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Abstract: In this paper, a new reliability assessing method for structures influenced by both aleatory 

and epistemic uncertainty simultaneously is developed. To handle hybrid types of uncertainties, chance 

theory is introduced to define a new hybrid reliability index. By mathematical derivation and theorems 

proofs, the new index is showed to be effective and compatible with hybrid types of uncertainties. 

Correspondingly, a generalized first-order second-moment (GFOSM) algorithm is established for 

practical reliability assessment of structures with hybrid uncertainties. Based on the first two moments 

of basic variables, the GFOSM method can perform fast and effective reliability assessment without 

large-scale integration operations and can be considered as an extension and expansion of the 

traditional FOSM method. Two numerical cases further illustrate the effectiveness and practicability 

of the proposed method from different perspectives. 
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1. Introduction 

Structural reliability, which reflects the level of use safety and potential risk of the structure, is 
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one of the most important properties of structural systems [1,2]. In this sense, a precise assessment of 

structural reliability plays a vital role in structural design and analysis [3–5]. Since the structure usually 

involves uncertain environments, a key issue in the structural reliability assessment is to reasonably 

quantify the various uncertainties. 

In most practical situations, aleatory uncertainty and epistemic uncertainty simultaneously 

influence structures. Among them, aleatory uncertainty refers to the inherent randomness of the 

physical world, while epistemic uncertainty refers to the uncertainty coming from the lack of 

knowledge about the structure [6,7]. For example, the geometric parameters of link mechanism would 

exhibit dispersion because of the manufacturing tolerances, reflecting the effect of aleatory uncertainty. 

The epistemic uncertainty of a link mechanism might be reflected in insufficient knowledge of material 

characters due to new material applications, or unclear load parameters due to unknown use scenarios. 

In existing literature, most of the current reliability assessment methods focus only on a single type of 

uncertainty, and there is a lack of research on the structural reliability assessment with hybrid 

uncertainties. Faced with this demand, this paper will propose a new structural reliability method for 

the structures influenced by both aleatory uncertainty and epistemic uncertainty. 

Intuitively, quantification of single type of uncertainty is the necessary basis for the study of 

quantification of hybrid uncertainties. In the past few decades, the structural reliability assessment 

method subject to aleatory uncertainty has been well studied, which is also called limit state probability 

analysis method. In this method, probability theory is used to quantify the uncertainty, and structural 

parameters are expressed as random variables. Reliability R is represented by taking integral over all 

basic variables in the safe domain [8]. Under this definition, calculating reliability directly is often 

difficult because multiple integral operation is quite complex and the computing resource of Monte 

Carlo method is often too enormous to be accepted [9]. Therefore, a first-order second-moment (FOSM) 

method was proposed to overcome these difficulties in reliability calculation [10–12]. Through 

representing basic variables by their first two moments, FOSM method obviates the multiple integral 

operation utilizing the properties of the normal distribution and characterizes structural reliability 

approximatively using Cornell reliability index  . Due to its convenience and effectiveness, FOSM 

method has been widely applied to structural reliability assessment [13–15]. 

Although probability theory is thought to be the best mathematical tool for aleatory uncertainty, 

it cannot handle epistemic uncertainty very well, especially when the collected data is real limited [7,16]. 

Therefore, some non-probabilistic mathematical methods are introduced into structural reliability 

assessment with epistemic uncertainty. Cremona and Gao applied possibility measure to the structural 

reliability assessment [17]. Ben-Haim and Elishakoff used interval variables to describe basic variables, 

and proposed a convex model for structural reliability assessment [18]. Bae et al. proposed a reliability 

analysis method based on evidence theory [19]. Recently, many researchers have introduced 

uncertainty theory to deal with epistemic uncertainty in reliability assessment. Zeng et al. established 

a series of reliability metrics and indexes to characterize systems’ reliability from different aspects [20]. 

Wang et al. presented a reliability index as the ratio of expected value to standard deviation based on 

uncertain measure, and showed its effectiveness as a representation of structural reliability [21]. As 

stated by Kang et al., the possibility measure may cause counter-intuitive results since the sum of 

reliability and unreliability is not 1, and the interval-based methods (convex model and evidence 

theory-based model) may exhibit interval extension problems. Therefore, uncertainty theory is viewed 

as a more reasonable mathematical theory to model epistemic uncertainty in reliability fields [7] and 

this paper will adopt uncertainty theory to describe the effect of epistemic uncertainty. 

