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Abstract: An important part of optimization is the consideration of convex and non-convex functions.
Furthermore, there is no denying the connection between the ideas of convexity and stochastic
processes. Stochastic processes, often known as random processes, are groups of variables created
at random and supported by mathematical indicators. Our study introduces a novel stochastic process
for center-radius (cr) order based on harmonic h-Godunova-Levin (G£) in the setting of interval-valued
functions (V¥ S). With some interesting examples, we establish some variants of Hermite-Hadamard
(H.H) types inequalities for generalized interval-valued harmonic cr-h-Godunova-Levin stochastic
processes.
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1. Introduction

Interval analysis offers a variety of practical strategies for working with ambiguous data. This
approach can be applied to models with data that are inaccurate because they were collected using
unreliable measurement techniques. Interval analysis is a type of set-valued analysis that is used in
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mathematical analysis and general topology. We can handle interval uncertainty in some deterministic
real-world phenomena using this technique. For the first time in numerical analysis, interval analysis
was introduced in Moore’s acclaimed book the mathematics of numerical analysis, see Ref. [1]. There
has been the extensive application of interval analysis over the last fifty years in a variety of fields, such
as the following: computer graphics [2], interval differential equation [3], automatic error analysis [4],
and neural network output optimization [5], etc.

The concept of convexity is fundamental to many branches of mathematics and science, such
as probability theory, economics, optimal control theory, fuzzy analysis, and natural and applied
sciences. Furthermore, generalized convexity can also be a powerful tool for solving a variety of
nonlinear analysis, applied analysis, and math and physics problems. The optimality conditions of
diffeomorphic functions are characterised by variational inequalities, whose origins can be traced back
to Euler, Lagrange, and Newton. As a counterpart to the arithmetic means, we have harmonic means.
Among other applications, harmonic means are found in electrical circuit theory. By adding up the
reciprocals of the individual resistance values of parallel resistors and considering the reciprocal of
their combined value, we can obtain the total resistance of the set. In addition, harmonic means are
used in parallel algorithms that solve a wide range of issues, see Ref. [6]. The study of convexity with
integral problems is a particularly fascinating field. Integral inequalities have recently proven helpful
for both qualitative and quantitative assessments of convexity. In mathematics, the Hermite-Hadamard
inequality is well known for being the first geometric interpretation of convex maps. A famous double
inequality is defined as follows:

f+s (e O(f) + O(g)
q>( 3 )sg_fﬁcb(a)dasf, (1.1)

where ® : I € R — R be a convex function on interval I and f,g € I with f < g. This function,
which has been improved, generalized, and utilizing h-convexity, covers convexity classes of different
sorts, see Refs. [7-17]. There is a class of convex functions called harmonic convex which were
introduced by Anderson et al. [18]. Using the harmonic variational inequality, Noor [19] has shown
that the optimality conditions of the differentiable harmonic convex functions on the harmonic convex
set. A number of generalizations of integral inequalities apply to harmonic convex functions with
applications across a variety of dimensions, see Refs. [20-28]. Furthermore, stochastic convexity must
be understood in order to construct numerical estimates of existing probabilistic quantities, which is
crucial in statistics and probability. In the beginning, Nikodem’s 1980 work on convex stochastic
processes, see Ref. [29]. Numerous examples of stochastic convexity applications were provided by
Shaked et al. in [30]. In 1992, Skowronski revised the authors’ earlier findings once more while also
introducing some fresh ideas on convex stochastic processes and obtaining some additional findings,
see Ref. [31]. In 2012, Kotrys extended a well-known double inequality called H.H inequality to
convex stochastic processes, see Ref. [32]. In 2015, Nelson Merentes and his co-authors utilized
Varosanec [33], concept of h-convexity and updated earlier findings generated by many writers in the
context of h-convex stochastic processes. By describing h-convex stochastic processes, they develop
H.H, Schur, and Jensen type inequalities in that work, see Ref. [34]. These inequalities for convex
stochastic processes have undergone some recent developments, see Refs. [35-42]. Furthermore,
Mevlut Tunc and the authors listed in [43, 44] created inequalities of the Ostrowski type for both
h-convexity and h-convex stochastic processes, respectively.
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Bhunia [45] developed the center-radius order in 2014 based on the radius and midpoints of the
interval. Based on the ideas of center-radius order, the following authors created these inequalities for
harmonical cr-h-convex and cr-h-Godunova-Levin functions in 2022, see Refs. [46-51]. By providing
interesting examples, center-radius order relations about harmonical cr-h-Godunova-Levin functions
can provide more precise inequality terms and can be demonstrated to be valid. The application of total
order relations to convexity and inequality is therefore crucial for understanding. This order relation is
somewhat different to calculate compared to the other order relations used in interval analysis to create
inequalities; we can compute it using the midpoint and centre of the interval.

