0), ĨV0 (̃γ(1)) < 0

}
.

It is easy to prove that c̃V0 = cV0(see [6,26]). Then according to Lemma 2.1, we obtain that there exists
a sequence (θn, un) ⊂ R × Xrad(RN

+ ) such that, as n→ ∞,

(i) (IV0 ◦ Φ)(θn, un)→ cV0 ,
(ii) (IV0 ◦ Φ)′(θn, un)→ 0 in (R × Xrad(RN

+ ))′,
(iii) θn → 0.

In fact, we only take ε = εn =
1
n2 , δ = δn =

1
n in Lemma 2.1, (i) and (ii) follow by (a) and (c) in

Lemma 2.1. In view of (3.2) and (3.3), for ε = εn := 1
n2 , it is easy to find that γn ∈ ΓV0 such that

sup
t∈[0,1]

IV0(γn(t)) ≤ cV0 +
1
n2 . We define γ̃n(t) := (0, γn(t)), then we have

sup
t∈[0,1]

(IV0 ◦ Φ)(̃γn(t)) = sup
t∈[0,1]

IV0(γn(t)) ≤ cV0 +
1
n2 .

From (b) of Lemma 2.1, there exists (θn, un) ∈ R × X0 such that

dist
R×X0

((θn, un) , (0, γn(t))) ≤
2
n
,

which implies that (iii) holds true. Here, we used the notation

dist
R×X0

((θ, u), A) := inf
(τ,v)∈R×X0

(
|θ − τ|2 + ∥u − v∥2X0

) 1
2

for A ⊂ R × X0. Now, for (h,w) ∈ R × X0, it holds〈(
IV0 ◦ Φ

)′ (θn, un) , (h,w)
〉
=

〈
I′V0

(Φ (θn, un)) ,Φ′ (θn,w)
〉
+ PV0 (Φ (θn, un)) h. (3.5)

Then, taking h = 1 and w = 0 in (3.5), we obtain that

PV0 (Φ (θn, un))→ 0.

Moreover, for all v ∈ X0, we only take w(x, y) = v
(
eθn x, eθny

)
and h = 0 in (3.5), it follows from (ii)

and (iii) that 〈
I′V0

(Φ (θn, un)) , v
〉
= o(1)

∥∥∥∥v
(
eθn x, eθny

)∥∥∥∥
X0
= o(1)∥v∥X0 .

Therefore, wn := Φ (θn, un) is the sequence that fulfills the desired properties. □
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Lemma 3.2. Every sequence (wn) satisfying (3.4) is bounded in X0.

Proof. According to (3.4), it is easy to see that

cV0 + on(1) = IV0 (wn) −
1
N

PV0 (wn)

=
1
p

∫
RN
|∇wn|

pdx +
1
q

∫
RN
|∇wn|

qdx +
1
p

∫
RN

V0|wn|
pdx +

1
q

∫
RN

V0|wn|
qdx

−

∫
RN

F(wn)dx −
1
N

(
N − p

p

∫
RN
|∇wn|

pdx +
N − q

q

∫
RN
|∇wn|

qdx

+
N
p

∫
RN

V0|wn|
pdx +

N
q

∫
RN

V0|wn|
qdx − N

∫
RN

F(wn)dx
)

=
1
N

(∫
RN
|∇wn|

pdx +
∫
RN
|∇wn|

qdx
)
.

So we get that
∫
RN |∇wn|

pdx and
∫
RN |∇wn|

qdx are bounded in R. On the other hand, P (wn) = on(1) and
( f1) − ( f2) yield

N − p
p

∫
RN
|∇wn|

pdx +
N − q

q

∫
RN
|∇wn|

qdx +
N
p

∫
RN

V0|wn|
pdx +

N
q

∫
RN

V0|wn|
qdx

= N
∫
RN

F(wn)dx + on(1)

≤ Nδ |wn(·, 0)|pp + NCδ |wn(·, 0)|q
∗

q∗ + on(1).

Choosing δ > 0 sufficiently small and using the boundedness of
(
|wn(·, 0)|q∗

)
, we can deduce that

(
|wn|p

)
and

(
|wn|q

)
are bounded in R. In conclusion, (wn) is bounded in X0. □

The following lemma is a version of Lions’ concentration-compactness lemma.

Lemma 3.3. (see [42]) Let 2 ≤ p < ξ < q∗. Assume {un} is a bounded sequence in X0 which satisfies

lim
n→+∞

sup
y∈RN

∫
BR(y)
|un(x)|ξdx = 0

for some R > 0. Then un → 0 in Lξ(RN) for ξ ∈ (p, q∗).

Lemma 3.4. There exist a sequence (xn) ⊂ RN and constants R > 0, β > 0 such that

∫
Γ0

R(xn)
w2

n(x)dx ≥ β,

where (wn) is the sequence given in Proposition 3.1.

Proof. By contradiction, we assume that the thesis is not true. Then, according to Lemma 3.3, we
deduce that

wn(·)→ 0 in Lξ
(
RN

)
, ∀ξ ∈ (p, q∗) . (3.6)
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Consequently, by using ( f1) − ( f2), we have that∫
RN

f (wn(x)) wn(x)dx = on(1).

According to
〈
I′V0

(wn) ,wn

〉
= on(1), we can obtain that∫

RN
|∇wn|

pdx +
∫
RN
|∇wn|

qdx +
∫
RN

V0|wn|
pdx +

∫
RN

V0|wn|
qdx −

∫
RN

f (wn)wndx = on(1),

and so we deduce that ∥wn∥X0 → 0. Therefore, IV0 (wn) → 0 and this leads to a contradiction because
cV0 > 0. □

Now we define
TV0 :=

{
u ∈ X

(
RN

)
\{0} : I′V0

(u) = 0,max
x∈RN

u(x) = u(0)
}
,

bV0 := inf
u∈TV0

IV0(u),

and
SV0 :=

{
u ∈ TV0 : IV0(u) = bV0

}
.

Lemma 3.5. There exists u ∈ SV0 .

Proof. Assume that (wn) is the sequence given by Proposition 3.1. Let w̃n(x) := wn(x + xn), where xn

is given by Lemma 3.4. Due to Lemma 3.3, (wn) is bounded in Xrad(RN), that is ∥wn∥Xrad(RN ) ≤ C for
all n ∈ N. Going if necessary to a subsequence, we can assume that w̃n ⇀ w̃ in Xrad(RN) for some
w̃ ∈ Xrad(RN) \ {0} and we obtain that

w̃n(x)→ w̃(x) in Lξ(RN) for any ξ ∈ (p, q∗).

