

http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(6): 13492–13502.

DOI: 10.3934/math.2023684 Received: 25 December 2022 Revised: 18 February 2023 Accepted: 09 March 2023 Published: 07 April 2023

Research article

High-dimensional Lehmer problem on Beatty sequences

Xiaoqing Zhao and Yuan Yi*

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

* Correspondence: Email: yuanyi@xjtu.edu.cn.

Abstract: Let q be a positive integer. For each integer a with $1 \le a < q$ and (a,q) = 1, it is clear that there exists one and only one \bar{a} with $1 \le \bar{a} < q$ such that $a\bar{a} \equiv 1(q)$. Let k be any fixed integer with $k \ge 2, 0 < \delta_i \le 1, i = 1, 2, \dots, k$. $r_n(\delta_1, \delta_2, \dots, \delta_k, \alpha, \beta, c; q)$ denotes the number of all k-tuples with positive integer coordinates (x_1, x_2, \dots, x_k) such that $1 \le x_i \le \delta_i q$, $(x_i, q) = 1, x_1 x_2 \dots x_k \equiv c(q)$, and $x_1, x_2, \dots, x_{k-1} \in B_{\alpha,\beta}$. In this paper, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals and give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.

Keywords: the Lehmer problem; Beatty sequence; exponential sum; asymptotic formula

Mathematics Subject Classification: 11B83, 11L05, 11N69

1. Introduction

Let q be a positive integer. For each integer a with $1 \le a < q$, (a,q) = 1, we know that there exists one and only one \bar{a} with $1 \le \bar{a} < q$ such that $a\bar{a} \equiv 1(q)$. Let r(q) be the number of integers a with $1 \le a < q$ for which a and \bar{a} are of opposite parity.

D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(q) when q is an odd prime. Zhang [2,3] gave some asymptotic formulas for r(q), one of which reads as follows:

$$r(q) = \frac{1}{2}\phi(q) + O\left(q^{\frac{1}{2}}d^{2}(q)\log^{2}q\right).$$

Zhang [4] generalized the problem over short intervals and proved that

$$\sum_{\substack{a \le N \\ a \in R(a)}} 1 = \frac{1}{2} N \phi(q) q^{-1} + O\left(q^{\frac{1}{2}} d^2(q) \log^2 q\right),$$

where

$$R(q) := \{a : 1 \le a \le q, (a, q) = 1, 2 \nmid a + \bar{a}\}.$$

Let $n \ge 2$ be a fixed positive integer, $q \ge 3$ and c be two integers with (n, q) = (c, q) = 1. Let $0 < \delta_1, \delta_2 \le 1$. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as

$$r_n(\delta_1, \delta_2, c; q) := \sum_{\substack{a \leqslant \delta_1 q \ a\bar{a} \equiv c \mod q \\ n \nmid a + \bar{a}}} \sum_{1, q \in S_1, q \in S_2} 1,$$

and obtained an interesting asymptotic formula,

$$r_n(\delta_1, \delta_2, c; q) = (1 - n^{-1}) \delta_1 \delta_2 \phi(q) + O(q^{\frac{1}{2}} d^6(q) \log^2 q).$$

Liu and Zhang [6] r-th residues and roots, and obtained two interesting mean value formulas. Guo and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences. For fixed real numbers α and β , the associated non-homogeneous Beatty sequence is the sequence of integers defined by

$$\mathcal{B}_{\alpha,\beta} := (\lfloor \alpha n + \beta \rfloor)_{n=1}^{\infty},$$

where $\lfloor t \rfloor$ denotes the integer part of any $t \in \mathbb{R}$. Such sequences are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [8] that $\mathcal{B}_{\alpha\beta}$ contains infinitely many prime numbers; in fact, one has the asymptotic estimate

#{ prime
$$p \le x : p \in \mathcal{B}_{\alpha,\beta}$$
} $\sim \alpha^{-1}\pi(x)$ as $x \to \infty$

where $\pi(x)$ is the prime counting function.