The novelty of the present study is the first time stochastic processes have been used in conjunction
with interval analysis; it serves as a starting point for researchers interested in this field. We
also observe that by applying this approach, the inequality term derived from the center-radius
order relations using stochastic processes provides much more precise results than other partial
order relations of this type. In order to verify the validity of our claim, we analyze interesting
examples in which the interval difference between the end points is much closer. More importantly,
we know that stochastic processes can be applied to interval analysis in many different ways, see
Refs. [52-56]. Researchers examined gradient descent as an optimal method for strongly convex
stochastic optimization in [57]. When considering terminal wealth with budget constraints, a
continuous-time financial portfolio selection model with expected utility maximization boils down
to solving a convex stochastic optimization problem, see Ref. [58].

Inspired by Refs. [34,43,44,49,51]. We create various H.H inequalities in the context of 7VF S by
fusing center-radius order relation with harmonic h-G£-convex stochastic process. The study provides
several examples in addition to the conclusions.

2. Backgrounds and preliminaries

As it relates to concepts that have been utilised but not defined, see Refs. [7,49]. It will be very
helpful if you are familiar with a few fundamental arithmetic ideas related to interval analysis as you
process the remaining portions of the article.

[0=[il] eRQLz5Q;z€R),

[Q=[2Q] (zeRit<z<Q;z€R),
[(+[Q] = [ +[Q Q] = [t + Q1+ Q]

and
62.6Q]. (> 0);
5Q = 5[Q, Q] = {{0}, (6 =0);
5Q.62],  ©<o0),
where 0 € R.
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Let R; and R; be the collection of all and positive intervals of R, respectively. The following will
discuss several algebraic properties of interval arithmetic.
Let Q = [Q,Q] € R, then Q, = % and Q, = % are basically the center and radius of interval

Q. A cr form of interval Q can be expressed as:

2 72
The formulas we employ to establish an interval’s radius and centre are as follows:

Definition 2.1. (See [49]) The cr-order relation for Q = [Q, ﬁ] = (Q, Q) t = [1,1] = {te,t;) € Ry
represented as (see Figure 1).

Q+0 Q-0
Q= <Qc,Qr>:< — —>

Q. <, 1fQ ;
QﬁcrL’{: c le 1 ¢ F e
Q, <, Q. =1.

For these intervals Q,: € R;, we have either Q <., ¢ or ¢t <., Q. Riemann integral for 7VF¥ S are
represented as:

Definition 2.2. (See [49l) Let® : [f, g] be an IVF such that ® = [0, @]. Then © is Riemann integrable
(IR) on [f, g] iff ® and ® are IR on [f, g], that is,

(IR) f ' O(s)ds = [(R) f ' O(s)ds, (R) f g@(s)ds].
f f f

The pack of all (IR) 7V¥ S on [f, g] is represented by IR;f,}). The pack of all center-radius order
IVF S are denoted by cr-7VF S.

Theorem 2.1. (See [49]) Let O, : [f,g] be ZVFS given by © = [0, @] and @ = (D, ®]. If

B(s) <., D(s), for all s € [f, g], then
fg O(s)ds Z¢r fg D(s)ds.
f f

We will now give an example and a few thought-provoking instances to back up the aforementioned
theorem (see Figure 2).