So ∫
RN

f (w̃n)w̃n →

∫
RN

f (w̃)w̃. (3.7)

Moreover, w̃ satisfies

(−∆)pw̃ + (−∆)qw̃ + V0(|w̃|p−2w̃ + |w̃|q−2w̃) = f (w̃) in RN . (3.8)

Therefore, we have

1
p

∫
RN
|∇w̃|pdx +

1
q

∫
RN
|∇w̃|qdx +

1
p

∫
RN

V0|w̃|pdx +
1
q

∫
RN

V0|w̃|qdx =
∫
RN

F(w̃)dx,

and

N − p
p

∫
RN
|∇w̃|pdx +

N − q
q

∫
RN
|∇w̃|qdx +

N
p

∫
RN

V0|w̃|pdx +
N
q

∫
RN

V0|w̃|qdx

= N
∫
RN

F(w̃)dx.
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From (3.7) we can see that∫
RN
|∇w̃|pdx +

∫
RN
|∇w̃|qdx +

∫
RN

V0|w̃|pdx +
∫
RN

V0|w̃|qdx

≤ lim inf
n→∞

[∫
RN
|∇w̃n|

pdx +
∫
RN
|∇w̃n|

qdx +
∫
RN

V0|w̃n|
pdx +

∫
RN

V0|w̃n|
qdx

]
≤ lim sup

n→∞

[∫
RN
|∇w̃n|

pdx +
∫
RN
|∇w̃n|

qdx +
∫
RN

V0|w̃n|
pdx +

∫
RN

V0|w̃n|
qdx

]
= lim sup

n→∞

[∫
RN
|∇wn|

pdx +
∫
RN
|∇wn|

qdx +
∫
RN

V0|wn|
pdx +

∫
RN

V0|wn|
qdx

]
= lim sup

n→∞

∫
RN

f (wn)wndx

= lim sup
n→∞

∫
RN

f (w̃n)w̃ndx

=

∫
RN

f (w̃)w̃dx

=

∫
RN
|∇w̃|pdx +

∫
RN
|∇w̃|qdx +

∫
RN

V0|w̃|pdx +
∫
RN

V0|w̃|qdx,

which implies that ∥w̃n∥X0 → ∥w̃∥X0 and thus w̃n → w̃ in X0. Therefore, by IV0 (wn) = IV0 (w̃n) → cV0

and I′V0
(wn) = I′V0

(w̃n) → 0, we have that IV0(w̃) = cV0 and I′V0
(w̃) = 0. Since w̃ , 0, we deduce that

cV0 ≥ bV0 .

Now, let w ∈ X0\{0} be any solution to (3.1). Define

wt(x) :=

w
(

x
t

)
for t > 0,

0 for t = 0.

Using the fact that w satisfies the Pohozǎev identity, we get

IV0(wt(x)) =
1
p

∫
RN
|∇wt(x)|pdx +

1
q

∫
RN
|∇wt(x)|qdx +

1
p

∫
RN

V0|wt(x)|pdx

+
1
q

∫
RN

V0|wt(x)|qdx −
∫
RN

F(wt(x))dx

=
tN−p

p

∫
RN
|∇w|pdx +

tN−q

q

∫
RN
|∇w|qdx +

1
p

tN
∫
RN

V0|w|pdx

+
1
q

tN
∫
RN

V0|w|qdx − tN
∫
RN

F(w)dx

=
tN−p

p

∫
RN
|∇w|pdx +

tN−q

q

∫
RN
|∇w|qdx −

N − p
N p

tN
∫
RN
|∇w|pdx

−
N − q

Nq
tN

∫
RN
|∇w|qdx,

and differentiating with respect to t we obtain

d
dt

IV0(wt(x)) =
N − p

p
tN−p−1

∫
RN
|∇w|pdx +

N − q
q

tN−q−1
∫
RN
|∇w|qdx

AIMS Mathematics Volume 8, Issue 6, 13593–13622.



13605

−
N − p

p
tN−1

∫
RN
|∇w|pdx −

N − q
q

tN−1
∫
RN
|∇w|qdx

=
N − p

p
tN−p−1 (1 − tp)

∫
RN
|∇w|pdx +

N − q
q

tN−q−1 (1 − tq)
∫
RN
|∇w|qdx,

so we obtain that

d
dt

IV0(wt(x)) > 0 ∀t ∈ (0, 1),
d
dt

IV0(wt(x)) < 0 ∀t ∈ (1,∞),

which implies that
max

t≥0
IV0(wt(x)) = IV0(w1(x)) = IV0(w).

Therefore, we have that

IV0(wt(x)) =
tN−p

p

∫
RN
|∇w|pdx +

tN−q

q

∫
RN
|∇w|qdx −

N − p
N p

tN
∫
RN
|∇w|pdx

−
N − q

Nq
tN

∫
RN
|∇w|qdx→ −∞,

as t → ∞. After a suitable scale change in t, we obtain that wt(x) ∈ ΓV0 . By the definition of cV0 , we
see that IV0(wt(x)) ≥ cV0 . Since w is arbitrary, we have that bV0 ≥ cV0 and this implies that bV0 = cV0 .

Choosing w− = min{w, 0} as test function of (3.1) we can deduce that w ≥ 0 in RN . By ( f1)−( f2) and
using a Moser iteration argument (see [6]), we obtain that w ∈ L∞

(
RN

)
. According to Corollary 2.1 in

Ambrosio and Rădulescu [7], we can see that w ∈ Cσ(RN) for some σ ∈ (0, 1). Similar to the proof of
Theorem 1.1-(ii) in Jarohs [28], we obtain that w > 0 in RN . Note that, the methods of [6] and [7] are
still applicable to this article, so they are directly quoted here. □

Remark 3.1. For m > 0, we use the notation

Im(u) =
1
p

∫
RN
|∇u|pdx +

1
q

∫
RN
|∇u|qdx +

m
p

∫
RN
|u|pdx +

m
q

∫
RN
|u|qdx −

∫
RN

F(u)dx,

and denote by cm the corresponding mountain pass level. It is standard to verify that if m1 > m2 then
cm1 > cm2 .

In what follows, we aim to prove that SV0 is compact in X0.