The above review indicates that in the problem of structural reliability assessment, probability 

theory and uncertainty theory are utilized as the mathematical tools for uncertainty quantifications. To 
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handle the hybrid conditions with both aleatory and epistemic uncertainties, chance measure, which is 

defined as a mixture of probability measure and uncertain measure, is further adopted [22]. Till now, 

the chance theory has been applied to a wide range of fields [23–25], demonstrating its effectiveness 

in dealing with hybrid uncertainties. The application of chance theory in structural reliability is still in 

its infancy. Zhang et al. tried to propose a reliability assessment method for hybrid uncertainties by 

defining a new reliability index based on chance measure [26]. They defined this hybrid reliability 

index as the form of the ratio of expected value and standard deviation of limit state function just like 

Cornell reliability index. However, they failed to present an available general calculation methodology 

for arbitrary structural limit state functions because multiple integral operation is still not obviated in 

calculation. Thus, this method has strong limitations in engineering. How to assess structural reliability 

under hybrid uncertainties in a feasible way remains a problem to be solved. 

For convenience, since the two types of uncertainties are described with “random” variables and 

“uncertain” variables, respectively, and the epistemic uncertainty is a newly considered elements with 

great importance, in this paper, the structures influenced by hybrid uncertainties are called the 

“uncertain random structures”. Random structures and uncertain structures are two special cases of the 

uncertain random structures, which refer to structures only influenced by single aleatory or epistemic 

uncertainty, respectively. For the reliability of uncertain random structures, this paper will establish a 

systematic and effective reliability assessment method on the basis of chance theory. A hybrid 

reliability index will be first presented, which is proved to have good properties assuring feasibility 

and effectiveness. Further, a general calculation method of the new hybrid reliability index will be 

developed by utilizing the first two moments of basic variables and first-order Taylor expansion. 

Therefore, this paper names the new method as generalized first-order second-moment (GFOSM) 

method. The new method provides a feasible way to assess reliability rapidly for arbitrary uncertain 

random structures. 

The remainder of this paper is organized as follows. Detailed introduction of the new hybrid 

reliability index and GFOSM method will be presented in Section 2. Two numerical applications will 

be studied utilizing the GFOSM method in Section 3. In addition, some fundamental definitions and 

theorems will be given in the appendix, which is the important mathematical foundation of the method 

presented in this paper. 

2. Generalized first-order second-moment method 

As elaborated before, practical structures are usually influenced by both aleatory uncertainty and 

epistemic uncertainty. For uncertain random structures, this section will propose a new hybrid 

reliability index based on chance theory (see its introduction in Appendix A) and construct a 

generalized first-order second-moment (GFOSM) method to analyze and calculate this index. Some 

good properties of this index are also pointed out via theorems and proofs. 

2.1. Hybrid reliability index for uncertain random structures 

The calculation of reliability inevitably faces the problem of large-scale computation. Thus, a new 

reliability index is needed to characterize the reliability of uncertain random structures efficiently. To 

better provide a reliability index that meets the practical needs of uncertain random structures, it is 

necessary to first discuss the fundamental criteria of the index: 

I. Simplicity criterion: The calculation of the reliability index should avoid large-scale 

computing. Simplicity criterion is obviously necessary because the original purpose of 
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presenting a new index is to assess reliability rapidly with limited computing resources and 

time. 

II. Correlation criterion: The reliability index should be positively related to the reliability 

measure. Correlation criterion ensures that the new reliability index could characterize 

structural reliability well. 

III. Fusion criterion: The index should be compatible with both uncertain conditions and random 

conditions. Fusion criterion provides the foundation of uniform reliability measurement for 

different types and different levels of uncertainty. 

Although Cornell reliability index   can meet the first two criteria, it does not meet the fusion 

criterion. Thus, it is necessary to propose a new reliability index that can meet the all three criterion. 

In retrospect of the classical Cornell reliability index   , its geometrical significance plays an 

important role in reliability analysis and calculation.   corresponds to the shortest distance from the 

origin in standard normal probability space to the limit state surface. In order to satisfy fusion criterion, 

the new reliability measure index should have the similar geometrical significance to Cornell reliability 

index. 