Example 2.1. Conider ® = [z%,z> + 2] and ® = [z, 2z], then, ¥ z € [0, 1].

3
D = EZ,(DR - %,@C —2+1 and Og=1.
From Definition 2.1, we have ®(z) <., ©(z), ¥ z € [0, 1].
Since,
! 1
2zldz ==, 1
fo [z,2z]dz [2, ]
and

! 1 7
2 .2 — | _
fo[z,z +2]dz—[3,3]-
1 1
f O(2)dz <. f O(z2)dz.
0 0
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values

3.0F 2242
2.5/
2.0F 2z

15F
1.0F

05F

T n " 1 " " " 1 " " " 1 " " " 1 z
0.2 0.4 0.6 0.8 1.0

Figure 1. Graph shows that Definition 2.1 is valid.

values
25

N

F n I I Lo,
0.2 0.4 0.6 0.8 1.0

Figure 2. Graph shows that Theorem 2.1 holds.

Some novel definitions and properties

Definition 2.3. Define (Q2, A, %) be a probability space (PBS). A function ® : & — R is said to be
random variable if they satisfy the axioms of A-measurable. A function ® : / X Q — R where / C R
is known as stochastic process if, V f € I the function ®(f,.) is a random variable.

Properties of stochastic process
A stochastic process @ : I X Q — Ris

e Continuous in interval 1, if V f, € I, we have
P - }mjf} O(f,.) = ©(f,,.)

where P — lim represent the limit in probability space.
e Mean square continuous over interval 1, if V f, € I, we have

lim E|(®(f,.) — D(f,, .))*| =0
lim E[(@(f,.) - ©(f,, )7
where E [D(f, .)] represent the expectation of random variable ®(f, .).

e Mean-square differentiable at some point f, if one has random variable @’ : I X Q — R, then this
holds
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O(f.) = P lim 2 =P )
=t f - f()
e Mean square integral in interval 7, if V f € I, with E[®(f,.)] < oo. Let [f,gl C I, f = s, <
§1 < $3... < 8y 1s a partition of [f, g]. Consider i, € [s5,,-1, 8,], Y1 = 1,...,k. A random variable
S : Q — Ris mean-square integral of the stochastic process @ over interval [ f, g], if this holds

k 2
(Z D1y )0 = $u-1) = S(-))

n=1

=0.

lim E
k—o0

In that case, we write it as
g
S = f (s, .)ds (a.e). 2.1
f

Definition 2.4. (See [49,51]) Consider 4 : [0, 1] — R*. We say that @ : [f, g] — R" is called h-convex
function, or that ® € S X(cr-h, [f, g], R"),if V fi,g1 € [f,g]l and 6 € [0, 1], we have

O f1 + (1 =0)g1) < h(O)DP(f1) + h(l — 5)D(g1). (2.2)
In (2.2), if “<” is replaced with “>”, then it is called h-concave function or ® € S V(cr-h, [f, g], R").

Definition 2.5. (See [49,51]) Consider 4 : (0,1) — R*. We say that @ : [f,g] — R* is called h-GL
function, or that ® € SGX (cr-h, [f, g], R"),if VY fi,g1 € [f, gl and 6 € [0, 1], we have
O(f) . D(g1)
OOfi+(1-06 < + .
(6fi + (1 =d)g1) w6 T hi-o)
In (2.3), if “<” is replaced with “>”, then it is called A-GL concave function or ® € SGV(cr-
h, [f, g], R").

Definition 2.6. (See [34,51]). Consider & : [0,1] — R*. We say that ® : I x Q — R* is called
h-convex stochastic process, or that ® € S PX(cr-h, [, R"),if V fi,g; € I and 6 € (0, 1), we have