Lemma 3.6. SV0 is compact in X0.

Proof. For any U ∈ SV0 , we have that

cV0 + on(1) = IV0 (U) −
1
N

PV0 (U)

=
1
p

∫
RN
|∇U |pdx +

1
q

∫
RN
|∇U |qdx +

1
p

∫
RN

V0|U |pdx +
1
q

∫
RN

V0|U |qdx

−

∫
RN

F(U)dx −
1
N

(
N − p

p

∫
RN
|∇U |pdx +

N − q
q

∫
RN
|∇U |qdx

+
N
p

∫
RN

V0|U |pdx +
N
q

∫
RN

V0|U |qdx − N
∫
RN

F(U)dx
)
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=
1
N

(∫
RN
|∇U |pdx +

∫
RN
|∇U |qdx

)
.

So SV0 is bounded in X0.
For any sequence {Uk} ⊂ SV0 , up to a subsequence, we can assume that there is a U0 ∈ X0 such that

Uk ⇀ U0 in X0 (3.9)

and U0 satisfies

−∆pU0 − ∆qU0 + V0(|U0|
p−2U0 + |U0|

q−2U0) = f (U0), in RN , U0 ≥ 0.

Next, we will prove that U0 is nontrivial. Note that, up to a subsequence, we have

Uk → U0 in Lt
loc(R

N), t ∈ (p, q∗). (3.10)

From (3.10),
{
U t

k

}
is uniformly integrable in any bounded domain in RN . By Lemma 2.2 (i) in [25],

∥Uk∥L∞loc(RN) ≤ C. In view of [31], ∃α ∈ (0, 1) such that ∥Uk∥C1,α
loc (RN) ≤ C. Due to {Uk} ⊂ SV0 , by

Lemma 3.5, we have that Uk > 0. It is easy to prove that lim inf
k→∞

∥Uk∥∞ > 0 because of lim
t→0

f (t)
tp−1 = 0. In

fact, by using Uk satisfies (3.1), we have that

−∆pUk − ∆qUk + V0(|Uk|
p−2Uk + |Uk|

q−2Uk) = f (Uk),

that is

N − p
p

∫
RN
|∇Uk|

pdx +
N − q

q

∫
RN
|∇Uk|

qdx +
V0N

p

∫
RN
|Uk|

pdx +
V0N

q

∫
RN
|Uk|

qdx

= N
∫
RN

F(Uk)dx.

According to lim
t→0

f (t)
tp−1 = 0, we obtain that, ∀ε > 0,∃δ > 0 such that

f (t) < εtp−1 for |t| < δ,

then F(Uk) < ε
p |Uk|

p
p. Assume by contradiction, we have lim inf

k→∞
∥Uk∥∞ = 0, then for δ given above, we

have |Uk| < δ. Therefore,

N − p
p

∫
RN
|∇Uk|

pdx +
N − q

q

∫
RN
|∇Uk|

qdx

= N
∫
RN

F(Uk)dx −
V0N

p

∫
RN
|Uk|

pdx −
V0N

q

∫
RN
|Uk|

qdx < 0,

which leads to a contradiction. Noting that Uk(0) = ∥Uk∥∞, we know that U0 . 0. Therefore, we can
find that ∃C0 > 0 such that Uk(0) ≥ C0 > 0, then U0(0) ≥ C0 > 0, this means that U0 is nontrivial.
Similar to the proof of Lemma 3.5, we can check that JV0 (U0) = cV0 and Uk → U0 in X0. This
completes the proof that SV0 is compact in X0. □
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4. Proof of Theorem 1.1

The energy functional corresponding to (1.1) is

Iε(u) =
1
p

∫
RN

(|∇u|p + V(εx)|u|p)dx +
1
q

∫
RN

(|∇u|q + V(εx)|u|q)dx −
∫
RN

F(u)dx.

We define

χε(x) =

0 if x ∈ Λ/ε

ε−1 if x < Λ/ε

and

Qε(v) =
(∫
RN
χεvp − 1

)2

+

.

Finally, set Jε : Xε → R be given by

Jε(v) = Iε(v) + Qε(v).

Note that this type of penalization was first introduced in [14]. It is standard to prove that Jε ∈
C1 (Xε,R). In order to find solutions of (1.1) which concentrate around the local minimum of V in
Λ as ε→ 0, we only look for the critical points of Jε for which Qε is zero.

Let cV0 = IV0(U) for U ∈ SV0 and 10δ = dist
{
M,RN\Λ

}
, we fix a β ∈ (0, δ) and a cut-off function

φ ∈ C∞c
(
RN

)
such that 0 ≤ φ ≤ 1, φ(x) = 1 for |x| ≤ β, φ(x) = 0 for |x| ≥ 2β and |∇φ| ≤ C

β
. Also, setting

φε(y) = φ(εy). We will look for a solution of (1.1) near the set

Yε :=
{
φ
(
εx − x′

)
U

(
x −

(
x′/ε

))
: x′ ∈ Mβ,U ∈ SV0

}
for sufficiently small ε > 0, whereMβ :=

{
y ∈ RN : inf

z∈M
|y − z| ≤ β

}
. Moreover, for A ⊂ Xε, we use the

notation
Aa :=

{
u ∈ Xε : inf

v∈A
∥u − v∥Xε ≤ a

}
.

For U ∈ SV0 arbitrary but fixed, we define Wε,t(x) := φ(εx)U
(

x
t

)
, we will show that Jε possesses the

Mountain-Pass geometry.
Let Ut(x) := U( x

t ), similar to the proof of Lemma 3.1, we obtain that

IV0(Ut) =
tN−p

p

∫
RN
|∇U |pdx +

tN−q

q

∫
RN
|∇U |qdx +

tN

p

∫
RN

V0|U |pdx

+
tN

q

∫
RN

V0|U |qdx − tN
∫
RN

F(U)dx

→ −∞ as t → ∞,

so there exists t0 > 0 such that IV0(Ut0) < −3.
It is easy to check that Qε(Wε,t0) = 0, then from the Dominated Convergence Theorem we have, for

ε > 0 small,

Jε(Wε,t0) = Iε(Wε,t0)
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=
1
p

∫
RN
|∇Wε,t0 |

pdx +
1
q

∫
RN
|∇Wε,t0 |

qdx +
1
p

∫
RN

V(εx)|Wε,t0 |
pdx

+
1
q

∫
RN

V(εx)|Wε,t0 |
qdx −

∫
RN

F(Wε,t0)dx

x̃= x
t0
=

tN−p
0

p

∫
RN

∣∣∣εt2
0∇φ(εt0 x̃)U(x̃) + φ(εx̃)∇U(x̃)

