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Abstract: In this paper, we consider the symmetry properties of the positive solutions of a p-Laplacian
problem of the form −∆pu = f (x, u), in Ω,

u = g(x), on ∂Ω,

where Ω is an open smooth bounded domain in RN ,N ≥ 2, and symmetric w.r.t. the hyperplane T ν0(ν is
a direction vector in RN , |ν| = 1), f : Ω×R+ → R+ is a continuous function of class C1 w.r.t. the second
variable, g ≥ 0 is continuous, and both f and g are symmetric w.r.t. T ν0 , respectively. Introducing some
assumptions on nonlinearities, we get that the positive solutions of the problem above are symmetric
w.r.t. the direction ν by a new simple idea even if Ω is not convex in the direction ν.
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1. Introduction

Let ν be a direction vector in RN ,N ≥ 2, |ν| = 1, and Ω ⊂ RN be an open bounded smooth domain
which is symmetric with respect to the hyperplane T ν0 := {x ∈ RN |x · ν = 0}. Let us study the symmetry
of the positive solutions of the p-Laplace problem of the form{

−∆pu = f (x, u), in Ω,

u = g(x), on ∂Ω,
(1.1)
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where ∆pu = div(|∇u|p−2∇u) with p > 1, f : Ω × R+ → R+ is a continuous function of class C1 w.r.t.
the second variable, g ≥ 0 is continuous, and both f and g are symmetric w.r.t. T ν0 .

For the case p = 2, the research of symmetry properties for solutions of differential equation was
started by Serrin [1], by the method of moving planes (MMP), which was also called Alexandrov
reflection method. Since the MMP is essentially a monotonicity method it usually works very well,
when g ≡ 0, u > 0 in Ω and f has some monotonicity in x. Later, in the celebrated papers [2, 3], by
MMP, Gidas, Ni and Nirenberg proved that any positive solution u ∈ C2(Ω) of the problem −∆u = f (u)
inΩwith u = 0 on ∂Ω is radially symmetric when f (s) is C1 andΩ is a ball in RN orΩ = RN (assuming
that u(x) = o(|x|2−N) at infinity). After that, in a general bounded domain Ω (⊆ RN), which is convex in
the x1 direction, Berestycki and Nirenberg in [4] proved that monotonicity and symmetry w.r.t. the x1

direction for positive solutions u ∈ W2,N
loc (Ω) ∩C(Ω) of nonlinear elliptic equations.

For the p-Laplace operator, the coefficient (|∇u|p−2) is vanishing or singular at the critical points of
u for p > 2 or 1 < p < 2, respectively. So, many symmetry results of positive solutions for p-Laplace
equations were proved under some assumptions on the critical set of u. Symmetry results for positive
solutions of p-Laplace equations, without any assumptions on the critical set of u, were obtained
in [5, 6] for bounded domains and in [7] for RN , by MMP. In [8], the authors studied the symmetry of
nonnegative C1 ground states of a class of quasilinear elliptic equations. For p > 2, the monotonicity
and symmetry properties for nonnegative solutions of −∆pu = f (u) in B with the boundary condition
u = 0, where ∆p is the p-Laplace-Beltrami operator and B is a geodesic ball in hyperbolic space HN ,
was studied in [9].

In this paper, even if Ω is not convex in the direction ν orthogonal to T ν0 , f may not have the right
monotonicity in x, and u doesn’t vanish on the boundary of Ω, we obtain u is symmetric w.r.t. the
hyperplane T ν0 , which is different from the previous results.

To be more precise, let xν0 denote the reflection point of x w.r t. T ν0 , i.e.,

xν0 = Rν0(x) := x − 2(x · ν)ν,

and to guarantee that the p-Laplace equation is uniformly elliptic, we give an hypothesis on the positive
solution u of (1.1),

∇u(x) , 0, ∀ x ∈ Ω. (1.2)

So, by (1.2), it follows that the quasilinear second order operator in (1.1) is nondegenerate elliptic.
Now, we state the main result of the paper as follows.