O f1 + (1 =0)g1,.) < h(OD(f1,.) + h(l = 6)D(g1, ). (2.4)
In (2.4), if “<” is replaced with “>”, then it is called A-concave stochastic process or ® € S PV(cr-
h,I,R").
Definition 2.7. (See [34,51]) Consider /4 : (0,1) — R*. We say that ® : I x Q — R* is called h-GL
convex stochastic process, or that ® € SGPX(cr-h, I,R*), itV fi,g, € [ and § € (0, 1), we have
®(f17 ) + (D(gla )

h(9) h(l-96)
In (2.5), if “<” is replaced with “>", then it is called h-G L-concave stochastic process or ® € SGPV(cr-
h,I,R").
Definition 2.8. (See [49,51]) Consider 4 : [0, 1] — R*. We say that ® = [®, D] [ f-gl — Ry is called
cr-h-convex function, or that ® € S X(cr-h, [f, g], Rf), if vV f1,¢1 € [f, gl and 6 € [0, 1], we have
O f1 + (1 = 0)g1) Zer MOD(f1) + h(1 = 6)DP(g1). (2.6)

In (2.6), if “<.” is replaced with “>.”, then it is called cr-h-concave function or ® € SV(cr-
h, [f, g], Ry).

Definition 2.9. (See [49,51]) Consider /2 : (0, 1) — R*. We say that ® = [D, D]: [ f-8g] = Ry is called
cr-h-G L convex function, or that ® € SGX(cr-h, [f, g], R{), if V fi, g1 € [f,gl and ¢ € (0, 1), we have

(2.3)

OOfi +(1-0)g1,.) < (2.5)
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O + (1= 0)g0) < G + 7B
In (2.7), if “<.,” is replaced with “>.,”, then it is called cr-h-GL-concave function or ® € SGV(cr-
h, [f, 2], R).

Definition 2.10. (See [49,51]). Consider 4 : (0,1) — R*. We say that ® = [D, D] : [f.g] — Ry is
called harmonic cr-h-GZL convex function, or that ® € SGX(cr-h, [f, g], Rf ), if VY f1,¢1 € [f,g] and
0 €(0,1), we have

2.7)

CD( figr )< q)(f1)+ D(g1) (2.8)

Sfi+(1=8)g ) ™" h©o)  h(1-06)
In (2.8), if “<.,” is replaced with “>.,”, then it is called harmonic cr-h-GL-concave function or ® €
SGV(cr-h, [ f, gl R)).
Remark 2.1. Geometric interpretation
Now let’s take a look at harmonic Godunova-Levin convex functions from a geometric perspective.
Consider fi, g, from the domain of ®, and consider the point _Nisn__\ish § € (0, 1). We will notice

6fi+(1-6)g1’
that (1 —6)D(f1) +0D(g;) gives us the weighted average of ®(f,) and D(g,), where ® ((Sﬁf(ll—g_lé)gl) gives
the output at the point ciﬁﬂ—}?l—g—lé)gl' So, for harmonic Godunova-Levin convex function ® the value of the

function ® at (szll—g_lé)& whose initial point is f, and terminal point is g, is less than or equal to the

chord joining the points (fi, ®(f)) and (g, D(g1)).

Remark 2.2. In comparison with ordinary convex functions, harmonic Godunova-Levin functions
behave quite differently and have more properties. For clarity, see the following three examples, which
are not convex but are harmonically Godunova-Levin convex on the interval (0,0). As a result, we
conclude that this is a more generalized and also larger class of convex functions that cover a broader
range of functions (see Figure 3).

flz) ==

Figure 3. The following three functions are harmonic Godunova-Levin convex on the
interval (0, c0) .

Now let’s introduce the concept for stochastic process for cr-7 VF S.

Definition 2.11. (See [34,51]) Consider 4 : [0, 1] — R*. We say that stochastic process ® = [D, D] :
I xQ — Ry where [f, g] C I is called h-convex stochastic process for cr-ZVF S or that ® € S PX(cr-
h’ [fag]aRiF)’ if v flagl € [fag] and 6 € [09 1]’ we have

Q6 fi + (1 =6)g1,) Zer MOD(f1,.) + h(l = 6)D(g1, ). (2.9)

AIMS Mathematics Volume 8, Issue 6, 13473-13491.
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In (2.9), if “<.,” is replaced with “>.,”, then it is called h-concave stochastic process for cr-Z VF S or
® € SPV(er-h, [f, gl,R)).