We define type $\tau = \tau(\alpha)$ for any irrational number α by the following definition:

$$\tau := \sup \left\{ t \in \mathbb{R} : \liminf_{n \to \infty} n^t ||\alpha n|| = 0 \right\}.$$

Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals in this paper. That is,

$$r_n(\delta_1, \delta_2, \cdots, \delta_k, c, \alpha, \beta; q) := \sum_{\substack{x_1 \leqslant \delta_1 q \\ x_1 \cdots x_k \equiv c \bmod q \\ x_1, \cdots, x_{k-1} \in B_{\alpha, \beta} \\ n \nmid x_1 + \cdots + x_k}} {}^{\prime} 1, (0 < \delta_1, \delta_2, \cdots, \delta_k \le 1),$$

and where k = 2, we get the result of [7].

By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we obtain the following result.

Theorem 1.1. Let $k \ge 2$ be a fixed positive integer, $q \ge n^3$ and c be two integers with (n, q) = (c, q) = 1, and $\delta_1, \delta_2, \dots, \delta_k$ be real numbers satisfying $0 < \delta_1, \delta_2, \dots, \delta_k \le 1$. Let $\alpha > 1$ be an irrational number of finite type. Then, we have the following asymptotic formula:

$$r_n(\delta_1, \delta_2, \cdots, \delta_k, c, \alpha, \beta; q) = (1 - n^{-1})\alpha^{-(k-1)}\delta_1\delta_2 \cdots \delta_k\phi^{k-1}(q) + O(q^{k-1-\frac{1}{\tau+1}+\varepsilon}),$$

where $\phi(\cdot)$ is the Euler function, ε is a sufficiently small positive number, and the implied constant only depends on n.

Notation. In this paper, we denote by $\lfloor t \rfloor$ and $\{t\}$ the integral part and the fractional part of t, respectively. As is customary, we put

$$\mathbf{e}(t) := e^{2\pi i t}$$
 and $\{t\} := t - \lfloor t \rfloor$.

The notation ||t|| is used to denote the distance from the real number t to the nearest integer; that is,

$$||t|| := \min_{n \in \mathbb{Z}} |t - n|.$$

Let χ^0 be the principal character modulo q. The letter p always denotes a prime. Throughout the paper, ε always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O, \ll and \gg may depend (where obvious) on the parameters α, n, ε but are absolute otherwise. For given functions F and G, the notations $F \ll G$, $G \gg F$ and F = O(G) are all equivalent to the statement that the inequality $|F| \leqslant C|G|$ holds with some constant C > 0.

2. Preliminary lemmas

To complete the proof of the theorem, we need the following several definitions and lemmas.

Definition 2.1. For an arbitrary set S, we use 1_S to denote its indicator function:

$$\mathbf{1}_{\mathcal{S}}(n) := \begin{cases} 1 & \text{if } n \in \mathcal{S}, \\ 0 & \text{if } n \notin \mathcal{S}. \end{cases}$$

We use $\mathbf{1}_{\alpha,\beta}$ to denote the characteristic function of numbers in a Beatty sequence:

$$\mathbf{1}_{\alpha\beta}(n) := \begin{cases} 1 & \text{if } n \in \mathcal{B}_{\alpha\beta}, \\ 0 & \text{if } n \notin \mathcal{B}_{\alpha\beta}. \end{cases}$$

Lemma 2.2. Let a, q be integers, $\delta \in (0, 1)$ be a real number, θ be a rational number. Let α be an irrational number of finite type τ and $H = q^{\varepsilon} > 0$. We have

$$\sum_{\substack{a\leqslant \delta q\\a\in\mathcal{B}_{\alpha\beta}}}'1=\alpha^{-1}\delta\phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right),$$

and

$$\sum_{\substack{a \leqslant \delta q \\ a \in \mathcal{B}_{\alpha,B}}} \mathbf{e}(\theta a) = \alpha^{-1} \sum_{a \leqslant \delta_1 q} \mathbf{e}(\theta a) + O\left(||\theta||^{-1} q^{-\varepsilon} + q^{\varepsilon}\right).$$

Taking

$$H = ||\theta||^{-\frac{1}{\tau+1}+\varepsilon},$$

we have

$$\sum_{\substack{a \leqslant \delta q \\ a \in B_{\alpha, \beta}}} \mathbf{e}(\theta a) = \alpha^{-1} \sum_{a \leqslant \delta_1 q} \mathbf{e}(\theta a) + O\left(\|\theta\|^{-\left(\frac{\tau}{\tau+1} + \varepsilon\right)}\right).$$

Proof. This is Lemma 2.4 and Lemma 2.5 of [7].