We assume that each individual basic variable is affected only by the same class of uncertainty, 

where variables affected only by aleatory uncertainty are described by random variables and variables 

affected only by epistemic uncertainty are described by uncertain variables. Since the geometric 

meaning of Cornell reliability index is given in the standard probability space, the new hybrid index 

needs to be studied in the standard chance space in order to be able to use the properties in the standard 

space. Fortunately, both random variables and uncertain variables have the same standardizing 

formulas [27] as 

( )

( )
,

i i

i

i

X E X
X

V X

−
=  

where 
i

X  denotes a random variable or uncertain variable, 
i

X  denotes the standardized form of 

i
X , ( )E   denotes the expected value and ( )V   denotes the variance. Therefore, it can be ensured 

that geometric measures in different dimensions are uniform after standardizing random variables and 

uncertain variables in a certain chance space. This uniformity provides necessary condition to establish 

a new hybrid reliability index for uncertain random structures utilizing geometrical significance. This 

paper will consider different classes of uncertainty of the basic variables in the probability space and 

uncertainty space, respectively, and then fuses them in the chance space. 

Due to the good nature of the normal distribution [8,28], in this paper, a basic variable would be 

viewed as a normal random variable if it is influenced by aleatory uncertainty, and would be viewed 

as a normal uncertain variable if it is influenced by epistemic uncertainty. 

We here first give the concepts of standardized limit state function and chance checking point as 

follows, which are necessary foundations to define the new hybrid reliability index. 

Definition 2.1. (Standardized limit state function). Let ( )1 1
, , ,

m
  =η  be a normal random 

vector, ( )1 2
, , ,

n
  =τ  be a normal uncertain vector and ( , )G η τ  be the limit state function of an 

uncertain random structure. If η   and τ   are standardized into η   and τ   respectively, then the 

equivalent limit state function ( ),G η τ  is called standardized limit state function. 

Example 2.1. Let ( )1 2 3 1 2 3
, ,G x x x x x x= −   be a limit state function of an uncertain random 
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structure, where the expected value of 
i

x   is 
i

   and the variance of 
i

x   is 
2

i
  . Then the 

standardized limit state function of ( )1 2 3
, ,G x x x  is 

( ) ( )( )1 2 3 1 1 1 2 2 2 3 3 3

1 1 3 2 2 2 3 3 2 3 2 3 1 2 3

, ,

.

G x x x x x x

x x x x x

     

         

= + − + +

= − − − + −

 

Definition 2.2. (Chance Checking Point). Let ( ),G η τ  be a standardized limit state function of 

an uncertain random structure, then the point on limit state surface ( ), 0G =η τ   with the closest 

distance to the origin is called Chance Checking Point (CCP), denoted as ( )* *,η τ . 

Remark 2.1. CCP’s significance is similar to Most Probable Point (MPP), which makes the most 

significant contribution to the nominal failure chance. Both CCP and MPP take the role of “Checking 

Point”, an intuitively appealing linearization point. 

On the basis of the above concepts, the hybrid reliability index can be then defined in the standard 

chance space with a linearization of the limit state function at the CCP. The definition of the index is 

given as follows: 

Definition 2.3. (Hybrid reliability index). Let ( ),G η τ  be a standardized limit state function of 

an uncertain random structure, ( )* * * * * *

1 2 1 2
, , , , , , ,

m n
          be the coordinate of CCP and ( ),

L
G η τ  

be the first order Taylor expansion of ( ),G η τ  on CCP denoted as 

0

1 1

( , ) ,
m n

L i i j j

i j

G a a b   

= =

= + + η τ  

where 
i

a 
 and 

j
b   are the coefficients of 

i
  and 

j
  in ( ),

L
G η τ , respectively. Then the hybrid 

reliability index   of the uncertain random structure is defined by 

( )
1

222
* *

1 1

,
m n

i j

i j

  
= =

 
= + 
 
          (1) 

where 
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1
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1
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.
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= =
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+
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This definition seems to be very complex mathematically, so we tend to explain it more clearly 

with its geometric meaning in the chance space, as shown in Figure 1. Without loss of generosity, 

Figure 1 shows the geometric meaning of hybrid reliability index   in the case of 1m n= = . The 

given coordinate system represents a standardized chance space, which is essentially the Cartesian 

product of a standardized probability space and a standardized uncertainty space. As m and n increase, 

0G =  and 0
L

G =  will become a hypersurface and a hyperplane in an multi-dimension chance space, 
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respectively. According to the definition of the hybrid reliability index given in Eq (1), the point 

associated with   is shifted toward the standardized uncertain space with respect to the CCP since 

1  . This shift reflects the effect of epistemic uncertainty on structural reliability. In other words, the 

reliability prediction results given by   are more conservative compared to treating all variables as 

random variables. 

This hybrid reliability index has obvious advantages, which we will subsequently illustrate by 

proposing algorithms and quantitative mathematical derivations. 