Definition 2.12. (See [34,51]) Consider 4 : (0, 1) — R*. We say that stochastic process ® = [D, D] :
I'xQ — Ry where [f, g] € I is called harmonic h-G.L-convex stochastic process for cr-ZVF S or that
® € SGHPX(cr-h, [ f, gl,R)), if ¥ fi, g1 € [f,gl and 6 € (0, 1), we have

q)( figi ) < O(fi,) | Plgr,)
ofi +(1-0)g h(5) h(l - 96)

In (2.10), if “<.,” is replaced with “>..”, then it is called harmonic h-GL-concave stochastic process

for cr-7VFS or ® € SGHPV(cr-h, [ f, gl R)).

Remark 2.3. (i) If h = 1, Definition 2.12 becomes a stochastic process for harmonical-cr-P-
function.
(ii) If h(6) = ﬁ, Definition 2.12 becomes a stochastic process for harmonical-cr-convex function.
(iii) If h(6) = 6, Definition 2.12 becomes a stochastic process for harmonical cr-G.L function.
(iv) If h = 6°, Definition 2.12 becomes a stochastic process for harmonical cr-s-GL function.

(2.10)

3. Hermite-Hadamard inequality for harmonical cr-h-G.£ stochastic process

This section developed the H.H inequalities for a harmonically stochastic process for center-radius
interval order relation for the class of Godunova-Levin function.

Theorem 3.1. Let h : (0,1) —» R* and h(%) # 0. A function © : I x Q — R;" is h-GL-convex
stochastic process as well as mean square integrable for cr-IVF S. Forevery f,g € [f,gl C I, (f < g),
if® € SGHPX(cr-h,[f, gl,R;") and ® € IR;. Almost everywhere, the following inequality is satisfied

n(3)] [ 2se f& [F0G,) ' dg
2 ®(f+g,-)ﬁcrg_f - de 2 [®(f,-)+®(g,.)]fO o) 3.1)
Proof. Since ® € SGHPX(cr-h, [f, g],R;™), we have
1 2fg /g /g
hl=l|® =, 0l ——— Jro[—L2— ).
(2) (f+g )< (9f+(1—@)g )+ ((1—@>f+gg )
With integration over (0, 1), we have
(3= | ol o [ lodiear
hl=l® = o—L—— |4 o—==>—— |4
(2) (f+g o \ef+(-og /") “\0-of+es )™
: /g ) fl ( /8 )
- [0 - N I O—=L>— |do,
Uo _(Qf+(1—g)g er )y 2\a-or+os )
' fg ) fl—( fg ) ]
o|l—==> | Ol—== |4
fo (Qf+(1—Q)g er 0 (I-0of +0g €
_ l 2fs (FQ&),  2fg (O ds]
- g—f f g2 ’g—f f &2
_ 28 (P96, (3.2)

_g—f f g
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By Definition 2.12, we have

®( fe ) L 90, Ok
of +(1-0)g h(o) ~ h(l-0)
With integration over (0,1), we have

1 1 1
fg f do f do
O —————=—,.|do <., O(f,. — +0O(g,. .
fo (Qf+(l—Q)g ) 02 O | 3 T8 | wi—o

Accordingly,
fg&  [* O, fl do
de <., |O(f,.) + O(g,.) — (3.3)
g—rfJys &2 & .- o h(o)
Adding (3.2) and (3.3), results are obtained as expected
n(s) [ 2fs 3 (%O, ' do
O —/=,.| <., ”daﬁcr[®(,.)+®(,.)]f—.
2 (f+g ) g§-fJy & / &) o
O

Remark 3.1. e If h(o) = 1, Theorem 3.1 becomes result for stochastic process harmonically cr-
P-function:

8
1@(ﬁ )< /8 ®(;")dg < [O(f, ) + O(g, ).