Lemma 2.3. Let

$$\mathbf{Kl}(r_1, r_2, \cdots, r_k; q) = \sum_{x_1 \leq q-1} \cdots \sum_{x_{k-1} \leq q-1} \mathbf{e} \left(\frac{r_1 x_1 + \cdots + r_{k-1} x_{k-1} + r_k \overline{x_1 \cdots x_{k-1}}}{p} \right).$$

Then

$$\mathbf{Kl}(r_1, r_2, \cdots, r_k; q) \ll q^{\frac{k-1}{2}} k^{\omega(q)} (r_1, r_k, q)^{\frac{1}{2}} \cdots (r_{k-1}, r_k, q)^{\frac{1}{2}}$$

where (a, b, c) is the greatest common divisor of a, b and c.

Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two real numbers. If

$$a = \frac{s}{r} + \frac{\theta}{r^2}, \quad (r, s) = 1, r \ge 1, |\theta| \le 1,$$

then

$$\sum_{k \le K} \min(U, \frac{1}{\|ak + b\|}) \ll (\frac{K}{r} + 1)(U + r\log r).$$

Proof. The proof is given in [10].

3. Proof of theorem

We begin by the definition

$$r_n(\delta_1, \delta_2, \cdots, \delta_k, c, \alpha, \beta; q) = S_1 - S_2,$$

where

$$S_1 := \sum_{\substack{x_1 \leqslant \delta_1 q \\ x_1 \cdots x_k \equiv c \bmod q \\ x_1 \cdots x_{k-1} \in \mathcal{B}_{\alpha,\beta}}} 1,$$

and

$$S_2 := \sum_{\substack{x_1 \leqslant \delta_1 q \\ x_1 \cdots x_k \equiv c \bmod q \\ x_1, \dots, x_{k-1} \in \mathcal{B}_{\alpha,\beta} \\ n \mid x_1 + \dots + x_k}} 1.$$

By the Definition 2.1, Lemma 2.2 and congruence properties, we have

$$S_{1} = \sum_{\substack{x_{1} \leqslant \delta_{1}q \\ x_{1} \cdots x_{k} \equiv c \bmod q}} \cdots \sum_{\substack{x_{k} \leqslant \delta_{k}q \\ x_{1} \cdots x_{k} \equiv c \bmod q}} \mathbf{1}_{\alpha,\beta}(x_{1}) \cdots \mathbf{1}_{\alpha,\beta}(x_{k-1})$$

$$= \frac{1}{\phi(q)} \sum_{\substack{x_{1} \leqslant \delta_{1}q \\ x_{1} \leqslant \delta_{1}q}} \cdots \sum_{\substack{x_{k} \leqslant \delta_{k}q \times \bmod q}} \sum_{\substack{mod q}} \chi(x_{1}) \cdots \chi(x_{k}) \chi(\overline{c}) \mathbf{1}_{\alpha,\beta}(x_{1}) \cdots \mathbf{1}_{\alpha,\beta}(x_{k-1})$$

$$= S_{1,1} + S_{1,2},$$

where

$$S_{11} := \frac{1}{\phi(q)} \sum_{x_1 \leq \delta_1 q}' \cdots \sum_{x_k \leq \delta_k q}' \mathbf{1}_{\alpha,\beta}(x_1) \cdots \mathbf{1}_{\alpha,\beta}(x_{k-1}),$$

and

$$S_{12} := \frac{1}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi \neq \chi_0}} \chi(\overline{c}) \Biggl(\sum_{x_1 \leqslant \delta_1 q} \cdots \sum_{x_k \leqslant \delta_k q} \chi(x_1) \cdots \chi(x_k) \mathbf{1}_{\alpha,\beta}(x_1) \cdots \mathbf{1}_{\alpha,\beta}(x_{k-1}) \Biggr).$$