 

Figure 1. Geometrical meaning of hybrid reliability index  . 

2.2. Generalized first-order second-moment algorithm 

In this section, a calculating method of the hybrid reliability index   called generalized first-

order second-moment (GFOSM) algorithm is elaborated, which means the first-order Taylor expansion 

and first two moments of basic variables are used in the calculation. 

In this method, a critical task is to find the position of CCP. In the traditional FOSM method, the 

HLRF algorithm is widely used to search for MPP [8,11,12]. Since the HLRF algorithm is independent 

of mathematical measure, it can also be used to search CCP in uncertain random structures legitimately. 

Then, according to the definition of the hybrid reliability index  , we hereby provide the GFOSM 

algorithm, whose process is summarized as Algorithm 2.1. Among them, the mean and variance of 

random variables can be obtained by probability statistics, while the mean and variance of uncertain 

variables can be obtained by the graduation formula [29]. It can be found that the GFOSM algorithm 

avoids multiple integration operations, ensuring computational efficiency. 
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Algorithm 2.1 (GFOSM algorithm). 

Step 1. Standardize the limit state function ( , )G η τ  into ( ),G η τ  by 
( )

( )
i i

i

i

X E X
X

V X

−
= . 

Step 2. Let the initial checking point be ( )
(0) (0) (0)

* * *, ( , )= =X η τ 0 0 . 

Step 3. Calculate   based on current checking point as 

( )

(0) (0)* *

(0) (0)
* *
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,

( , ) ( , )m n
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. 

Step 4. Calculate directional cosine value of each variable as 

(0)
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. 

Step 5. Calculate new checking point 
(1)

*
X  as 

(1)

cos
kk X

X  = . 

Step 6. If 
(1) (0)

* * − X X , let 
(1) (0)

* *=X X  and skip to Step 3. Otherwise, continue. 

Step 7. If ( ),G η τ   is linear, let 
0

1 1

( , ) ,
m n

i i j j

i j

G a a b   

= =

= + + η τ   and skip to Step 10. 

Otherwise, continue. 

Step 8. Transform ( ),G η τ  into ( ),
L

G η τ  by first order Taylor expansion on 
(1)

*
X  as 

( ) ( )
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Step 9. Calculate θ as 
1 1

1

2

1

2

.

m n

i j

i j
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i j

i j
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= =
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Step 10. Calculate hybrid reliability index as ( ) ( )
1

2 2 2(1) (1)
* *

1 1

m n

i j

i j

  
= =

 
= + 
 
  . 

 



13461 

AIMS Mathematics  Volume 8, Issue 6, 13454–13472. 

In addition, when the basic variables are known not to obey normal distribution, the equivalent 

normalization method can be utilized. Equivalent normalization means replacing the original 

distribution with a normal distribution so that cumulative distribution function value and its derivative 

value at the CCP of the original distribution are the same as that normal distribution. Then the obtained 

normal distribution function can be used as input to the GFOSM algorithm. 

2.3. Properties of the hybrid reliability index 

Since the hybrid reliability index is defined in a completely new space, it presents many unique 

properties and also shows its flexibility, especially in the multidimensional case. This section provides 

a quantitative analysis of these properties to illustrate their potential application in structural reliability. 

In practical engineering, epistemic uncertainty and aleatory uncertainty are interchangeable with 

the development of people’s knowledge and the change of external environment. For example, with 

the application of a structure, more actual data can be collected for the basic variables, allowing us to 

estimate their distributions more accurately. In this case, the relevant uncertain variables may be 

transformed into random variables as the knowledge increases. On the other hand, if new materials or 

new molding techniques are used in the structure, the relevant basic variables may be transformed 

from random variables to uncertain variables as cognitive level decreases. The hybrid reliability index 

should be able to distinguish the effects of different types of uncertainty and give a reasonable 

estimation when the transformation happens. To elaborate this, the following theorems are provided 

and proved. 

Theorem 2.1. For a certain structure with given limit state function and first two moments of 

basic variables, as uncertain variables transform into random variables, the hybrid reliability index   

will increase. 

Proof. According to the definition of the hybrid reliability index,   is a constant with the given 

limit state function and the first two moments of basic variables. Further, we have 

2 2 2 2

1 1 1 12

2
2 2

1 1 1 1
1 1

m n m n

i j i j

i j i j

m n m n
m n

i j i j
i j

i j i j
i j

a b a b

a b a ba b



   

= = = =

   
 

= = = =
= =

+ +

= =
  + + + 
 

   

   

. 