27\f+e" ) g1y

o Ifh(o) = é, Theorem 3.1 becomes result for stochastic process harmonically cr-convex function:

®(2fg )< fg g@(e,.)d . e¢)+ 066, )]

s+ | =cr € X¢r
f+g g-fJy & 2
o If h(p) = (Q%, Theorem 3.1 becomes result for stochastic process harmonically cr-s-convex
function:
g
g 208 < /g 0E.) . < [O(f, ) + O, )T
f+g g—fJy & s+1

Example 3.1. Let [f, g] = [1,2], h(o) = é, Yoe (0,1).0:[f,g]l = R;" is defined as

-1 1
O, .) = §+3,;+4
where
M) (205 ) _ (4] [687 1105
2 f+g ] T\3) [256" 256 |’
fg (%0, fz 3¢t - 1 f 4e* + 1 418 702
de =2 de, de|=|—, —|,
e-fJ, 2 ¢ A\ )9 ) T Y T 160 160
1
do [79 145
o(f,.) + 0O(g, . —= ==, —.
[0(f..) + Oz, >]f0 = [32, 32]
As aresult,

256" 256 160° 160 32’ 32
This verifies the Theorem 3.1.

[687 11()5] [418 702] [79 145]
<er <er .

AIMS Mathematics Volume 8, Issue 6, 13473-13491.
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Theorem 3.2. Let h : (0,1) —» R" and h(%) # 0. A function © : I x Q — R, is h-GL-convex
stochastic process as well as mean square integrable for cr-IVF S. Foreveryf,g€ [f, gl C L (f < g),
if® € SGHPX(cr-h,[f, gl,R/") and © € IR;. Almost everywhere, the following inequality is satisfied

fg& [*0,.)
g—f f g

de <, A
4 \f+g € Zer B2

11 ' d
<er {[@(f, ) + @(ga )] li + h(l)]} L h(i)’
2

()] Afg 4fg
SELCINE N R

2fg o(f,.) +0(g,.) fl do
® . —_—
(f +8 )+ 2 )] o h(o)

[ o[ 22

’ ) Ser A1 Zer

where

Ay =

Proof. Consider [ £, %], we have

2fg 2fg
@(# ) ®( I )
(4fg ) of +(1-0) % . (I-o)f+o 2%
F37170 ()] [ (2)]

Integration over (0, 1), we have

h(5 4 70
[ (z)]@( /g ) < fg (7 (82, e (3.4)
4 3g+f g—fJs £
Similarly for interval [%, g], we have
h(: 4 )
[ (2)]® /8 < /8 (&,.) Je. (3.5)
4 f+3g g—fJu &

f+g

Adding inequalities (3.4) and (3.5), we get

A =

3] [ are 4fg f& [0,
4 [Q(f+3g")+®(3f+g")]ﬁc’g—f ;& de.

Now,

PO (1 e\, 1( 4se
-4 (5(3g+f")+5(3f+g"))

AIMS Mathematics Volume 8, Issue 6, 13473-13491.
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4 () h(3)
[h(%][ (4fg ) (4fg )]
4 f+3g" 3f+g

= A
fg  [* O, -)dg

Scr g—f ; &2
1

ﬁcr%[G(f,.)+®(g,.)+2®(£ )]f ﬂ
0

f+g" h(o)
(O(f,.) +0(g,.) L0 O,

; f | do
2 h(y)  n(3) o h@

O(f,)+0@.) 1 fl do
<er O(f,.) +O(g,. —

1+ 1 fl do
2 h(%) o o)

Example 3.2. Let [f, g] = [1,2], h(o) = é, Yoe (0,1).0:[f, ¢g] = R, is defined as

:Az

=<

Zer {[@)(f ,) +0(g, )]

-1 1
@(8,.): §+2,g+3
where )
G (208 \_ ot | _[431 840
4 f+g ) “\37) [256°256|

o= Mof8 ), of8 )| _[6670 13801
oo \s 711 7 14096° 4096 |’

_[ed,)+e@,) 4 " do
b 65 |

[ 1935 4465]
2 = )

5127 512
fg (%0, ge_ [ 238 342
g-fJ;, & ~ 160 160 |°

1 1 ' d 47 113
{[®(f,~)+®(g,~)] [54_%]}.[0 F&Q)):[g,?]
2

AIMS Mathematics Volume 8, Issue 6, 13473-13491.
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Thus, we obtain

431 849 - 6679 13801 258 542 - 1935 4465 - 47 113
256256 |~ [4096° 4096 | =7 1607 160| =7 | 5127 512 |77 | 8 8 |

This verify the the Theorem 3.2.