For S_2 , it follows that

$$S_{2} = \frac{1}{\phi(q)} \sum_{\substack{x_{1} \leqslant \delta_{1}q \\ n|x_{1} + \dots + x_{k}}} \dots \sum_{\substack{x_{k} \leqslant \delta_{k}q \ \chi \bmod q}} \sum_{\substack{q \ \chi(x_{1}) \dots \chi(x_{k}) \chi(\overline{c})}} \mathbf{1}_{\alpha,\beta}(x_{1}) \dots \mathbf{1}_{\alpha,\beta}(x_{k-1})$$

$$= S_{21} + S_{22},$$

where

$$S_{21} := \frac{1}{\phi(q)} \sum_{\substack{x_1 \leqslant \delta_1 q \\ p|x_1 + \dots + x_k}}' \cdots \sum_{\substack{x_k \leqslant \delta_k q \\ p|x_1 + \dots + x_k}}' \mathbf{1}_{\alpha,\beta}(x_1) \cdots \mathbf{1}_{\alpha,\beta}(x_{k-1}),$$

and

$$S_{22} := \frac{1}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi \neq \chi_0}} \chi(\overline{c}) \sum_{\substack{x_1 \leqslant \delta_1 q \\ n \mid x_1 + \dots + x_k}} \chi(x_1) \cdots \chi(x_{k-1}) \mathbf{1}_{\alpha,\beta}(x_1) \cdots \mathbf{1}_{\alpha,\beta}(x_{k-1}).$$

3.1. Estimation of S_{11}

From the classical bound

$$\sum_{q \le \delta q}' 1 = \delta \phi(q) + O(d(q))$$

and Lemma 2.2, we have

$$S_{11} = \frac{1}{\phi(q)} \left(\sum_{x_1 \leq \delta_1 q}' \mathbf{1}_{\alpha,\beta}(x_1) \right) \cdots \left(\sum_{x_{k-1} \leq \delta_{k-1} q}' \mathbf{1}_{\alpha,\beta}(x_{k-1}) \right) \left(\sum_{x_k \leq \delta_k q}' 1 \right)$$

$$= \left(\delta_k + O\left(\frac{d(q)}{\phi(q)}\right) \right) \prod_{i=1}^{k-1} \left(\alpha^{-1} \delta_i \phi(q) + O\left((\phi(q))^{\frac{\tau}{\tau+1} + \varepsilon}\right) \right)$$

$$= \alpha^{-(k-1)} \phi^{k-1}(q) \prod_{i=1}^{k-1} \delta_i + O\left(q^{k-1 - \frac{1}{\tau+1} + \varepsilon}\right). \tag{3.1}$$

3.2. Estimation of S_{21}

From Lemma 2.2, we obtain

$$S_{21} = \frac{1}{\phi(q)} \left(\sum_{x_1 \leq \delta_1 q}' \mathbf{1}_{\alpha,\beta}(x_1) \right) \cdots \left(\sum_{x_{k-1} \leq \delta_{k-1} q}' \mathbf{1}_{\alpha,\beta}(x_{k-1}) \right) \left(\sum_{x_k \leq \delta_k q}' \mathbf{1}_{\alpha,k}(x_{k-1}) \right)$$

$$= \frac{1}{\phi(q)} \left(\sum_{x_1 \leq \delta_1 q}' \mathbf{1}_{\alpha,\beta}(x_1) \right) \cdots \left(\sum_{x_{k-1} \leq \delta_{k-1} q}' \mathbf{1}_{\alpha,\beta}(x_{k-1}) \right) \left(\sum_{x_k = -(x_1 + \dots + x_{k-1}) \bmod n} \sum_{d \mid (x_k, q)} \mu(d) \right)$$

$$= \frac{1}{\phi(q)} \left(\sum_{x_1 \leq \delta_1 q}' \mathbf{1}_{\alpha,\beta}(x_1) \right) \cdots \left(\sum_{x_{k-1} \leq \delta_{k-1} q}' \mathbf{1}_{\alpha,\beta}(x_{k-1}) \right) \left(\sum_{d \mid q} \mu(d) \sum_{x_k \leq \delta_k q} \sum_{d \mid x_k = -(x_1 + \dots + x_{k-1}) \bmod n} 1 \right)$$

$$= \frac{1}{\phi(q)} \left(\sum_{x_1 \leq \delta_1 q}' \mathbf{1}_{\alpha,\beta}(x_1) \right) \cdots \left(\sum_{x_{k-1} \leq \delta_{k-1} q}' \mathbf{1}_{\alpha,\beta}(x_{k-1}) \right) \left(\sum_{d \mid q} \mu(d) \left(\frac{\delta_k q}{nd} + O(1) \right) \right)$$