Let 2 2

1 1

m n

i j

i j

Y a b 

= =

= +  , 
1 1

m n

i j

i j

Z a b 

= =

=  . Then, Y and Z are obviously positive numbers, and thus 

we have 

2 1.
Y

Y Z
 = 

+
 

Since θ is a positive number, we have 

0 1.            (2) 

Without loss of generality, consider an uncertain random structure with p basic variables, among 

those there are 
1

n   uncertain variables with two parts denoted as 
11 2 1 2

, , , , , , ,
n t t

     
−

  and 

1
p n−   random variables denoted as 

11 2
, , ,

p n
  

−
 , where 

1
0 t n p   . According to Eq (1), 
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hybrid reliability index for this structure can be denoted by 

( ) ( )
1 1

1

22 22
* * *

1

1 1 1

.
p n n t t

i j k

i j k

    
− −

= = =

 
= + + 
 
    

Assume that variables 
1 2
, , ,

t
     have transformed into random variables, then hybrid 

reliability index would be denoted by 

( )
1 1

1

222 2
* * *

1 1

2

1

.
p n n t t

i j k

i j k

   
− −

= = =

 
= + + 
 
    

According to Eq (2), we have 
2 1

  . The theorem is proved. 

Theorem 2.2. For a certain structure with given limit state function and first two moments of 

basic variables, as random variables transform into uncertain variables, hybrid reliability index   

will decrease. 

Proof. Without loss of generality, consider an uncertain random structure with p basic variables, 

among those there are 
1

m   random variables 
11 2 1 2

, , , , , , ,
t tm

     
−

  and 
1

p m−   uncertain 

variables 
11 2

, , ,
p m

  
−

, where 
1

0 t m p  . According to Eq (1), hybrid reliability index for this 

structure is denoted by 

( )
1 1

1

222 2
* * *

1

1 1 1

.
m t p m t

i j k

i j k

   
− −

= = =

 
= + + 
 
    

Assume that variables 
1 2
, , ,

t
     have transformed into uncertain variables, then hybrid 

reliability index would be denoted by 

( ) ( )
1 1

1

22 22
* * *

1 1 1

2
.

m t p m t

i j k

i j k

   
− −

= = =

 
= + + 
 
    

According to Eq (2), we have 
2 1

  . The theorem is proved. 

The above properties are obviously intuitive. The higher our cognitive level about the structure, 

the less epistemic uncertainty and the higher quantitative index value we tend to give to the event of 

“the structure is reliability”. 

Theorem 2.3. Hybrid reliability index   will degenerate into the Cornell reliability index   

when the structures are random structures. 

Proof. According to Eq (1), hybrid reliability index for random structures with p basic variables 

can be denoted by 

 

which means the distance from the origin to CCP. Since there are all random variables in limit state 

function, the chance space in which the hybrid reliability index is defined degenerates to the probability 

space, i.e., the Cartesian product of the probability space of each random variable. Therefore, CCP 
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here is accordingly degraded to the MPP in traditional FOSM method. Thus, 
R

   represents the 

distance from the origin to MMP in the standard normal probability space, which has the same meaning 

as the Cornell reliability index   [8]. The theorem is proved. 

Definition 2.4. (Uncertain reliability index [21]). Let ( )1 2
, , ,

n
  =τ  be an uncertain vector 

and ( )G τ  be the limit state function of an uncertain structure. The uncertain reliability index   is 

defined as 

( )
,

( )

E G

V G
 =           (3) 

where ( )E G  is the expected value of G, ( )V G  is the variance of G. 

Theorem 2.4. Hybrid reliability index will degenerate into uncertain reliability index   when 

the structures are uncertain structures. 

Proof. For arbitrary nonlinear limit state function G, it should be first transformed into linear 

function via first order Taylor expansion, thus the next proof procedure is only for the case after 

linearization. 

Let the linear limit state function of an uncertain structure be 

0

1

.( )
p

j j

j

G a b 
=

= +τ  

According to the operational law of the expected value and variance of normal uncertain variables [27], 

we have 

0

1

,( )
j

p

j

j

E G a b



=

= +         (4) 

2

1

,( )
j

p

j

j

V G b



=

 
=  
 
         (5) 

where ( )E G  is the expected value of G, ( )V G  is the variance of G, 
j

  is the expected value of 

j
  and 2

j
  is the variance of 

j
 . 

Therefore, according to Eqs (3)–(5), uncertain reliability index can be written as 

0

1

1

( )
.

