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Abstract: Let g be a positive integer. For each integer a with 1 < a < g and (a,q) = 1, it is clear
that there exists one and only one a with 1 < @ < ¢ such that aa = 1(g). Let k be any fixed integer
withk >2,0<6;, <1,i=1,2,--,k. r,(01,02,- -+, 0, @, B, c; q) denotes the number of all k-tuples
with positive integer coordinates (xi, X2, ..., x;) such that 1 < x; < 9;q, (x;,q) = 1, x1x - x, = ¢(q),
and x, xp,- -+ , X1 € B,p. In this paper, we consider the high-dimensional Lehmer problem related to
Beatty sequences over incomplete intervals and give an asymptotic formula by the properties of Beatty
sequences and the estimates for hyper Kloosterman sums.
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1. Introduction

Let g be a positive integer. For each integer a with 1 < a < ¢, (a,q) = 1, we know that there exists
one and only one a with 1 < a < ¢ such that aa = 1(g). Let r(q) be the number of integers a with
1 < a < g for which a and a are of opposite parity.

D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(g) when q is
an odd prime. Zhang [2, 3] gave some asymptotic formulas for r(g), one of which reads as follows:

1 |
r(g) = 58(q) + O (¢*d*(g) log’ q)..

Zhang [4] generalized the problem over short intervals and proved that

1 _ 1
D, 1=3No)g " +0 (g d(g)log q).
aZISQI(\LII)

where
R(g)={a:1<a<gq,(a,q)=1,21a+a}.
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Let n > 2 be a fixed positive integer, g > 3 and c¢ be two integers with (n,q) = (c,q) = 1. Let
0 < 61,0, < 1. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as

rn (01,02,¢59) 1= Z Z 1,

a<o1q a<orq
aa=c mod g
nta+a

and obtained an interesting asymptotic formula,
ra (61,62, ¢1q) = (1= n7") 8162¢(q) + O (q*d°(q) log? q)..

Liu and Zhang [6] r-th residues and roots, and obtained two interesting mean value formulas. Guo
and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences.
For fixed real numbers a and B, the associated non-homogeneous Beatty sequence is the sequence
of integers defined by

Bop = (Lan + B,

where | 7] denotes the integer part of any ¢ € R. Such sequences are also called generalized arithmetic
progressions. If « is irrational, it follows from a classical exponential sum estimate of Vinogradov [8]
that B, z contains infinitely many prime numbers; in fact, one has the asymptotic estimate

#{ prime p<x:pe€ Baﬁ} ~a'n(x) as x— oo

where 7(x) is the prime counting function.
We define type 7 = (@) for any irrational number « by the following definition:

= sup{t € R : liminf n|lan]] = 0}.

Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty
sequences over incomplete intervals in this paper. That is,

P (01,02, 0 Big) = Y e DL (0< 61,6, G < 1),
x1<019 Xk <Orq
X1-x=c mod q
X1, Xk-1€Ba g
e —
and where k = 2, we get the result of [7].
By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we

obtain the following result.

Theorem 1.1. Let k > 2 be a fixed positive integer, g > n* and c be two integers with (n,q) = (c,q) = 1,
and 61, 0,,- - , 0 be real numbers satisfying 0 < 61,0, ,0r < 1. Let @ > 1 be an irrational number
of finite type. Then, we have the following asymptotic formula:

P (01,60, 00 ¢ B q) = (1= ) @616, -+ 6647 (g) + (g 771%9),

where ¢(-) is the Euler function, € is a sufficiently small positive number, and the implied constant only
depends on n.
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Notation. In this paper, we denote by [7| and {¢} the integral part and the fractional part of 7,
respectively. As is customary, we put

e(r) =¥ and {1} :=1-|1].
The notation ||7|| is used to denote the distance from the real number 7 to the nearest integer; that is,

|£]] := min |t — n|.
nez

Let x° be the principal character modulo g. The letter p always denotes a prime. Throughout the
paper, € always denotes an arbitrarily small positive constant, which may not be the same at different
occurrences; the implied constants in symbols O, < and > may depend (where obvious) on the
parameters «, n, € but are absolute otherwise. For given functions F' and G, the notations F < G,
G > F and F = O(G) are all equivalent to the statement that the inequality |F| < C|G| holds with some
constant C > 0.

2. Preliminary lemmas

To complete the proof of the theorem, we need the following several definitions and lemmas.

Definition 2.1. For an arbitrary set S, we use 1s to denote its indicator function:

1 ifnes,
1 =
s(n) {0 ifngS.

We use 1, to denote the characteristic function of numbers in a Beatty sequence:

1 lfn S Ba,ﬂ,

1, =
5(n) {O iné By

Lemma 2.2. Let a, g be integers, 56 € (0,1) be a real number, 6 be a rational number. Let a be an
irrational number of finite type T and H = q°* > 0. We have

1= a"6p(g) + O (((g) ).

a<oq
aEB(,ﬁ
and
> eay=a Y e@a)+ Ol +q).
a<dq a<dq
aEB(,ﬁ
Taking
H = |l =,
we have
> e =a Y ea) + Ol 7).
a<éq aséiq
(IGBQ’[;
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Proof. This is Lemma 2.4 and Lemma 2.5 of [7].