∣∣∣p dx̃

+
tN−q
0

q

∫
RN

∣∣∣εt2
0∇φ(εt0 x̃)U(x̃) + φ(εt0 x̃)∇U(x̃)

∣∣∣q dx̃

+
tN
0

p

∫
RN

V(εt0 x̃)|φ(εt0 x̃)U(x̃)|pdx̃

+
tN
0

q

∫
RN

V(εt0 x̃)|φ(εt0 x̃)U(x̃)|qdx̃

−tN
∫
RN

F(φ(εt0 x̃)U(x̃)dx̃

= IV0(Ut0) + o(1) < −2. (4.1)

By using ( f1) and ( f2) , for 2 ≤ p < q < N, we have

Jε(u) ≥ Iε(u)

≥
1
p

∫
RN

(|∇u|p + Vε|u|p)dx +
1
q

∫
RN

(|∇u|q + Vε|u|q)dx −
ε

p
|u|pp −

Cε

q∗
|u|q

∗

q∗

≥
1
q

∫
RN

(|∇u|q + Vε|u|q)dx +
V0 − ε

pV0

∫
RN

(|∇u|p + Vε|u|p)dx −
Cε

q∗
|u|q

∗

q∗

=
1
q

[ ∫
RN

(|∇u|p + Vε|u|p)dx +
∫
RN

(|∇u|q + Vε|u|q)dx
]
−

Cε

q∗
|u|q

∗

q∗

=
1
q

(∥u∥pVε,p + ∥u∥
q
Vε,q

) −C∥u∥q
∗

Xε
,

where we used ε = ( 1
p −

1
q )pV0. Hence, there exist ρ, δ > 0 such that, for ∥u∥X0 = ρ,

Jε(u) ≥
1
q

(∥u∥qVε,p + ∥u∥
q
Vε,q

) −C∥u∥q
∗

Xε

≥
1

2q−1q
∥u∥qXε −C∥u∥q

∗

Xε

≥ δ.

Hence, we can define the Mountain-Pass value of Jε as follows,

cε := inf
γ∈Γε

max
s∈[0,1]

Jε(γ(s)),

where Γε :=
{
γ ∈ C ([0, 1], Xε) | γ(0) = 0, γ(1) = Wε,t0

}
.

Lemma 4.1. There holds
lim
ε→0

cε ≤ cV0 .

AIMS Mathematics Volume 8, Issue 6, 13593–13622.



13609

Proof. Denote Wε,0 = lim
t→0

Wε,t in Xε sense, then it is easy to see that Wε,0 = 0. Therefore, let γ(s) :=
Wε,st0(0 ≤ s ≤ 1 ), we obtain that γ(s) ∈ Γε, then

cε ≤ max
s∈[0,1]

Jε(γ(s)) = max
t∈[0,t0]

Jε
(
Wε,t

)
,

and we only need to prove that
lim
ε→0

max
t∈[0,t0]

Jε
(
Wε,t

)
≤ cV0 .

In fact, similar to (4.1), we obtain that

max
t∈[0,t0]

Jε
(
Wε,t

)
= max

t∈[0,t0]
IV0

(
U∗t

)
+ o(1)

≤ max
t∈[0,∞)

IV0

(
U∗t

)
+ o(1) = IV0 (U∗) + o(1) = cV0 + o(1).

This finishes the proof. □

Lemma 4.2. There holds
lim
ε→0

cε ≥ cV0 .

Proof. Assuming by contradiction that lim
ε→0

cε < cV0 , then there exist δ0 > 0, εn → 0 and γn ∈ Γεn such
that Jεn (γn(s)) < cV0 − δ0 for s ∈ [0, 1]. We could fix an εn such that

1
p

V0εn

(
1 +

(
1 + cV0

)1/2
)
< min {δ0, 1} . (4.2)

Due to Iεn (γn(0)) = 0 and Iεn (γn(1)) ≤ Jεn (γn(1)) = Jεn

(
Wεn,t0

)
< −2, we can look for an sn ∈ (0, 1)

such that Iεn (γn(s)) ≥ −1 for s ∈ [0, sn] and Iεn (γn (sn)) = −1. Moreover, for any s ∈ [0, sn], we have
that

Qεn (γn(s)) = Jεn (γn(s)) − Iεn (γn(s)) ≤ 1 + cV0 − δ0,

this implies that ∫
RN\(Λ/εn)

γp
n (s)dx ≤ εn

(
1 +

(
1 + cV0

)1/2
)

for s ∈ [0, sn] .

So for s ∈ [0, sn], we have

Iεn (γn(s))

= IV0 (γn(s)) +
1
p

∫
RN

(V (εnx) − V0) γp
n (s)dx +

1
q

∫
RN

(V (εnx) − V0) γq
n(s)dx

≥ IV0 (γn(s)) +
1
p

∫
RN\(Λ/εn)

(V (εnx) − V0) γp
n (s)dx +

1
q

∫
RN\(Λ/εn)

(V (εnx) − V0) γq
n(s)dx

≥ IV0 (γn(s)) +
1
p

∫
RN\(Λ/εn)

(V (εnx) − V0) γp
n (s)dx

≥ IV0 (γn(s)) −
1
p

V0εn

(
1 +

(
1 + cV0

)1/2
)
.
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Then
IV0 (γn (sn)) ≤ Iεn (γn (sn)) +

1
p

V0εn

(
1 +

(
1 + cV0

)1/2
)

= −1 +
1
p

V0εn

(
1 +

(
1 + cV0

)1/2
)
< 0,

and recalling (3.2), we obtain that
max

s∈[0,sn]
IV0 (γn(s)) ≥ cV0 .

Therefore, we get that

cV0 − δ0 ≥ max
s∈[0,1]

Jεn (γn(s)) ≥ max
s∈[0,1]

Iεn (γn(s)) ≥ max
s∈[0,sn]

Iεn (γn(s))

≥ max
s∈[0,sn]

IV0 (γn(s)) −
1
p

V0εn

(
1 +

(
1 + cV0

)1/2
)
,

that is 0 < δ0 ≤
1
pV0εn

(
1 +

(
1 + cV0

)1/2
)
, which contradicts (4.2). As desired. □

By using Lemma 4.1 and Lemma 4.2, we have

lim
ε→0

(
max
s∈[0,1]

Jε (γε(s)) − cε

)
= 0,

where γε(s) = Wε,st0 for s ∈ [0, 1]. Denote

c̃ε := max
s∈[0,1]

Jε (γε(s)) ,

it is easy to see that cε ≤ c̃ε and
lim
ε→0

cε = lim
ε→0

c̃ε = cV0 .