( )

j

j

p

j

j

p

j

j

a b
E G

V G b











=

=

+

= =



        (6) 

According to Eq (1), hybrid reliability index for uncertain structures with p basic variables can 

be denoted by 

( )
1 1

2 22 2
* *

1 1

.
p p

U j j

j j

   
= =

   
= =    
   
        (7) 
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Let 

1

22
*

1

p

j

j

D 
=

 
=  
 
 . Apparently, D represents the distance from the origin to CCP in the standard 

normal uncertainty space. On the basis of HLRF algorithm [11,12], we have 

0

1

2

1

2

.
j

j

p

j

j

p

j

j

a b

D
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=

=

+

=




         (8) 

Then according to Eqs (6)–(8), we have 

2

0 0
1 1 1

1 11

2

2 2

.
j j j

j j
j

p p p

j j j
j j j

U p pp

j jj
j jj

b a b a b

D
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= ==

+ +
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The theorem is proved. 

These theorems indicate that the hybrid reliability index   defined by Eq (1) can be viewed as 

a unified assessment for random structures, uncertain structures and uncertain random structures since 

it is compatible with all three types of structures. Therefore, compared with FOSM method, GFOSM 

method is a more universal method suitable for structures influenced by both aleatory uncertainty and 

epistemic uncertainty, which is also compatible with the FOSM method. 

3. Case study 

In this section, two cases will be studied to illustrate the effectiveness of the GFOSM method. 

Case 1 will investigate the stress-strength interference model and discuss the effect of the uncertainty 

type of the basic variables on the hybrid reliability index. Case 2 will study a simple beam structure 

and explore the relationship between the hybrid reliability index and the structural reliability. 

3.1. Basic stress-strength interference case 

The basic structural reliability problem considers only one load effect S resisted by one resistance 

R. Then the limit state function is written as G R S= − . In this section, this basic linear problem will 

be studied via GFOSM method. The different combinations of uncertainty types for R and S will be 

discussed. 

In practical engineering, the amount of information or data that people have about R and S varies, 

making it possible for R and S to contain multiple forms of uncertainty types. R may be mainly affected 

by aleatory uncertainty when people have a comprehensive amount of information about the structure, 

while it may be mainly affected by epistemic uncertainty when people do not have enough information 

about the structure. This is also true for the stresses to which the structure is subjected, which also 

affect the type of uncertainty in S. Thus, there would be four kinds of circumstances considering 

different combinations of uncertainty types with given expected values and variances of R and S: 

I. R and S are both influenced by aleatory uncertainty; 

II. R and S are both influenced by epistemic uncertainty; 

III. R is influenced by aleatory uncertainty; S is influenced by epistemic uncertainty; 
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IV. R is influenced by epistemic uncertainty; S is influenced by aleatory uncertainty. 

As explained before, the basic variable should be viewed as a random variable or an uncertain 

variable according to the uncertainty types it is influenced by, i.e., random variable for aleatory 

uncertainty and uncertain variable for epistemic uncertainty. Hybrid reliability index of basic stress-

strength interference case for four combinations of uncertainty types could be calculated via GFOSM 

algorithm respectively. The evaluated results are shown in Table 1. 

Table 1. Evaluated results for different combinations of uncertainty types. 

Condition 

R(MPa) S(MPa) 

i
  Expected 

value 
Variance Type* 

Expected 

value 
Variance Type 

Ⅰ 30 32 R 20 22 R 2.7735 

Ⅱ 30 32 U 20 22 U 2 

Ⅲ 30 32 R 20 22 U 2.5605 

Ⅳ 30 32 U 20 22 R 2.2663 

*Note: R means random variable, U means uncertain variable. 

Table 1 shows that 
I

  is the largest while 
II

  is the smallest under the same first two moments 

with different uncertainty types, indicating the reliability assessment for uncertain structures would be 

more conservative than that for random structures. This is due to the use of the axiomatic system of 

uncertainty theory, and it is also consistent with the practical situation that we tend to give more 

conservative assessment results when epistemic uncertainty is high. Moreover, since Condition I 

contains only random variables, its assessment result is actually the same as that of the traditional 

FOSM method. 

Besides, comparison between 
II

   and 
III

   and between 
II

   and 
IV

   show that the 
i

  

increases when either of R and S is transformed from an uncertain variable to a random variable. This 

is because, with equal first two moments, using random variables for the basic variables means that 

we collect more data or information than using uncertain variables, thus giving us more knowledge 

about the reliability of the structure. This is in line with the actual judgment of the reliability of the 

structure. 

