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Abstract: In the current work, in the presence of a heat source and temperature gradients, the onset of 

triple-diffusive convective stability is studied for a fluid, and a fluid-saturated porous layer confined 

vertically by adiabatic limits for the Darcy model is thoroughly analyzed. With consistent heat sources 

in both layers, this composite layer is subjected to three temperature profiles with Marangoni effects. 

The fluid-saturated porous region's lower boundary is a rigid surface, while the fluid region's upper 

boundary is a free surface. For the system of ordinary differential equations, the thermal surface-

tension-driven (Marangoni) number, which also happens to be the Eigenvalue, is solved in closed form. 

The three different temperature profiles are investigated, the thermal surface-tension-driven 
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(Marangoni) numbers are calculated analytically, and the effects of the heat source/sink are studied in 

terms of corrected internal Rayleigh numbers. Graphs are used to show how different parameters have 

an impact on the onset of triple-diffusive convection. The study's parameters have a greater influence 

on porous layer dominant composite layer systems than on fluid layer dominant composite layer 

systems. Finally, porous parameters and corrected internal Rayleigh numbers are stabilize the system, 

and solute1 Marangoni number and ratio of solute2 diffusivity to thermal diffusivity of fluid are 

destabilize the system. 

Keywords: triple-diffusive; convective stability; adiabatic boundaries; composite layer; heat 

source/sink; thermal Marangoni number 

Mathematics Subject Classification: 76Rxx, 76R05, 80M30 

 

1. Introduction 

The study of non-Newtonian fluids such as the Walters fluid, Rivlin-Ericksen fluid, and pair stress 

fluid is critically necessary due to the expanding importance of these fluids in various domains such 

as industries and modern technologies. In convective problems, it is preferable to study fluid flow with 

free boundaries in the presence of a solute gradient due to the wide range of applications in the 

ionosphere, astrophysics, and atmospheric physics. Several liquid systems contain more than two 

components. As a result, the stability of multi-object systems must be considered. Few authors have 

looked into triple diffusive convection for fluid/porous media [1−4]. Heat generated by chemical 

reactions in the fluid brought on by radiation from an external medium might result in the development 

of an internal heat source (sink), which can help speed up or slow down convection. A perturbation 

approach was used by Raghunatha et al. [5] to study the three-component convection in a porous layer. 

Patil et al. [6,7] investigate triple diffusive boundary layer flow along an external flow velocity that is 

exponentially and vertically decreasing. The effects of the magnetic field and heat source on three-

component convection in an Oldroyd-B liquid were investigated using the Galerkin method by 

Gayathri et al. [8]. Archana et al. [9] studied the triple diffusive flow in the presence of nanofluid. Heat 

transfer has been one of the top contenders to get involved in many applications, which has drawn the 

attention of many researchers to the study of porous media [10]. Eyring-Powell nanomaterials were 

examined from the triple diffusion perspective by Khan et al. [11]. The effects triple-diffusive mixed 

convection was studied numerically by Sushma et al. [12] for Casson fluid. Li et al. [13] studied the 

double diffusion for nanofluid with mixed convection in the presence of a heat source. They discovered 

that the viscoelastic parameter and Hartmann number cause the wall shear stress to rise. The triple-

mass diffusion for nanoparticle mixes in Carreau-Yasuda material was explored by Sohail et al. [14]. 

In presence of chemical reaction and heat source, Sharma and Gandhi [15] examined the MHD on heat 

and mass transmission in a Darcy-Forchheimer porous medium. Using Oldroyd-B type model with 

heat source, Arshika et al. [16] explored the impact of sinusoidal and nonsinusoidal waveforms on 

triple diffusive-convection in viscoelastic liquids. Using lie-group transformation, Nagendramma et 

al. [17] look into the dynamics of triple diffusive convection. They found that the influence of heat and 

mass transfer rates decreased for both fluid flow scenarios as the Lewis number increased. In the 

presence of heat source/sink [18−21] and nanofluid [22−26] few authors have attempted to study the 
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convective stability. The inverse problems in porous media have been studied extensively see [27,28]. 

Recently, for the composite layers, Manjunatha and Sumithra [29,30] examined the problem of 

triple component convection in a combined layer for three different temperature profiles with and 

without a magnetic field and obtained the corresponding thermal Marangoni numbers. The double-

diffusive convection in the existence of a heat source and temperature profiles were studied by 

Manjunatha and Sumithra [31] and Manjunatha et al. [32]. They found that a linear model is unstable 

and an inverted parabolic model is more stable. 