Now define
Jαε = {u ∈ Xε | Jε(u) ≤ α} ,

and for a set A ⊂ Xε and α > 0, let Aα ≡

{
u ∈ Xε | inf

v∈A
∥u − v∥ε ≤ α

}
.

Lemma 4.3. Let {εi}
∞
i=1 be such that lim

i→∞
εi = 0 and

{
uεi(·)

}
⊂ Yd

εi
such that

lim
i→∞

Jεi

(
uεi(·)

)
≤ cV0 and lim

i→∞
J′εi

(
uεi(·)

)
= 0.

Then, for sufficiently small d > 0, there exists, up to a subsequence, {yi}
∞
i=1 ⊂ R

N , x ∈ M,U ∈ SV0

such that
lim
i→∞
|εiyi − x| = 0 and lim

i→∞

∥∥∥uεi(·) − φεi (· − yi) U (· − yi)
∥∥∥

Xεi
= 0.

Proof. For convenience’ sake, we write ε for εi. According to the compactness of SV0 andMβ, there
exist Z ∈ SV0 and x ∈ Mβ such that∥∥∥∥∥uε(·) − φε(· −

x
ε

)Z(· −
x
ε

)
∥∥∥∥∥

Xε
≤ 2d (4.3)
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for small ε > 0. Note that, we denote u1
ε(·) = φε(· −

x
ε
)uε(·) and u2

ε = uε − u1
ε.

As a first step in the proof of this lemma we will check that

Jε (uε) ≥ Jε
(
u1
ε

)
+ Jε

(
u2
ε

)
+ O(ε). (4.4)

Suppose there exist xε ∈ B( x
ε
, 2β
ε

)\B( x
ε
, β
ε
) and R > 0 satisfying lim inf

ε→0

∫
B(xε,R)

(uε)2 dy > 0. Going if
necessary to a subsequence, we can assume that εxε → x0 with x0 in the closure of B(x, 2β)\B(x, β)
and that uε (· + xε) ⇀ W̃ in Xε for some W̃ ∈ Xε. Moreover, note that W̃ satisfies

(−∆)pW̃ + (−∆)qW̃ + V(x0)(|W̃ |p−2W̃ + |W̃ |q−2W̃) = f (W̃) ∈ Xε.

According to definition, IV(x0)(W̃) ≥ cV(x0). For large R > 0, by using Fatou’s lemma, we also have that

lim inf
ε→0

∫
B(xε,R)

|∇uε|p dy ≥
1
2

∫
RN
|∇W̃ |pdy (4.5)

and

lim inf
ε→0

∫
B(xε,R)

|∇uε|q dy ≥
1
2

∫
RN
|∇W̃ |qdy. (4.6)

Now, recalling from Remark 3.1 that ca > cb if a > b, we see that cV(x0) ≥ cV0 because of V (x0) ≥ V0.
According to Pohozǎev identity, for any U ∈ SV0 ,

1
N

(∫
RN
|∇U |pdx +

∫
RN
|∇U |qdx

)
= IV0(U). (4.7)

Thus, from (4.5), (4.6) and (4.7) we get that

lim inf
ε→0

∫
B(xε,R)

|∇uε|p dy + lim inf
ε→0

∫
B(xε,R)

|∇uε|q dy ≥
N
2

IV(x0)(W̃) ≥
N
2

cV0 > 0.

Then, taking d > 0 sufficiently small, we get a contradiction with (4.3), so there does not exist such a
sequence {xε}ε and we deduce from a result of Lemma 3.3 that

lim inf
ε→0

∫
B(x/ε,2β/ε)\B(x/ε,β/ε)

|uε|t dy = 0,

where t ∈ (p, q∗). As a consequence, we can deduce using ( f1), ( f2) that

lim
ε→0

∫
RN

(
F (uε) − F

(
u1
ε

)
− F

(
u2
ε

))
dy = 0.

At this point, we write

Jε (uε) ≥ Jε
(
u1
ε

)
+ Jε

(
u2
ε

)
−

∫
RN

(
F (uε) − F

(
u1
ε

)
− F

(
u2
ε

))
dy + O(ε).

Hence, the inequality (4.4) holds.
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Next, we estimate Jε
(
u2
ε

)
. Due to {uε}ε is bounded, it is easy to see from (4.3) that

∥∥∥u2
ε

∥∥∥
ε
≤ 4d for

small ε > 0. By using Sobolev’s inequality, for some C > 0, we have that

Jε
(
u2
ε

)
≥ Iε

(
u2
ε

)
≥

1
p

∫
RN

(|∇u2
ε|

p + Vε|u2
ε|

p)dx +
1
q

∫
RN

(|∇u2
ε|

q + Vε|u2
ε|

q)dx −
ε

p
|u2
ε|

p
p −Cε|u2

ε|
q∗

q∗

≥
1

2p

∫
RN

(|∇u2
ε|

p + Vε|u2
ε|

p)dx +
1
q

∫
RN

(|∇u2
ε|

q + Vε|u2
ε|

q)dx −Cε|u2
ε|

q∗

q∗

≥
1

2p

∫
RN

(|∇u2
ε|

p + Vε|u2
ε|

p)dx +
1

2q

∫
RN

(|∇u2
ε|

q + Vε|u2
ε|

q)dx −Cε|u2
ε|

q∗

q∗

≥
1

2q

∫
RN

(|∇u2
ε|

p + Vε|u2
ε|

p)dx +
1
2q

∫
RN

(|∇u2
ε|

q + Vε|u2
ε|

q)dx −Cε|u2
ε|

q∗

q∗

≥
1

2q

∥∥∥u2
ε

∥∥∥q

ε
−C

∥∥∥u2
ε

∥∥∥q∗

ε

≥
∥∥∥u2

ε

∥∥∥q

ε

(
1

2q
−C(4d)q∗−q

)
.

In particular, taking d > 0 small enough, we can assume that Jε
(
u2
ε

)
≥ 0.