Theorem 3.3. Let hy,hy : (0,1) = R* and hy, hy # 0. A functions ©,® : I x Q — R;" are harmonic
h-Godunova-Levin stochastic process as well as mean square integrable for cr-IVF S. For every f,g
el (f<g),if®e€ SGHPX(cr-hi,[f,gl,R/"), ® € SGHPX(cr-hy, [f,gl,R;") and ©, ® € IR;. Almost
everywhere, the following inequality is satisfied

fe [ 0O, )D(,.) fl 1 fl 1
de <., T(f, —d U(f, —— do, 3.6
7)., T e T8 ) etV ) nema g CF

where

T(f,g = O(f, )O(f,.) + O(g, )D(g,.), U(f, g = O(f, )D(g,.) + O(g, )D(f, .).
Proof. Conider ® € SGHPX(cr-hy,[f,gl,R;"), ® € SGHPX(cr-hy, [ f, gl, R;") then, we have
®( /8 ,-)Scr ®(f,-)+ 0(g,.) ’
fo+(-o0)g hi(@)  hi(l-o0)

(D( fg ) < O(f,.) N D(g,.) -
fo+(-0)g hy(0)  ho(1-p0)

Then,
fg g
O —==  Jo|—2=>2 .
(f@+(1—Q)g ) (f@+(1—9)g )
o(f, )O(f,.) N o(f, . )d(g,.) N O(g, )O(f,.) N 0O(g,.)D(g,.)

T @) h©@h(1-0)  h(l-0hE) h(l-0h(l-o0)
Integration over (0,1), we have

! /g ) ( /g )
fo®(f9+(1—9)g" @ fo+(1—-p)g" @
1r fg ) ( fg )
_[fo Q(f@+(1—9)g" \Fora-0g ]

f /g )—( /g ) ]
fo®(fg+(l—g)g" @ fo+(1-0g" de

_ l f& (*Qe0e) ,  fg [*O(e )P, ) dgl __fg [F0E)%eE,)
g§—rfJy & 8- fJs & g§—rfJy &
- fl [0/, )0(/,) + O(g, )8, )] , fl [0/, )D(s. ) + O(g. JO(f. )]
<er o+ do
0 hi(0)ha(0) 0 hi(@)ha(1 - 0)

It follows that

fg (%0 ). fl ! fl 1
d cr T P} —d U N —d .
-7, & T8 | 3 one®t Ve | nomi-o®

Theorem is proved. O
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Example 3.3. Let [f, g] = [1,2], hi1(0) = hy(0) = é, Yoe (0,1).0,D:[f,g] » R, be defined as

-1 1 -1 1
O, .) = —4+2,—4+3 ,PEe)=—+1,—+2].
E & &

Then,

/8 gCKs,Jdmsp)dg__ 282 5986
g-f g2 ~ 640" 640

31 629
T do =T(1,2 0%d
(fg)f 1<@>h2(@>9 ( )f 0= [96 96]
1 307]

U —d U1,2
(fg)f @l = Q)Q ( )f(p o))do = [12 96

282 5986 - 31 629 1 307 13 39
640" 640 | = [96° 96 127 96 327 4|
This verifies the Theorem 3.3.
Theorem 3.4. Let hy,h, : (0,1) = R* and hy, h, # 0. A functions ©,® : I x Q — R;" are harmonic
h-Godunova-Levin stochastic process as well as mean square integrable for cr-I'VFS. For every

fgel (f <g),if® € SGHPX(cr-hi,I,R;"), ® € SGHPX(cr-hy, I,R;") and ©,® € IR;. Almost
everywhere, the following inequality is satisfied

m(3)h(3) (2fe 2fg
2 ®(f+g")q)(f+g")

fg (O, )(,.) f
<o du+T - -
et & t10.9) 1(@)h2(1—@> 1(Q)h2(Q)