The current work examines the stability of the onset of triple-diffusive convective stability in a 

fluid and fluid-saturated porous layer in the presence of a constant heat source and uses an exact 

technique to investigate the effect of temperature gradients on the corresponding thermal Marangoni 

(surface-tension-driven) numbers. Furthermore, the investigation of non-uniform fundamental 

temperature gradients at the start is intriguing since it opens up new perspectives on how convective 

instability is managed. The discussion takes into account the following non-dimensional basic 

temperature gradients: linear, parabolic, and inverted parabolic temperature profiles. Over a wide range 

of controlling physical parameters, the eigenvalue problem is analytically resolved using the exact 

technique. Numerous applications in astronomy, engineering, geophysics, climatology, and crystal 

formation (see Rudolph et al. [33]) will surely benefit from this work. 

2. Materials and methods 

Consider horizontally infinite fluid and fluid-saturated porous layers of depth and 

respectively. The lower rigid surface and upper free surface boundary are maintained 

at constant temperature and concentration and . At the upper free region, surface tension 

( ) force acts which varies linearly with temperature and concentration respectively in the form 

and . Where , and is the unperturbed value. 

The fluid-saturated porous medium interface is located at position at , and the temperature 

and concentration difference between the lower and higher bounds is denoted by and . A 

coordinate system is used as shown in Figure 1. The relevant equations with Oberbeck-Boussinesq 

approximation for two regions as following Roberts [34], Char & Chiang [35], Del Rio & Whitaker 

[36], Othman [37] and Shivakumara et al. [38,39]. 
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Figure 1. Schematic representation. 
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where the basic state is denoted by the subscript 'b',  is the 

interface temperature, is the interface concentrations for . 

 are the temperature gradient in region-1 and region-2. 

To examine the stability of the system, we perturb the system as 
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 , for , (18) 

where the perturbed primed quantities are those that are very small in relation to the primed quantities 

of the fundamental state. After substituting Eqs (17) and (18) into Eqs (1–10), linearized in usual 

manner, eliminate the pressure term from the Eqs (2) and (7) by executing curl twice, and retain the 

vertical element, the governing stability equations were eventually determined.  
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here is the Laplacian operator. 

3. Stability analysis and normal mode technique 

Establish dimensionless values using standard linear stability analysis methods. 
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 , (28) 

The normal mode approach for the fluid and fluid-saturated porous media respectively, 
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where and are wavenumbers in  and direction respectively, and are growth 

rate (real or complex) in region-1 and region-2 respectively. 

Nondimensionalized using (27) and (28), and introducing Eqs (29) and (30) into (19)–(26), the 
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where ,  are the Prandtl numbers and is the square root of Darcy number. 

For the current problem, the approach of linear stability analysis and the idea of stability exchange 

are appropriate and effective so take and . (Refer Manjunatha and Sumithra [30] and 

Shivakumara et al. [38]).The eigenvalue problem (31)–(38) takes the form. 

Region-1:  

 ( )2 2 2 2
( ) ( ) 0

f f f f f
D a D a W z− − = , (39) 

 , (40) 

 ( )2 2

1 1
( ) ( ) ( ) 0

f f f f f
D a z W z −  + = , (41) 

 ( )2 2

2 2
( ) ( ) ( ) 0

f f f f f
D a z W z −  + = , (42) 

Region-1:  

 2 2
( ) 0( )

m m m m
D W za− = , (43) 

 2 2 *
)( ) [ ( ) (2 1( ) ()]

m m m m m am m mm m
D a z R z Wz z += −− + , (44) 

 , (45) 

 , (46) 

where, ,= =
f m

m

d d
D D

dz dz
 are the Differential operator, 2 2 2 2

,  = + = +
f y m ymx xm

a a  are the 

overall horizontal wave numbers, 
* *

0 0

,
2( ) 2( )

= =
− −

If Im

a am

u l

R R
R R

T T T T
 are the corrected internal Rayleigh 

numbers, 

2 2

,
 

= =
f f m m

If Im

f m

Q d Q d
R R  are the internal Rayleigh numbers, ( ), ( )

f m m
W z W z  are the vertical 

component of velocities, 
1 2

1 2
,

 
 

 
= =

f f

f f

f f

are the diffusivity ratios, 1 2

1 2
,

 
 

 
= =m m

m m

m m

 are the 

diffusivity ratios in porous region, 
1 2
( ), ( ) 

f f
z z  are the salinity distributions, 

1 2
( ), ( ) 

m m m m
z z  are 

the salinity distributions on porous region, and ( ), ( ) 
f m m

z z  are the amplitude temperatures. For the 

composite system, the overall horizontal wave numbers must be ˆ
m f

a d a= , here ˆ m

f

d
d

d
=  is the depth 

ratio.  