Now let Wε(y) = u1
ε(y +

x
ε
). Going if necessary to a subsequence, we can assume that, Wε ⇀ W in

Xε for some W. Moreover W satisfies

(−∆)pW(y) + (−∆)qW(y) + V(x)(|W(y)|p−2W(y) + |W(y)|q−2W(y)) = f (W(y)), y ∈ RN .

According to the maximum principle, we obtain that W is positive. Let us prove that Wε → W in Xε.
Suppose there exist R > 0 and a sequence {zε}ε with zε ∈ B( x

ε
, 2β
ε

) satisfying

lim inf
ε→0

∣∣∣∣∣zε − x
ε

∣∣∣∣∣ = ∞ and lim inf
ε→0

∫
B(zε,R)

(
u1
ε

)2
dy > 0.

We can assume that εzε → z0 ∈ Λ as ε→ 0. Then we have W̃ε(y) = u1
ε (y + zε) converges weakly to W̃

in Xε satisfying

(−∆)pW̃ + (−∆)qW̃ + V(z0)(|W̃ |p−2W̃ + |W̃ |q−2W̃) = f (W̃), for y ∈ RN .

At this point as before we get a contradiction, then by using ( f1), ( f2) and Lemma 3.3 we obtain that

lim
ε→0

∫
RN

F (Wε) dx→
∫
RN

F(W)dx. (4.8)

It follows from the weak convergence of Wε to W in Xε that

lim
ε→0

Jε
(
u1
ε

)
≥ lim inf

ε→0
Iε

(
u1
ε

)
= lim inf

ε→0

1
p

∫
RN

(|∇Wε(y)|p + Vε|Wε(y)|p)dx +
1
q

∫
RN

(|∇Wε(y)|q + Vε|Wε(y)|q)dx
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−

∫
RN

F (Wε(y)) dy

≥
1
p

∫
RN

(|∇W |p + V0|W |p)dx +
1
q

∫
RN

(|∇W |q + V0|W |q)dx −
∫
RN

F (W) dy

≥ cV0 . (4.9)

On the other hand, due to lim
ε→0

Jε (uε) ≤ cV0 , Jε
(
u2
ε

)
≥ 0 and because of (4.4), we have

lim sup
ε→0

Jε
(
u1
ε

)
≤ cV0 . (4.10)

Combining (4.9) and (4.10), we obtain that Jε(W) = cV0 . Similar to [29], we can obtain that x ∈ M. At
this point it is clear that W(y) = U(y − z) with U ∈ SV0 and z ∈ RN .

Finally, by using (4.8) and (4.10) and the fact that V(y) ≥ V0 on Λ, it follows from (4.9) that∫
RN

(|∇W |p + V0|W |p) dy ≥ lim sup
ε→0

∫
RN

(∣∣∣∇u1
ε(y)

∣∣∣p + V(εy)|u1
ε(y)|p

)
dy

≥ lim sup
ε→0

∫
RN

(∣∣∣∇u1
ε(y)

∣∣∣p + V0|u1
ε(y)|p

)
dy

≥ lim sup
ε→0

∫
RN

(|∇Wε(y)|p + V0|Wε(y)|p) dy

and ∫
RN

(|∇W |q + V0|W |q) dy ≥ lim sup
ε→0

∫
RN

(∣∣∣∇u1
ε(y)

∣∣∣q + V(εy)|u1
ε(y)|q

)
dy

≥ lim sup
ε→0

∫
RN

(∣∣∣∇u1
ε(y)

∣∣∣q + V0|u1
ε(y)|q

)
dy

≥ lim sup
ε→0

∫
RN

(|∇Wε(y)|q + V0|Wε(y)|q) dy.

Moreover, by using weak lower semi-continuity, we prove the strong convergence of u1
ε to W in Xε. In

particular, setting yε = x/ε + z we obtain u1
ε → φε (· − yε) U (· − yε) strongly in Xε. This means that

u1
ε → φε (· − yε) U (· − yε) strongly in Xε.

In order to conclude the proof of the Lemma, it suffices to show that u2
ε → 0 in Xε. Now, using (4.4),

lim
ε→0

Jε
(
u1
ε

)
= cV0 and the estimation of Jε

(
u2
ε

)
, we have that for some C > 0

cV0 ≥ lim
ε→0

Jε (uε) ≥ cV0 +
∥∥∥u2

ε

∥∥∥q

Xε

(
1

2q
−C(4d)q∗−q

)
+ O(ε).

This proves that u2
ε → 0 in Xε, which completes the proof. □

Lemma 4.4. For sufficiently small d1 > d2 > 0, there exist constants ω > 0 and ε0 > 0 such that∣∣∣J′ε(u)
∣∣∣ ≥ ω for u ∈ J c̃ε

ε ∩
(
Yd1
ε \Y

d2
ε

)
and ε ∈ (0, ε0).

Proof. To the contrary, we can suppose that for small d1 > d2 > 0, there exist {εi}
∞
i=1 with lim

i→∞
εi = 0

and uεi ∈ Yd1
εi \Y

d2
εi satisfying lim

i→∞
Jεi

(
uεi

)
≤ cV0 and lim

i→∞

∣∣∣J′εi

(
uεi

)∣∣∣ = 0. Note that, for convenience’ sake,

we write ε for εi. By using Lemma 4.3, there exists {yε}ε ⊂ RN such that for some U ∈ SV0 and x ∈ M,

lim
ε→0
|εyε − x| = 0 and lim

ε→0
∥uε − φε (· − yε) U (· − yε)∥ε = 0.
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According to the definition of Yε, we obtain that lim
ε→0

dist (uε,Yε) = 0. This contradicts that uε < Yd2
ε ,

and completes the proof. □

According to Lemma 4.4, we fix a d > 0 and corresponding ω > 0 and ε0 > 0 such that
∣∣∣J′ε(u)

∣∣∣ ≥ ω
for u ∈ J c̃ε

ε ∩
(
Yd
ε \Y

d/2
ε

)
and ε ∈ (0, ε0) . Then, we obtain the following Lemma.

Lemma 4.5. There exists α > 0 such that for sufficiently small ε > 0, Jε (γε(s)) ≥ cε − α implies that
γε(s) ∈ Yd/2

ε where γε(s) = Wε,st0(s).