$$= \frac{1}{\phi(q)} \left(\frac{\delta_k \phi(q)}{n} + O(d(q)) \right) \prod_{i=1}^{k-1} \left(\alpha^{-1} \delta_i \phi(q) + O\left((\phi(q))^{\frac{7}{r+1} + \varepsilon}\right) \right)$$

$$= \alpha^{-(k-1)} n^{-1} \phi^{k-1}(q) \prod_{i=1}^{k-1} \delta_i + O(q^{k-1 - \frac{1}{r+1} + \varepsilon}).$$

$$(3.2)$$

3.3. Estimation of S_{22} and S_{12}

By the properties of exponential sums,

$$S_{22} = \frac{1}{n\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi \neq \chi_0}} \chi(\overline{c}) \left(\sum_{x_1 \leqslant \delta_1 q} \cdots \sum_{x_k \leqslant \delta_{k-1} q} \chi(x_1) \cdots \chi(x_k) \mathbf{1}_{\alpha,\beta}(x_1) \cdots \mathbf{1}_{\alpha,\beta}(x_{k-1}) \right)$$

$$\times \left(\sum_{l=1}^n \mathbf{e}(\frac{x_1 + \cdots + x_k}{n} l) \right)$$

$$= \frac{1}{n\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi \neq \chi_0}} \chi(\overline{c}) \sum_{l=1}^n \prod_{i=1}^{k-1} \left(\sum_{x_i \leqslant \delta_i q} \mathbf{1}_{\alpha,\beta}(x_i) \chi(x_i) \mathbf{e}(\frac{x_i}{n} l) \right) \left(\sum_{x_k \leqslant \delta_k q} \chi(x_k) \mathbf{e}(\frac{x_k}{n} l) \right). \tag{3.3}$$

Let

$$G(r,\chi) := \sum_{h=1}^{q} \chi(h) \mathbf{e}(\frac{rh}{q})$$

be the Gauss sum, and we know that for $\chi \neq \chi_0$,

$$\chi(x_i) = \frac{1}{q} \sum_{r=1}^q G(r, \chi) \mathbf{e}(-\frac{x_i r}{q}) = \frac{1}{q} \sum_{r=1}^{q-1} G(r, \chi) \mathbf{e}(-\frac{x_i r}{q}),$$

and

$$\frac{l}{n} - \frac{r}{q} \neq 0$$

for $1 \le l \le n, 1 \le r \le q - 1$ and (n, q) = 1.

Therefore,

$$\sum_{x_k \le \delta_k q} \chi(x_k) \mathbf{e}(\frac{x_k}{n} l) = \frac{1}{q} \sum_{r_k = 1}^{q - 1} G(r_k, \chi) \frac{f(\delta_k, l, r_k; n, q)}{\mathbf{e}(\frac{r_k}{q} - \frac{l}{h}) - 1},$$
(3.4)

where

$$f(\delta, l, r; n, p) := 1 - \mathbf{e} \left((\frac{l}{n} - \frac{r}{q}) \lfloor \delta q \rfloor \right)$$

and

$$|f(\delta_k, l, r_k; n, q)| \leq 2.$$

For $x_i (1 \le i \le k - 1)$, using Lemma 2.2, we also have

$$\sum_{x_{i} \leqslant \delta_{i}q} \mathbf{1}_{\alpha,\beta}(x_{i}) \chi(x_{i}) \mathbf{e}(\frac{x_{i}}{n}l)$$

$$= \frac{1}{q} \sum_{x_{i} \leqslant \delta_{i}q} \mathbf{1}_{\alpha,\beta}(x_{i}) \sum_{r_{i}=1}^{q-1} G(r_{i},\chi) \mathbf{e}\left((\frac{l}{n} - \frac{r_{i}}{q})x_{i}\right)$$

$$= \frac{1}{q} \sum_{r_{i}=1}^{q-1} G(r_{i},\chi) \sum_{x_{i} \leqslant \delta_{i}q} \mathbf{1}_{\alpha,\beta}(x_{i}) \mathbf{e}\left((\frac{l}{n} - \frac{r_{i}}{q})x_{i}\right)$$