4. Boundary conditions 

The bottom layer is a rigid surface, while the top border is a free surface, with temperature and 

concentration/salinity affecting surface tension. Prior to applying the normal mode technique, each 
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thermal ratio, and  is the viscosity ratio. 

5. Exact method of solution 

The eigenvalue problem with an eigenvalue of  is formed by the boundary conditions of (48) 

and the Eqs (39)−(46). We address this problem using the exact technique procedure, which produces 

acceptable results when dealing with difficulties of this nature (see Manjunatha and Sumithra [29,30]). 

5.1. Velocity profiles 

The velocity profiles are obtained from Eqs (39) and (43) as follows: 

 
1 1 2 3

( ) [cosh cosh sinh sinh ]
f f f f f

W z B a z b z a z b a z b z a z= + + + , (49) 

 , (50) 

where  need to be calculated utilizing the suitable velocity conditions of (48) yields 

to 𝑏1 =
𝑎𝑚 𝑐𝑜𝑡ℎ 𝑎𝑚

2𝑎𝑓
3𝛽2𝑑̂3 , 𝑏2 = −1 − (𝑏1 + 𝑏3) 𝑡𝑎𝑛ℎ 𝑎𝑓 , 𝑏3 =

𝑎𝑚
2 𝜇̂−𝑎𝑓

2𝑑̂2

𝑎𝑓𝑑̂2 , 𝑏4 = 𝑇̂, 𝑏5 = 𝑇̂ 𝑐𝑜𝑡ℎ 𝑎𝑚. 
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
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5.2. Salinity profiles 

Using the solutal boundary conditions (48), the salinity profiles are obtained from Eqs (41), (42), 

(45) and (46) as follows 

 
1 1 18 19 2
( ) [ cosh sinh ( )]

f f f
z B b a z b a z g z = + + , (51) 

 
2 1 22 23 3
( ) [ cosh sinh ( )]

f f f
z B b a z b a z g z = + + , (52) 

 , (53) 

 , (54) 

Where, 𝑔2(𝑧) =
−𝑧

4𝑎𝑓
2𝜏𝑓1

[(2𝑎𝑓𝑏1 − 𝑏2 + 𝑎𝑓𝑏3𝑧) 𝑐𝑜𝑠ℎ 𝑎𝑓 𝑧 + (2𝑎𝑓 − 𝑏3 + 𝑎𝑓𝑏2𝑧) 𝑠𝑖𝑛ℎ 𝑎𝑓 𝑧],

2 5 4

1

cosh
t( ) [( h )],an

2

m m m

m m m m

m m

z a z
g z b b a z

a 

−
= +  𝑏18 = 𝑆̂1𝑏20, 𝑏19 =

1

𝑎𝑓
(𝑏21𝑎𝑚 + ℕ1 − ℕ2), 

𝑏20 =
ℕ6𝑎𝑚 𝑐𝑜𝑠ℎ 𝑎𝑚−ℕ3ℕ5

𝑎𝑚 𝑠𝑖𝑛ℎ 𝑎𝑚(ℕ5+ℕ4 𝑐𝑜𝑡ℎ 𝑎𝑚)
, 𝑏21 =

ℕ3ℕ4+ℕ6𝑎𝑚 𝑠𝑖𝑛ℎ 𝑎𝑚

𝑎𝑚 𝑠𝑖𝑛ℎ 𝑎𝑚(ℕ5+ℕ4 𝑐𝑜𝑡ℎ 𝑎𝑚)
,

( ) ( )3 1 2 3 3 22

2

( ) 2 cosh 2 sinh ,
4

f f f f f f

f f

g z a b b a b z a z a b a b z a z
a
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
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−
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3 5 4
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( ) [( coth )],

2

m m m

m m m m

m m

z a z
g z b a z b
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−
= +  𝑏22 = 𝑆̂2𝑏24, 𝑏23 =

1

𝑎𝑓
(𝑏25𝑎𝑚 + ℕ8 − ℕ9), 

𝑏24 =
ℕ13𝑎𝑚 𝑐𝑜𝑠ℎ 𝑎𝑚 − ℕ10ℕ12

𝑎𝑚 𝑠𝑖𝑛ℎ 𝑎𝑚 (ℕ12 + ℕ11 𝑐𝑜𝑡ℎ 𝑎𝑚)
, 𝑏25 =

ℕ10ℕ11 + ℕ13𝑎𝑚 𝑠𝑖𝑛ℎ 𝑎𝑚

𝑎𝑚 𝑠𝑖𝑛ℎ 𝑎𝑚 (ℕ12 + ℕ11 𝑐𝑜𝑡ℎ 𝑎𝑚)
. 