Proof. Due to supp (γε(s)) ⊂ M2β
ε for each s ∈ [0, 1], it follows that Jε (γε(s)) = Iε (γε(s)). Moreover,

we see from a change of variables that

Iε (γε(s)) =
1
p

∫
RN

(|∇γε(s)|p + Vε|γε(s)|p)dx +
1
q

∫
RN

(|∇γε(s)|q + Vε|γε(s)|q)dx

−

∫
RN

F(γε(s))dx

=
1
p

∫
RN

(|∇γε(s)|p + V0|γε(s)|p)dx +
1
q

∫
RN

(|∇γε(s)|q + V0|γε(s)|q)dx

+
1
p

∫
RN

(Vε(x) − V0)|γε(s)|p)dx +
1
q

∫
RN

(Vε(x) − V0)|γε(s)|q)dx

−

∫
RN

F(γε(s))dx

=
(st0)N−p

p

∫
RN
|∇U |pdx +

(st0)N−q

q

∫
RN
|∇U |qdx +

(st0)N

p

∫
RN

V0|U |pdx

+
(st0)N

q

∫
RN

V0|U |qdx − (st0)N
∫
RN

F(U)dx + O(ε).

Then by using the Pohozǎev identity, we have that

Jε (γε(s)) = Iε (γε(s))

=
(st0)N−p

p

∫
RN
|∇U |pdx +

(st0)N−q

q

∫
RN
|∇U |qdx −

N − p
N p

(st0)N
∫
RN
|∇U |pdx

−
N − q

Nq
(st0)N

∫
RN
|∇U |qdx + O(ε)

=

(
(st0)N−p

p
−

N − 2
N p

(st0)N
) ∫
RN
|∇U |pdx

+

(
(st0)N−q

q
−

N − q
Nq

(st0)N
) ∫
RN
|∇U |qdx + O(ε).

Note that

cV0 = max
t∈(0,∞)

(
tN−p

p
−

N − 2
N p

tN

) ∫
RN
|∇U |pdx +

(
tN−q

q
−

N − q
Nq

tN

) ∫
RN
|∇U |qdx
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and lim
ε→0

cε = cV0 . Then, since, denoting g1(t) = tN−p

p −
N−p
N p tN , g2(t) = tN−q

q −
N−q
Nq tN ,

g′1(t)


> 0 for t ∈ (0, 1),
= 0 for t = 1,
< 0 for t > 1,

g′2(t)


> 0 for t ∈ (0, 1),
= 0 for t = 1,
< 0 for t > 1.

Then we have g′′1 (1) = p − N < 0 and g′′2 (1) = q − N < 0, the conclusion follows. □

Lemma 4.6. For sufficiently fixed small ε > 0, there exists a sequence {un}
∞
n=1 ⊂ Yd

ε ∩ J c̃ε
ε such that

J′ε (un)→ 0 as n→ ∞.

Proof. According to Lemma 4.5, there exists α > 0 such that for sufficiently small ε > 0, Jε (γε(s)) ≥
cε − α implies that γε(s) ∈ Yd/2

ε . If Lemma 4.6 does not hold for sufficiently small ε > 0, there exists
a(ε) > 0 such that

∣∣∣J′ε(u)
∣∣∣ ≥ a(ε) on Yd

ε ∩ J c̃ε
ε . Also we know from Lemma 4.4 that there exists

ω > 0, independent of ε > 0, such that
∣∣∣J′ε(u)

∣∣∣ ≥ ω for u ∈ J c̃ε
ε ∩

(
Yd
ε \Y

d/2
ε

)
. Thus, recalling that

lim
ε→0

(cε − c̃ε) = 0, by a deformation argument, for sufficiently small ε > 0, it is possible to construct a
path γ ∈ Γε satisfying Jε(γ(s)) < cε, s ∈ [0, 1]. This contradiction proves the Lemma. □

Lemma 4.7. For sufficiently small fixed ε > 0, Jε has a critical point uε ∈ Yd
ε ∩ J c̃ε

ε .

Proof. Let ε > 0 be fixed, small enough. According to Lemma 4.6, there exists a sequence
{
un,ε

}∞
n=1 ⊂

Yd
ε ∩ J c̃ε

ε such that
∣∣∣J′ε (un,ε

)∣∣∣ → 0 as n → ∞. Since Yd
ε is bounded, we can assume that un,ε ⇀ uε in Xε

as n→ ∞. Similar to [14, Proposition 3], we obtain that

lim
R→∞

sup
n≥1

∫
|x|≥R

(∣∣∣∇un,ε

∣∣∣p + Vε

∣∣∣un,ε

∣∣∣p) dx = 0 (4.11)

and

lim
R→∞

sup
n≥1

∫
|x|≥R

(∣∣∣∇un,ε

∣∣∣q + Vε

∣∣∣un,ε

∣∣∣q) dx = 0, (4.12)

which immediately implies that un,ε → uε in Lr
(
RN

)
(p ≤ r < q∗) as n → ∞. Moreover, by using

( f1) − ( f2), we have sup
∥∥∥ f

(
un,ε

)∥∥∥ < ∞. Then, for any φ ∈ C∞0
(
RN

)
,∫

RN
f
(
un,ε

) (
un,ε − uε

)
φdx→ 0 as n→ ∞.

Then, similar to [23, Proposition 5.3], un,ε → uε strongly in Xε as n → ∞. Thus, J′ε (uε) = 0 in Xε and
uε ∈ Yd

ε ∩ J c̃ε
ε . This completes the proof. □

Next, we use a Moser iteration argument [35] to obtain a fundamental L∞-estimate.

Lemma 4.8. Let (un) be the sequence defined as in Lemma 4.3. Then, Jεn (un) → cV0 in R as n → ∞,
and there is some sequence {ŷn}n∈N ⊂ R

N such that ûn(·) := un (· + ŷn) ∈ L∞
(
RN

)
and |ûn|L∞(RN) ⩽ C for

all n ∈ N.
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Proof. Proceeding as in the proof of Lemma 4.1 and Lemma 4.2, we know that Jεn (un) → cV0 in R
as n → ∞. Then, we can use Lemma 4.3 to deduce that there is a sequence {ŷn}n∈N ⊂ R

N such that
ûn(·) := un (· + ŷn) → û(·) ∈ X0 and yn := εnŷn → y0 ∈ M as n → ∞. For any L > 0 and β > 1 we
introduce the function

ψ (ûn) := ûnûq(β−1)
n,L ∈ Xεn , where ûn,L := min {ûn, L} .