$$= \frac{1}{q} \sum_{r_{i}=1}^{q-1} G(r_{i},\chi) \left(\alpha^{-1} \sum_{\alpha \leqslant \delta_{i}q} \mathbf{e}\left((\frac{l}{n} - \frac{r_{i}}{q})x_{i}\right) + O\left(\frac{q^{-\varepsilon}}{\|\frac{l}{n} - \frac{r_{i}}{q}\|} + q^{\varepsilon}\right)\right)$$

$$= \frac{1}{q\alpha} \sum_{r_{i}=1}^{q-1} G(r_{i},\chi) \left(\frac{f(\delta_{i},l,r_{i};n,q)}{\mathbf{e}(\frac{r_{i}}{q} - \frac{l}{n}) - 1} + O\left(\frac{q^{-\varepsilon}}{\|\frac{l}{n} - \frac{r_{i}}{q}\|} + q^{\varepsilon}\right)\right).$$
(3.5)

Let

$$S_{23} = \frac{1}{n\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi \neq \chi_0}} \chi(\overline{c}) \sum_{l=1}^{n} \prod_{i=1}^{k-1} \left(\frac{1}{q\alpha} \sum_{r_i=1}^{q-1} G(r_i, \chi) \frac{f(\delta_i, l, r_i; n, q)}{\mathbf{e}(\frac{r_i}{q} - \frac{l}{n}) - 1} \right) \left(\frac{1}{q} \sum_{r_k=1}^{q-1} G(r_k, \chi) \frac{f(\delta_k, l, r_k; n, q)}{\mathbf{e}(\frac{r_k}{q} - \frac{l}{n}) - 1} \right)$$

$$= \frac{1}{n\phi(q)q^k \alpha^{k-1}} \sum_{l=1}^{n} \sum_{r_1=1}^{q-1} \cdots \sum_{r_k=1}^{q-1} \frac{f(\delta_1, l, r_1; n, q) \cdots f(\delta_k, l, r_k; n, q)}{\left(\mathbf{e}(\frac{r_1}{q} - \frac{l}{n}) - 1 \right) \cdots \left(\mathbf{e}(\frac{r_k}{q} - \frac{l}{n}) - 1 \right)}$$

$$\times \sum_{\substack{\chi \bmod q \\ \chi \neq \chi_0}} \chi(\overline{c}) G(r_1, \chi) \cdots G(r_k, \chi) . \tag{3.6}$$

From the definition of Gauss sum and Lemma 2.3, we know that

$$\sum_{\chi \bmod q} \chi(\overline{c}) G(r_1, \chi) \cdots G(r_k, \chi)$$

$$= \sum_{h_1=1}^{q-1} \cdots \sum_{h_k=1}^{q-1} \sum_{\chi \bmod q} \chi(\overline{c}) \chi(h_1) \cdots \chi(h_k) \mathbf{e}(\frac{r_1 h_1 + \cdots + r_k h_k}{q})$$

$$= \phi(q) \sum_{h_1=1}^{q-1} \cdots \sum_{h_k=1}^{q-1} \mathbf{e}(\frac{r_1 h_1 + \cdots + r_k h_k}{q})$$

$$= \phi(q) \sum_{h_1=1}^{q-1} \cdots \sum_{h_k=1}^{q-1} \mathbf{e}(\frac{r_1 h_1 + \cdots + r_k h_k}{q})$$

$$= \phi(q) \sum_{h_1=1}^{q-1} \cdots \sum_{h_k=1}^{q-1} \mathbf{e}(\frac{r_1 h_1 + \cdots + r_k h_k}{q})$$

$$= \phi(q) \mathbf{K} \mathbf{I}(r_1, r_2, \cdots, r_k c; q)$$

$$\ll \phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}(r_1, r_k c, q)^{\frac{1}{2}} \cdots (r_{k-1}, r_k c, q)^{\frac{1}{2}}$$

$$\ll \phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}(r_1, q) \cdots (r_k, q). \tag{3.7}$$

By Mobius inversion, we get

$$G(r,\chi_0) = \sum_{h=1}^{q'} \mathbf{e}(\frac{rh}{q}) = \mu \left(\frac{q}{(r,q)}\right) \frac{\varphi(q)}{\varphi(q/(r,q))} \ll (r,q),$$

and

$$\chi_0(\overline{c})G(r_1,\chi_0)\cdots G(r_k,\chi_0)\ll (r_1,q)\cdots (r_k,q)$$
.