6. Temperature gradient 

We considered linear, parabolic and inverted parabolic profiles, these profiles have been 

discussed numerically and analytically by Shivakumara et al. [38−40] using the Galerkin procedure 

for porous layers in absence of heat source and in a linear case by Kaloni and Lou [41] by applying a 

compound matrix method for single layers. We have revisited these instances in order to determine the 

analytical reliability of the results for the two layers on the onset of triple-diffusive convection in a 

fluid and saturated porous layer. 

6.1. Model 1: Linear temperature profile:  and  

Introducing model into (40) and (44), the linear profile takes the form 

 1 6 7 1
( ) [ cosh sinh ( )]

f f f
z B b a z b a z g z = + + , (55) 

 
1 8 9 1

( ) [ cosh sinh ( )]
m m m m m m m m

z B b a z b a z g z = + + . (56) 

1 1 20 21 2
( ) [ cosh sinh ( )]

m m m m m m m m
z A b a z b a z g z = + +

2 1 24 25 3
( ) [ cosh sinh ( )]

m m m m m m m m
z B b a z b a z g z = + +

( ) 1
f

z = ( ) 1
m m

z =
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From (47), the thermal Marangoni (surface-tension-driven) number (TMN) for the linear model is 

 

2 2

1 1 2 2 3

1 2
(1)

f S f

f

S

t

f

a M a M
M

a

−



− −  
= , (57) 

where , 

, . 

6.2. Model 2: Parabolic temperature profile:  and  

Introducing model (Sparrow et al. [42]) into (40) and (44), the profile takes the form 

 , (58) 

 . (59) 

From (47), the TMN for the model is 

 

2 2

1 1 2 2 3

2 2
( )1

f S f S

f

t

f

a M a M
M

a

−



− −  
= , (60) 

where , 

. 

6.3. Model 3: Inverted Parabolic temperature profile:  and  

When model is introduced into (40) and (44), the profile becomes 

 , (61) 

 . (62) 

From (47), the TMN for the profile is 

 

2 2

1 1 2 2 3

3 2
(1)

f S f S

t

f f

a M a M
M

a

− −  − 
=


, (63) 

where ,  

(See Appendix). 

7. Results and discussion 
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The present study aims at solving exactly the problem of Marangoni convection in presence of a 

heat source and temperature gradients. The exact method provides useful results and also general basic 

temperature profiles can be readily treated with minimum mathematical computations. The graphs are 

plotted using MATHEMATICA version 11. The TMNs  for model 1 as linear,  model 2 as 

parabolic, and  model 3 as inverted parabolic temperature profiles have been investigated with the 

object of understanding the control of convection. The depth ratio  is used to draw the limits. The 

effects of the parameters and for linear, parabolic and inverted parabolic 

profiles on all three TMNs are depicted in Figures 2−7. The major finding is that for a given set of 

fixed parameter values, the inverted parabolic profile is the most stable, while the linear profile is the 

most unstable, as the corresponding TMNs are highest and lowest, respectively, for porous layer 

dominant systems, i.e., . 

Figure 2 depicts the fluctuations of the porous parameter  on the three TMNs for linear, 

parabolic, and inverted temperature profiles for . The TMNs for all three profiles 

rise when the value of , i.e., the permeability of the porous layer, increases. As a result, raising the 

porosity parameter can influence the onset of triple-diffusive convection, which is physically sensible 

because the fluid has more ways to travel. As a result, the system has reached a state of equilibrium. 

The effect of corrected internal Rayleigh numbers  and on the onset of triple-diffusive 

convection is explained in Figures 3 and 4 respectively, for all three profiles. Negative values of these 

parameters indicate heat sinks, while the positive values indicate heat sources. It is evident from the 

figures that these parameters are effective for larger values of depth ratio, i.e., for porous layer 

dominant composite layer systems and the effect of  is drastic when compared to that of . For a 

given depth ratio, the thermal Marangoni number rises as the value of these parameters rises, indicating 

a delay in the commencement of the onset of triple-diffusive convection, which is particularly 

pronounced for . The effects of  and , the solute1, solute2 Marangoni numbers for 

 on the onset of triple-diffusive convection is displayed in Figures 5 and 6. 

The TMNs drop for each of the three temperature profiles as the solute1 Marangoni number values are 

raised. So, the onset of triple-diffusive convection can be postponed; hence, the system can be 

destabilized. The system easily stabilizes if more high-solute diffusivity salts are added. However, it 

is clear that the solute2 Marangoni number turns the process around. Therefore, by increasing the 

solute2 Marangoni number, the onset of triple-diffusive convection can be postponed, stabilizing the 

system and helping to determine its stability features. This demonstrates that there is a third diffusing 

component, at which point the onset of triple-diffusive convection influences the stability of the 

system. 