Lemma 2.3. Let

riXy + s+ T Xg—1 + Xy s X
KI(ri, o, ris @) = ) e Y e(

P

x1<g—1 Xp-1<g—1

Then
k-1 1 1
KI(ri, 72, 13q) < q 2 kD (r1, 11, @) -+ (P15 T4, 9)2

where (a, b, c) is the greatest common divisor of a, b and c.

Proof. See [9].

O

Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two

real numbers. If
(r,9)=1r=116 <1,
then

. 1 K
> min(U, o) < G D+ rlogn).

k<K
Proof. The proof is given in [10].

3. Proof of theorem

We begin by the definition

rn(51a629"' ,5k,C,a’,,3;(]) :Sl _SZ’

where
S] = E DO E 1’
x1<019 X <0kq
x1--xx=c mod ¢
X1, Xk—1€Bap
and

Syi= » - L

x1<019 X, <Okq
X1 xx=c mod g
X1, Xk—1 EBaﬁ
nlxy 4+ X

By the Definition 2.1, Lemma 2.2 and congruence properties, we have

Si= D D Lag (i) g ()

xX1<019 X <Okq
xp-xx=c mod g

_1 —
= ¢(q) Z Z Z X(xl)"'/\/(xk)/\/(c)la/,ﬁ(xl)'"1(1/"3 (-xk—l)
x1<019 X <0kq y mod ¢
= S“ +S 125
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where

1 ’
S = ¢_ Z Z la,ﬁ (xl)"'la,,B (Xk-1)
<614

Xk <Okq

and

S = ¢() DL X@| DL D XD (0 agn) - Lag(ion) |-

x mod g x1<619 Xk <Okq
X#X0

For S », it follows that

1
S, = Z Z Z X (x1) - X @1ag (x1) -+ Lo (ie1)

¢(q) x1<019 Xk <0kg ¥ mod ¢
nlxp+-+xg
=87 + 820,
where
1 ’ ’
Sz] = ﬁ Z e Z l(z,ﬁ (-xl) e 1(1,,8 (xk—l) s
Plq x1<61q Xk <Okq
nlxy - +x
and

b2 ¢<> DK@ D D x) x (o)L (1) - Lo (o).

x mod g xX1<019 X <Orq
X#EX0 nlxy+-+xg

3.1. Estimation of S 1,

From the classical bound

>''1=60(g) + 0 d(g)

a<oq

and Lemma 2.2, we have

S = @[Z, 1@,/;()61)]'”[ Z, laﬁ(xk—l)][zl 1]

X1<01q Xj—1<6k-19 Xk <Okq
dD\ T/ e
:(5k ( a )))ﬂ 5:¢(q) + O ((9(9) 7))

i=
k-1

— a—(k—l)(pk—](q) 1_[6,- n O(qk—l—$+s)'
i=1

(3.1)
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3.2. Estimation of S 1

From Lemma 2.2, we obtain

S = ¢(>[Z 1a,g<x1>] ( > 1aﬁ<xk_1)) >

x1<019 X—1<0k-19 Xk <Okq
nlxg+(x1+-+x-1)

:¢—[Z laﬁm)] ( > a,ﬁ<xk_1>) > D u@

x1<019 Xk-1<0k-19 X <6kq d|(xk,q)
Xp=—(x1++xk-1) mod n

[Z LG | D) Lopuen || D@ I

x1<01q Xi—1<0k-19 dlg Xk <Okq
d|xy
Xp=—(x1++x,—1) mod n

%[Z laﬁ(xl) Z, laﬂ(xk_1) Zﬂ(d)(i(_j"_O(l))]

x1<019 Xj—1<0k-19 dlq

3
p—

L (899 =
( P\q +0 (d(q))) 1_[ (a_15i¢(q) +0 ((¢(q))$+s))
@) >
k—1
= a_(k—l)n—l¢k—1(q) 1—[ 61' + O(qk—l—_r%-}-g). (32)

i=1

3.3. Estimation of S and S 1>

By the properties of exponential sums,

Sa = ¢()ZX()

xmodg
XFX0

Nox e+ x
X [Z e(%l))
n k-1
¢( DIRCINN [ D Lol (e l)][ > X(xk)e(%l)]- (3.3)

xmodg =1 i=1 \x;<6iq X, <0kq
X#X0

Z e Z X(xl)'")((xk)la,ﬁ(xl)"'la,ﬂ(xk—l)]

x1<619 X <Ok-19

Let

q
h
G(rox) = ) x(hye(—)
h=1 q
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be the Gauss sum, and we know that for y # xo,