Hence,

$$\sum_{\substack{\chi \bmod q \\ \chi \neq \chi_0}} \chi(\overline{c}) G(r_1, \chi) \cdots G(r_k, \chi)$$

$$= \sum_{\substack{\chi \bmod q \\ \chi \bmod q}} \chi(\overline{c}) G(r_1, \chi) \cdots G(r_k, \chi) - \chi_0(\overline{c}) G(r_1, \chi_0) \cdots G(r_k, \chi_0)$$

$$\ll \phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}(r_1, q) \cdots (r_k, q). \tag{3.8}$$

From (3.8) we may deduce the following result:

$$S_{23} \ll \frac{k^{\omega(q)}}{nq^{\frac{k+1}{2}}\alpha^{k-1}} \sum_{l=1}^{n} \left(\sum_{r=1}^{q-1} \frac{(r,q)}{\left| \mathbf{e}(\frac{r}{q} - \frac{l}{n}) - 1 \right|} \right)^{k}$$

$$\ll \frac{k^{\omega(q)}}{nq^{\frac{k+1}{2}}\alpha^{k-1}} \sum_{l=1}^{n} \left(\sum_{r=1}^{q-1} \frac{(r,q)}{\left| \sin \pi(\frac{r}{q} - \frac{l}{n}) \right|} \right)^{k}$$

$$\ll \frac{k^{\omega(q)}}{nq^{\frac{k+1}{2}}\alpha^{k-1}} \sum_{l=1}^{n} \left(\sum_{r=1}^{q-1} \frac{(r,q)}{\left| \frac{r}{q} - \frac{l}{n} \right|} \right)^{k}$$

$$= \frac{k^{\omega(q)}}{nq^{\frac{k+1}{2}}\alpha^{k-1}} \sum_{l=1}^{n} \left(\sum_{\substack{d \mid q \\ d < q}} \sum_{\substack{r \le q-1 \\ (r,q) = d}} \frac{d}{\|\frac{r}{q} - \frac{l}{n}\|} \right)^{k}$$

$$= \frac{k^{\omega(q)}}{nq^{\frac{k+1}{2}}\alpha^{k-1}} \sum_{l=1}^{n} \left(\sum_{\substack{d \mid q \\ d < q}} d \sum_{\substack{m \le \frac{q-1}{d} \\ (m,q) = 1}} \frac{1}{\|\frac{md}{q} - \frac{l}{n}\|} \right)^{k}$$

$$= \frac{k^{\omega(q)}}{nq^{\frac{k+1}{2}}\alpha^{k-1}} \sum_{l=1}^{n} \left(\sum_{\substack{d \mid q \\ d < q}} d \sum_{k \mid q} \mu(k) \sum_{\substack{m \le \frac{q-1}{kd}}} \frac{1}{\|\frac{mkd}{q} - \frac{l}{n}\|} \right)^{k}.$$

It is easy to see

$$\left\| \frac{mkd}{q} - \frac{l}{n} \right\| = \left\| \frac{mkn - l(q/d)}{(q/d)n} \right\| \ge \frac{1}{(q/d)n},$$

and we obtain

$$S_{23} \ll \frac{k^{\omega(q)}}{n\phi(q)q^{\frac{k+1}{2}}\alpha^{k-1}} \sum_{l=1}^{n} \left(\sum_{\substack{d|q\\d < q}} d \sum_{k|q} \sum_{m \leq \frac{q-1}{kd}} \min(\frac{qn}{d}, \frac{1}{\|\frac{mkd}{q} - \frac{l}{n}\|}) \right)^{k}.$$

Let $kd/q = h_0/q_0$, where $q_0 \ge 1$, $(h_0, q_0) = 1$, and we will easily obtain $q/(kd) \le q_0 \le q/d$. By using Lemma 2.4, we have

$$S_{23} \ll \frac{k^{\omega(q)}}{nq^{\frac{k+1}{2}}\alpha^{k-1}} \sum_{l=1}^{n} \left(\sum_{\substack{d|q\\d < q}} d \sum_{k|q} \left(\frac{(q-1)/(kd)}{q_0} + 1 \right) \left(\frac{qn}{d} + q_0 \log q_0 \right) \right)^k$$