Figure 7 displays the effects of , the ratio of solute2 diffusivity to thermal diffusivity fluid in 

the fluid layer, which is the significance of the presence of a third diffusing component, for  

and  respectively, for the values . Smaller depth ratio values, or fluid layer 

dominating composite layer systems, have no effect on the TMNs for any of the three profiles. In a 

composite layer system with a porous layer as the dominating layer, the system can become unstable 

as  is increased because onset of triple-diffusive convection begins to develop more quickly. This 

is perfectly understandable because, in contrast to the energy stability theory, the linear stability theory 

specifies sufficient requirements for stability. 
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(a) (b) (c) 

Figure 2. The effects of porous parameter  , when * *ˆ 0.3, 0.1, 1 ,
f a am

T a R R= = = =  𝑆̂1 =

0.25 = 𝑆̂2, 
1 2

0.25 ,
f f

 = = 𝜏𝑚1 = 0.5 = 𝜏𝑚2, 𝑀𝑆1 = 10, 𝑀𝑆2 = 15.
 

   

(a) (b) (c) 

Figure 3. The effects of corrected internal Rayleigh number *

a
R for region-1, when 

ˆ 0.3,T = 0.1,
f

a =  0.1, = 𝑅𝑎𝑚
∗ = 1, 𝑆̂1 = 0.25 = 𝑆̂2, 𝜏𝑓1 = 0.25 = 𝜏𝑓2, 𝜏𝑚1 = 0.5 = 𝜏𝑚2, 𝑀𝑆1 =

10, 𝑀𝑆2 = 15. 
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(a) (b) (c) 

Figure 4. The effects of corrected internal Rayleigh number *

am
R for region-2, when 𝑇̂ =

0.3, 𝑎𝑓 = 0.1 = 𝛽, 𝑅𝑎
∗ = 1, 𝑆̂1 = 0.25 = 𝑆̂2, 𝜏𝑓1 = 0.25 = 𝜏𝑓2, 𝜏𝑚1 = 0.5 = 𝜏𝑚2, 𝑀𝑆1 =

10, 𝑀𝑆2 = 15. 

   

(a) (b) (c) 

Figure 5. The effects of solute1 Marangoni number
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(a) (b) (c) 

Figure 6. The effects of solute2 Marangoni number
2S
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Figure 7. The effects of 
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  in region-1, when * *ˆ 0.3, 0.1 , 1 ,
f a am

T a R R= = = = =  𝑆̂1 =

0.25 = 𝑆̂2, 
1

0.25,
f

 =  
1 2

0.5 ,
m m

 = =
1 2

10, 15.
S S

M M= =  

8. Conclusions 

The conclusions presented above provide a general framework for investigating the role of the 

porous parameter, corrected internal Rayleigh numbers, solutal Marangoni (surface-tension-driven) 

numbers, and fluid thermal diffusivity ratio on the onset of triple-diffusive convection in a fluid and 

fluid-saturated layer of the porous medium. For a variety of fundamental uniform and non-uniform 

temperature gradients in the presence of a constant heat source, the principle of exchange of stability 

is found to be valid, and the problem of eigenvalue is solved using the exact technique. 

The investigation's findings are as follows: 

❖ The parameters in the study have a larger influence on the porous layer dominant composite 

layer systems than that on the fluid layer dominant composite systems. 



13447 

AIMS Mathematics  Volume 8, Issue 6, 13432–13453. 

❖ The larger values of the porous parameter, corrected internal Rayleigh numbers and solute 

Marangoni (surface-tension-driven) number  and the lower values of and  are 

preferable for controlling the onset of triple-diffusive convection. 

❖ The system is stabilized by the porous parameter, corrected internal Rayleigh numbers, and the 

solute2 Marangoni (surface-tension-driven) number, while the system is destabilized by the 

solute1 Marangoni (surface-tension-driven) number and the ratio of the solute2 diffusivity to 

the thermal diffusivity of the fluid. 

❖ The inverted parabolic temperature (model 3) profile is the most stable and hence suitable for 

controlling the onset of triple-diffusive convection whereas the linear temperature (model 1) 

profile is the most unstable for augmenting the onset of triple-diffusive convection for the set 

of parameters chosen for this investigation. 

❖ The system is more stable for model 3 and less stable for model 1. i.e.,
.
 

❖ This work can be extended to temperature-dependent heat sources and Soret and Dupour effects 

to analyses the onset of triple-diffusive convection. 
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