3.2. Beam structure case 

In this case, the reliability assessment of a beam structure with a point load F and gravitational 

effect in Figure 2 will be studied by GFOSM method. The correlativity and sensitivity between hybrid 

reliability index and basic variables will be analyzed as well. 

 

Figure 2. Beam structure. 
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The beam structure’s limit state function is nonlinear, which can be written as 

2 2

,
6 4 8

bh FL bhL
G

 
= − −  

where b is the breadth, h is the height, L is the length,    is the material strength and    is the 

material gravity density. Considering the situation that the material used in this beam is newly 

developed, the material strength and gravity density are effected by epistemic uncertainty because 

there is no enough information or data about this material. For this reason, the material strength   

and gravity density   should be expressed as uncertain variables, while other basic variables would 

be expressed as random variables. 

The parameters information including variable types, expected values and variances are 

summarized in Table 2. 

Table 2. Beam parameters information. 

Basic variable Type Expected value Variance 

 (kN/mm2) Uncertain variable 600 302 

 (kN/mm3) Uncertain variable 78.5×10-6 (7.85×10-6)2 

b(mm) Random variable 40 12 

h(mm) Random variable 8 0.22 

L(mm) Random variable 1300 602 

F(kN) Random variable 500 502 

According to Eq (1) where 4m = , 2n = , the hybrid reliability index will be =3.1041  for 

this beam structure. 

In order to further verify the effectiveness and robustness of GFOSM method, the reliability 

assessment results of the structure are investigated when the first two moments of the basic variables 

vary within a certain range. As comparison to the GFOSM method, the reliability is calculated using 

the uncertain random simulation algorithm proposed by Zhang [30]. The results are shown in Figure 3. 

Obviously, the trend of hybrid reliability index    is consistent with reliability R, verifying that 

GFOSM method can effectively characterize the reliability. 

Furthermore, sensitivity analysis of structural parameters is conducted for hybrid reliability index 

  and reliability R. Sensitive factors of   and R are defined respectively as follow: 

( ) ( ) ( )

( ) ( ) ( )

(1) (2)

(1) (2)

,

,

i i i

R i i i

S X X X

S X R X R X


 = −

= −
        (9) 

where 
(1)

i
X  is the low level expected value of the i-th basic variable, 

(2)

i
X  is the high level expected 

value of the i-th basic variable, ( )i
S X


 is the sensitive factor of   for the i-th basic variable and 

( )R i
S X  is the sensitive factor of R for the i-th basic variable. The values of 

(1)

i
X  and 

(2)

i
X  are 

taken as 90% and 110% in Table 2 respectively, as shown in Table 3. It should be noted that the 

sensitive factor here considers only the local sensitivity, i.e., when calculating the sensitive factor of 

one certain basic variable, the value of the others should be fixed as Table 2. 
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(a) Results with different expected values of F   (b) Results with different standard deviation of F 

 
(c) Results with different expected value of L   (d) Results with different standard deviation of L 

 
(e) Results with different expected value of     (f) Results with different standard deviation of   

Figure 3. Calculated results of hybrid reliability index and reliability. 
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Table 3. Expected value levels of structural basic variables. 

Parameter 
(1)

i
X  (2)

i
X  

 (kN/mm2) 540 660 

 (kN/mm3) 70.65×10-6 86.35×10-6 

b(mm) 36 44 

h(mm) 7.2 8.8 

L(mm) 1170 1430 

F(kN) 450 550 

Tables 4 and 5 show the sensitive factors of   and R calculated via Eq (9), respectively. The 

results indicates that structural basic variables’ sensitivity ranking for   and R is consistent, which 

means that changes in the expected value of any basic variable affect the structural reliability and 

hybrid reliability index to the same extent. Therefore, the hybrid reliability index can effectively 

characterize structural reliability. The validity of the hybrid reliability index is further verified.  

Table 4. Sensitivity analysis for hybrid reliability index. 

Parameter ( )(1)

i
X  ( )(2)

i
X  ( )i

S X


 Rank 

 (kN/mm2) 2.2352 3.9431 1.7079 2 

 (kN/mm3) 3.1241 3.0841 0.0400 6 

b(mm) 2.3349 3.8001 1.4652 3 

h(mm) 1.5418 4.5393 2.9975 1 

L(mm) 3.8559 2.4008 1.4551 4 

F(kN) 3.7215 2.5007 1.2208 5 

Table 5. Sensitivity analysis for reliability. 