Choosing ψ (ûn) as test function, we have∫
RN
|∇û|p−1ûn(x)dx +

∫
RN
|∇û|q−1ûn(x)dx

+

∫
RN

V (εnx + yn) |ûn|
p−2 ûnψ (ûn) dx +

∫
RN

V (εnx + yn) |ûn|
q−2 ûnψ (ûn) dx

=

∫
RN

f (εnx + yn, ûn)ψ (ûn) dx.

According to the growth of f , we see that for any σ > 0 there exists Cσ > 0 such that

| f (t)| ⩽ σ|t|p +Cσ|t|q
∗

for all t ∈ R.

Using (V1) and taking σ ∈ (0,V0), together with the above relations, we can conclude that∫
RN
|∇ûn|

p−1ûn(x)dx +
∫
RN
|∇ûn|

q−1ûn(x)dx ⩽ C
∫
RN
|ûn|

q∗ ûq(β−1)
n,L dx (4.13)

for some constant C > 0.
Now, let us introduce the following functions

φ(t) :=
|t|q

q
and Υ(t) :=

∫ t

0

(
ψ′(τ)

) 1
q dτ.

We first observe that ψ is an increasing function, so we have that

(a − b)(ψ(a) − ψ(b)) ⩾ 0 for all a, b ∈ R. (4.14)

Then by using (4.14) and the Jensen inequality, we can obtain that

φ′(a − b)(ψ(a) − ψ(b)) ⩾ |Υ(a) − Υ(b)|q for all a, b ∈ R. (4.15)

Obviously, we have

Υ (ûn) ⩾
1
β

ûnûβ−1
n,L . (4.16)

Therefore, by using (4.13), (4.14), (4.15) and (4.16), we can look for some constant C > 0 such that

∣∣∣ûnûβ−1
n,L

∣∣∣q
q∗
⩽ Cβq

∫
RN

ûq∗
n ûq(β−1)

n,L dx. (4.17)
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Choose β = q∗

q and let R > 0 large enough. According to ûn → û in X0 as n → ∞ with the Hölder
inequality, we can obtain that there exists some constant C > 0 such that∫

RN

(
ûnû

q∗−q
q

n,L

)q∗

dx


q

q∗

⩽ Cβq
∫
RN

Rq∗−qûq∗
n dx +Cϵ

∫
RN

(
ûnû

q∗−q
q

n,L

)q∗

dx


q

q∗

.

We choose a fixed ϵ ∈ (0, 1/C) and deduce that∫
RN

(
ûnû

q∗−q
q

n,L

)q∗

dx


q

q∗

⩽ Cβq
∫

Rq∗−qûq∗
n dx < +∞.

In the above inequality, we pass to the limit as L→ +∞ and we can obtain ûn ∈ L
q∗
q
(
RN

)
.

Due to 0 ⩽ ûn,L ⩽ ûn, then in (4.17) we pass to the limit as L→ +∞ and we obtain that

|ûn|
βq
βq∗ ⩽ Cβq

∫
RN

ûq∗+q(β−1)
n dx.

The fact means that (∫
RN

ûβq∗
n dx

) 1
q∗(β−1)

⩽
(
C1/qβ

) 1
β−1

[∫
RN

ûq∗+q(β−1)
n dx

] 1
q(β−1)

.

Next, we consider the sequence {βm}m⩾1 ⊂ R(m ∈ N) which satisfies the following relation:

q∗ + q (βm+1 − 1) = βmq∗ and β1 =
q∗

q
.

It follows that
βm+1 = β

m
1 (β1 − 1) + 1,

and so we have that
lim

m→∞
βm = +∞.

Define

Tm :=
(∫
RN

ûβmq∗
n dx

) 1
q∗(βm−1)

,

then we have
Tm+1 ⩽

(
C1/qβm+1

) 1
βm+1−1 Tm.

Obviously, by using a standard iteration argument we obtain that

Tm+1 ⩽
m∏

k=1

(
C1/qβk+1

) 1
βk+1−1 T1 ⩽ C̄T1, where C̄ is independent of m.

According to the above inequality we pass to the limit as m→ ∞ and then we deduce that |ûn|L∞(RN) ⩽
C uniformly in n ∈ N. □
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Proof of Theorem 1.1. According to Lemma 4.7, there exist d > 0 and ε0 > 0 such that, for ε ∈
(0, ε0) , Jε has a critical point uε ∈ Yd

ε ∩ Γ
c̃ε
ε . Since uε satisfies

(−∆)puε + (−∆)quε + V(εx)(|uε|p−2uε + |uε|q−2uε) = f (uε) + 4
(∫
RN
χεup

εdx − 1
)
+

χεuε in RN

and f (t) = 0 for t ≤ 0, we have that uε > 0 in RN . Moreover, by elliptic estimates through Moser
iteration scheme, that is Lemma 4.8, we obtain that {∥uε∥L∞}ε is bounded. Now by using Lemma 4.3,
we have

lim
ε→0

[
1
p

(∫
RN\M2δ

ε

|∇uε|p + Vε (uε)p dx
)
+

1
q

(∫
RN\M2δ

ε

|∇uε|q + Vε (uε)q dx
)]
= 0,

and thus, by elliptic estimates (see [22]), we have that

lim
ε→0
∥uε∥L∞(RN\M2δ

ε ) = 0.

Similar to [44], it is easy to check that there exist C, c > 0, independent of u ∈ SV0 such that

u(x) ≤ C exp (−c|x|) .

In fact, by using the Radial Lemma ( [10], Radial Lemma A.IV) we obtain

u(x) ≤ C
∥u∥Lp

|x|N/p for all x , 0,

where C = C(N, p). Thus lim
|x|→∞

u(x) = 0 uniformly for u ∈ SV0 . By the comparison principle there exist

C, c > 0, independent of u ∈ SV0 such that

u(x) ≤ C exp (−c|x|) for all x ∈ RN .

According to a comparison principle, for some C, c > 0, we obtain that

uε(x) ≤ C exp
(
−c dist

(
x,M2δ

ε

))
.

This implies that Qε (uε) = 0 and thus uε satisfies (1.1). Finally let xε be a maximum point of uε. By
Lemma 3.6 and Lemma 4.3, we readily deduce that εxε → x for some x ∈ M as ε → 0, and that for
some C, c > 0,

uε(x) ≤ C exp (−c |x − xε|) .

This completes the proof.
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