Proof. Since ® € SGHPX(cr-hy, [f,gl,R;"), ® € SGHPX(cr-hy, [f, g],R;"), we have
fg /g
( 2fg ) - © (f@+(l—g>g’ ) . ®(f(1—9)+@g’ )
f+eg hi (3) hi (%)

(2ﬁg.)<_®(E%%ﬁw)+®(mi%av)
fre ] m(d) h (%)

It follows that

do+ U(f, g>f

2fg (2fg )
® ,.| D .
(f+g ) f+eg
fg fg fg fg
(f@ T —g)g")q)(fg T —g)g") * ®(f(1 ~0) +Qg")®(f<1 “o) tog )]

® Jo| —2—— )+ O L | — L.
+hl(%)hz( )[ (f0+<1—0>g’ )(D(f(l—@)wg )+ (f(l—g)wg )(D(fw(l—g)g )]

©)
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< —— [@( /8 ,.)@( /8 ,.)+®( /8 ,.)d)( /8 )]
h($)h(5)1 e+ -0g™ ] \fo+ -0k fA-0)+og ) \f(1-0)+0eg
N 1 [(®(f, ), _0G6.) )( g..) | PG -))+( 0. _ BG. -))(q)(f, ) PG )]
@)  m(l-0))\h(l-0) o) h(l=0)  hi) J\ (@)  h(l-0)

1 /8 /& /8 /g
cr ® 9 . 9. G) 9. 9.
= hy (3) ha ( )[ (f@+(1—9)g )q)(f9+(1—9)g )+ (f(l—p)wg )cp(f(l—g)wg )]
N [( 1 N 1 )
hy (%)hz (%) hi(©@h(1 =0)  hi(1 = 0)h2(0)

Integration over (0, 1), we have

0 .. . \do = 0 o= ldo, | © .. . \d
ﬁ (f+g q)f+g € fo_f+g @f+g Qﬁ f+g q)f+g ¢
[ 2fg ) (ng ) 2 fg [*O(s,.)D(s,.) ]
-0 o <., d

(f+g Fre ) mombhg-7J, T 2 F

2 ! 1 P
T(f, —do + U(f, d
0 h(%)[ 9 [ rama=at o | one Q]

1 1
Multiply both sides by W above equation, we get required result

1 1
T .
(/.8) + (hl@hz(g) I = o)l - 9>) vi, g)]

m(3)h(5) (21 2fg
2 ®(f+g")®(f+g")

<, S8 [(QEIED ) 1is g f
g—fJys g

l(p)hz(l ot v, g’f 1<g>h2<@)

Example 3.4. Recall the Example 3.3, we have

hl(%)hz(%)(a(zfg _)Q(ﬁ,,):z@(i)@(i):[ﬂ @]

2 f+g) \f+g 3)\3) " |512° 512 )
8 (FO0E)E) [@ %]
g f &2 640" 640 |’
31 629]

T(f, g)f mdg T(l, 2)f(Q 0*)do = [192,192 ,

1 307
do=U(,2 0%d
(fg)f hl@hz(@)g ( )f 0= [6 48]
It follows that

431 9339 - 282 5986 N 31 629 1 307 123 761
5127 512 | =7 |640° 640 192’192 6’ 48 160" 40 |

This verifies the Theorem 3.4.
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4. Conclusions

This paper introduces a center-radius order relation for 7V# S by using harmonic-Godunova-Levin
stochastic processes in the setting of 7VF#S. Using these ideas, we created some variants of H.H
inequalities. The fact that inequality terms derived from this order relation produce precise results
is one of its distinguishing features. Furthermore, in this article, we generalise the findings of the
following authors [34,49, 51], which is a novel approach for future research. Furthermore, the study
provides interesting examples to demonstrate the validity of theorems. These ideas can be used to push
convex optimization to new heights. This concept should be useful to scientists working in a variety of
fields. Future research may investigate the use of different integral operators for determining equivalent
inequalities.
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