Parameter ( )(1)

i
R X  ( )(2)

i
R X  ( )R i

S X  Rank 

 (kN/mm2) 0.99221560 0.99997378 0.00775819 2 

 (kN/mm3) 0.99951222 0.99944057 0.00007166 6 

b(mm) 0.99356899 0.99996007 0.00639108 3 

h(mm) 0.94970262 0.99999726 0.05029464 1 

L(mm) 0.99996729 0.99480007 0.00516722 4 

F(kN) 0.99994608 0.99625839 0.00368769 5 

4. Conclusions 

As an efficient assessment method for structures influenced by hybrid uncertainties is needed, 

this paper has presented a new reliability assessing method for uncertain random structures, named 

GFOSM method. The contributions of this paper are concluded as follows. 

1) A new hybrid reliability index has been proposed as well as some important properties. These 

properties indicate that the new hybrid reliability index satisfies the fusion criterion. 

2) Traditional FOSM method has been extended into GFOSM method to adapt reliability 

assessment for uncertain random structures. Compared to the calculation of reliability, large-scale 

computing is avoided in GFOSM algorithm, verifying the simplicity criterion. 
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3) Two cases have been studied to further illustrate the GFOSM method proposed. It has been 

shown that the GFOSM method has the sufficient practicability for uncertain random structures and 

satisfies the correlation criterion. 

The GFOSM method has very high computational efficiency and relative accuracy, which makes 

it very suitable for applications with rapid reliability evaluation needs, such as reliability-based design 

optimization. Therefore, the application of GFOSM method in structural design optimization problem 

would be studied in the future work. 
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Appendix A: Preliminary on uncertainty and chance theory 

Some basic axioms, definitions and theorems in uncertainty theory vital for this paper will be 

presented in this section. 

Let   be a nonempty set, and    a   -algebra over   . Each element    is called an 

event. Each event    will obtain a number { } [0,1]   , i.e., uncertain measure, to indicate the 

belief degree that the event   occurs. Uncertain measure  must satisfy the following axioms 

that was suggested by Liu [27,31]: 

Axiom A.1. (Normality Axiom). { } 1 =  for the universal set  . 

Axiom A.2. (Duality Axiom).  { } 1c +  =  for any event  . 

Axiom A.3. (Subadditivity Axiom). For every countable sequence of events 
1 2
, , ,    we 

have 

 
11

.
i i

ii

 

==

 
  

 
  

Axiom A.4. (Product Axiom). Let ( ), ,
k k k

   be uncertainty spaces for 1,2,k =  . The 

product uncertain measure  is an uncertain measure satisfying 

 
1

1

,
i k

k
k

 

=
=

 
 =   

 


 

where 
k

  are arbitrarily chosen events from 
k
 for 1,2,k = , respectively. 

Definition A.1. (Uncertainty space [27]). Let   be a nonempty set,  an  -algebra over   

and  an uncertain measure. Then the triplet ( , , )  is called an uncertainty space. 

Definition A.2. (Uncertain variable [27]). An uncertain variable    is a measurable function 

from an uncertainty space ( , , )   to the set of real numbers, i.e., for any Borel set B of real 

numbers, the set 

{ } { | ( ) }B B    =    

is an event. 

Definition A.3. (Uncertainty distribution [27]). The uncertainty distribution   of an uncertain 

variable   is defined by 

( ) { }x x =  

for any real number x. 

Definition A.4. (Normal uncertain variable [27]). An uncertain variable 𝜉 is called normal if it 

has a normal uncertainty distribution 
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1

( )
( ) 1 exp ,

3

e x
x x





−

 − 
 = +   

  
 

denote by ( , )e   where e  and   are real numbers with 0  . 

Since human epistemic uncertainty and objective randomness often coexist in practice, Liu 

defined a new measure to describe this phenomenon combining probability measure and uncertain 

measure, called chance measure [22]. 

Definition A.5. (Chance space [22]). Let ( , , )  be an uncertainty space, and ( , ,Pr)  

be a probability space. Then, ( , , ) ( , ,Pr)    is called a chance space. 

Definition A.6. (Uncertain random variable [22]). An uncertain random variable is a function   

from a chance space ( , , ) ( , ,Pr)    to the set of real numbers such that { }B   is an event 

in   for any Borel set B  of real numbers 

Definition A.7. (Chance measure [22]). Let ( , , ) ( , ,Pr)    be a chance space, and let 

   be an event. Then, the chance measure of   is defined as 

1

0
Ch{ } Pr{ | { ( , ) } } .x dx    =    ∣  
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