1 <& xr. 1 q_l X;r
X = Zl Glrye(==0) = = Z} Glrxe(==0)

and l
—-Lx0
n q
forl<l<nl<r<g-1and(nq) =1.
Therefore,
(5 L, )
D XeCE) = ZG( FioX f P
X <6kq rk 1 q - h)
where l
,
f(éa l’ r;n’p) = 1 - e((_ - _)L(SCIJ)
n o q
and

|f(6k’ l’ I, n, Q)| <2

For x;(1 <i < k—1),using Lemma 2.2, we also have

> LugrxeD

xi<0;q
[
= lafﬂ(xl G(r,,)()e((— - _)-xl)
l r;
=— Z G (ri.x) Z Lop(x)e ((— - —)x,-)
Xxi<0;q n q
1% 4 [ q°
:—ZGm,X) o' Y el(= - D)+ 0|
q = o, \noq [
1 (S 5ia l9 is N, -
=—ZG(7’5,X)[f(r.—};nq) + 0( ,q p +qs]]~
qa = e(; —;) -1 Il — ;’H

Let

1 G QS Gulring G lrin.g)
S (e -hH-1) (e -H-1)
X D X@G (0 G ).

xmodg
X#X0

|
S
=
~
.
QT
g
M

U

1 Ll (R £ (6l risn,q) 1 & fwlrsn,q)
Sz = m Z x(©) n[q_oz G(ri»/\/)w ;G(”ka)()(,k_—

;)

(3.4)

(3.5)

|

(3.6)

AIMS Mathematics Volume 8, Issue 6, 13492—-13502.



13499

From the definition of Gauss sum and Lemma 2.3, we know that
D X@G (1)) G (o x)
xymodg

q-1 q-1
rlhl "I‘l’khk

- Z Z x©)x(hy) -+ x(he( 7 )

hi= =1 ,\(modq

q-1 q-1

_ r1h1+~-+rkhk
—¢(q)2 D e p )

hi=1 =1
hy--hy=c mod g

:¢(q)q21 . S e(rlhl + .- 'rk—lhk;; + rkcm)

=p(q)KI(ry, 72, , 11C; q)
<<¢(Q)q%]kw(q) (r1, ree, Q)% co e (P, TGy Q)%
<@g 7 KD (r1,q) - (@)

By Mobius inversion, we get

q
w(q)
G = - ) — ) )
(r.x0) Ze( )= ((rq))cp(q/(rq)) <9

=1
and
X0(©)G (ri,x0) - G (ri, xo0) < (ri,q) -+ (1, q) .
Hence,

T X@G (11,0 G (1 x)

xmodg
X#X0

= > X@G 1,0+ G (1) = xo@G (1,x0) -+ G (7, x0)

xmodg

<@g 2 k"D (ri,q) - (1 q) .

From (3.8) we may deduce the following result:

k@ 4

k
D ]

ng = a5 e(——-)—1|
k@@ L (r,q)
< k+1 k-1 Z Z . i
nq % =1 \ r=1 ‘Slnﬂ'(é - ;)‘
k@

n gq-1 k
< k+1 1 Z” _ 1

bl k- r
nq @ =1 r=1 q

/\

(3.7

(3.8)
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k
k@@ n d
= T e r_ 1
nqzak 1; dzwlr;l HC_I_Z”
d<q (rsq)zd
k
k@@ n 1
S d
ng'* k-1 IZ‘ dzlq Z f12 - 4
d<q (mq) 1
k
k@@ n
d<q
It is easy to see
mkd 1 —l(q/d) 1
|l— - -l = || | =
g n ( /d)n (q/d)n’

and we obtain

k@

S23 ST Zdz Z min ( I’"kd l||)

nd(q)qg > S m<i!
d<q

Let kd/q = hy/qo, where gy > 1, (hy,qo) = 1, and we will easily obtain ¢/(kd) < gy < q/d. By using
Lemma 2.4 , we have

k

| S (g —1)/(kd) )

Sy << —7—— § d (— (= +qologqo)
ng's a*! ; dig kzlq: o d

d<q

k@ & (g-1)/ (kd) )
d 2 7 — —l
< nqkzla’k 1 ;Zlq ;q( q/(kd) ( )
<q

< kw(q)q - ZZn+10gq

dlg kg
d<q

k

k

< q'7 d*(g)logq + n).

Let

g*=heo) n okl ol 1 = f O ri;n, q)
S :: - G i - ' X ’ ’
24 nd(q) ZX( 1—[ az (r X)||l—ﬁ||][q G e x) (rk— l)

xmodg =1 i=1 ri=1
X#X0
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and

40D nokel(g o acd f(5k,l 11, Q)
S5 = g 2, X© ( Zcm,x)}{ ZG(rk, o D)

xmodg =1 i=1 ri=1 re=1
X#X0

By the same argument of S »3, it follows that
Sy < q'7 d*(g)(log g + ),

S5 < q%“(logq + n).

. 1
Since n < ¢3, we have
Sas < Say < Sy < 20k < g2, (3.9)

Taking n = 1, we get
k-1
S < qT+g. (310)

With (3.1), (3.2), (3.9) and (3.10), the proof is complete.
4. Conclusions

This paper considers the high-dimensional Lehmer problem related to Beatty sequences over
incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and
the estimates for hyper Kloosterman sums.
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