$$\ll \frac{k^{\omega(q)}}{nq^{\frac{k+1}{2}}\alpha^{k-1}} \sum_{l=1}^{n} \left(\sum_{\substack{d|q\\d < q}} d \sum_{k|q} \left(\frac{(q-1)/(kd)}{q/(kd)} + 1 \right) \left(\frac{qn}{d} + \frac{q}{d} \log \frac{q}{d} \right) \right)^k$$

$$\ll \frac{k^{\omega(q)}q^{\frac{k-1}{2}}}{\alpha^{k-1}} \left(\sum_{\substack{d|q\\d < q}} \sum_{k|q} n + \log q \right)^k$$

$$\ll q^{\frac{k-1}{2}} d^{2k}(q) (\log q + n)^k.$$

Let

$$S_{24} := \frac{q^{(k-1)(-\varepsilon)}}{n\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi \neq \chi_0}} \chi(\overline{c}) \sum_{l=1}^n \prod_{i=1}^{k-1} \left(\frac{1}{q\alpha} \sum_{r_i=1}^{q-1} G(r_i, \chi) \frac{1}{\|\frac{l}{n} - \frac{r_i}{q}\|} \right) \left(\frac{1}{q} \sum_{r_k=1}^{q-1} G(r_k, \chi) \frac{f(\delta_k, l, r_k; n, q)}{\mathbf{e}(\frac{r_k}{q} - \frac{l}{n}) - 1} \right)$$

and

$$S_{25} := \frac{q^{(k-1)(\varepsilon)}}{n\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi \neq \chi_0}} \chi(\overline{c}) \sum_{l=1}^n \prod_{i=1}^{k-1} \left(\frac{1}{q\alpha} \sum_{r_i=1}^{q-1} G(r_i, \chi) \right) \left(\frac{1}{q} \sum_{r_k=1}^{q-1} G\left(r_k, \chi\right) \frac{f\left(\delta_k, l, r_k; n, q\right)}{\mathbf{e}(\frac{r_k}{q} - \frac{l}{n}) - 1} \right).$$

By the same argument of S_{23} , it follows that

$$S_{24} \ll q^{\frac{k-1}{2} - \varepsilon} d^{2k}(q) (\log q + n)^k,$$

$$S_{25} \ll q^{\frac{k-3}{2} + \varepsilon} (\log q + n).$$

Since $n \ll q^{\frac{1}{3}}$, we have

$$S_{25} \ll S_{24} \ll S_{23} \ll q^{\frac{k-1}{2} + \varepsilon} n^k \ll q^{k-2+\varepsilon}.$$
 (3.9)

Taking n = 1, we get

$$S_{12} \ll q^{\frac{k-1}{2} + \varepsilon}.\tag{3.10}$$

With (3.1), (3.2), (3.9) and (3.10), the proof is complete.

4. Conclusions

This paper considers the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.

Acknowledgment

This work is supported by Natural Science Foundation No. 12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- 1. R. K. Guy, *Unsolved problems in number theory*, 3 Eds., New York: Springer-Verlag, 2004. https://doi.org/10.1007/978-0-387-26677-0
- 2. W. Zhang, A problem of D. H. Lehmer and its generalization. II, *Compositio Math.*, **91** (1994), 47–56.
- 3. W. Zhang, On a problem of D. H. Lehmer and its generalization, *Compositio Math.*, **86** (1993), 307–316.
- 4. W. Zhang, On D. H. Lehmer problem, Chin. Sci. Bull., 37 (1992), 1351–1354.
- 5. Y. Lu, Y. Yi, On the generalization of the D. H. Lehmer problem, *Acta Math. Sin.-Engl. Ser.*, **25** (2009), 1269–1274. https://doi.org/10.1007/s10114-009-7652-3

- 6. H. Liu, W. Zhang, Two generalizations of a problem of Lehme, *Acta Math. Sin. (Chin. Ser.)*, **49** (2006), 95–104.
- 7. Z. Guo, Y. Yi, The Lehmer problem and Beatty sequences, submitted for publication, 2022.
- 8. I. Vinogradov, A new estimate of a certain sum containing primes, Rec. Math., 2 (1937), 783–792.
- 9. L. Weinstein, The hyper-Kloosterman sum, Enseign. Math., 27 (1981), 29–40.
- 10. C. Pan, Goldbach conjecture, Beijing: Science Press, 1981.

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)