Theorem 1.1. Assume u ∈ C1(Ω) is a positive solution of (1.1) and (1.2) holds. If f (x, s) and g(x) ≥ 0
are symmetric w.r.t the hyperplane T ν0 , f is strictly convex in s and the derivative of f with respect to
the second variable s is nonpositive, i.e., f ′s satisfies following inequality

f ′s (x, s) ≤ 0, ∀ (x, s) ∈ Ω × R+, (1.3)

then u is symmetric with respect to T ν0 , i.e., u(x) = u(xν0) for any x ∈ Ω. Furthermore, if f (x, s) is
convex in s and f ′s (x, s) < 0, for (x, s) ∈ Ω × R+, the same result holds.

This paper is motivated by [10], where the authors studied the symmetry of the solutions of
semilinear elliptic equations with convex nonlinearites for the case p = 2. In [10], the author proved
that nonnegativity of the first eigenvalue of the linearized operator in the caps determined by the
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symmetry of Ω is a sufficient condition for the symmetry of the solution, when the nonlinearities and
the boundary value condition have some symmetric in x. Here, for the p-Laplace equation in (1.1),
p > 1, we introduce the nonpositivity of the derivative of f w.r.t. the second variable instead of the
nonnegativity of the first eigenvalue of linearized operator in [10]. Under our assumptions, we prove
that the positive solution u of (1.1) is symmetric w.r.t. the direction ν by a novel simple method
instead of the method of moving planes.

2. Preliminaries

In this section, we give some notations. For the direction ν ∈ RN , set Ω− and Ω+ for the caps of the
left and right of T ν0 , i.e.,

Ω− = {x ∈ Ω| x · ν < 0} and Ω+ = {x ∈ Ω| x · ν > 0}.

Let us define the reflected functions of u in the domains Ω− and Ω+ by v− and v+, respectively,

v−(x) = u(x − 2(x · ν) ν), x ∈ Ω−,

v+(x) = u(x − 2(x · ν) ν), x ∈ Ω+.

Hence, by definition, v− and v+ are solutions of (1.1) in Ω− and Ω+, respectively, and by the
condition (1.2), we have

∇u , 0 in Ω, ∇v− , 0, in Ω−, ∇v+ , 0 in Ω+. (2.1)

Furthermore, by (2.1) and the definitions of v− and v+, we also get

∇u , ∇v− in Ω−, ∇u , ∇v+ in Ω+. (2.2)

What’s more, regularity theory for quasilinear elliptic equations [11] give us that any positive
solution of the p-Laplacian equation in (1.1) satisfying (1.2) also satisfies u ∈ C2(BR \ Z)(= C2(BR)),
where Z is the set of critical points of u.

Now, by assumptions u ∈ C1(Ω) and (1.2), it follows that u ∈ C2(Ω) ∩ C1(Ω). Then, we can write
−∆pu = f (x, u) in the form (see also (2.5) in [8])

−

N∑
i, j

ai j(x)ui j = f (x, u) in Ω, (2.3)

where ai j(x) is a bounded continuous function in Ω, ui j =
∂2u
∂xi∂x j

, i, j = 1, ...,N.

Remark 2.1. By (1.2) and Lemma 2.1 in [8], the matrix {ai j} is a positive definite ∀ x ∈ Ω and the
Eq (2.3) is uniformly elliptic in Ω .

Next, we recall a lemma proved by Simon in [12] and Damascelli in [13], which will be used to
prove the main result later.

Lemma 2.1. Let p > 1 and N(≥ 2) ∈ N. There exists a positive constant c depending on p and N such
that for all η, η′ ∈ RN with |η| + |η′| > 0,

(|η|p−2η − |η′|p−2η′) · (η − η′) ≥ c(|η| + |η′|)p−2|η − η′|2. (2.4)
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3. The proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. We adopt the notations introduced in Section 2.
At last, a remark on the proof is given.

In order to have a clear proof, we divide it in two steps.
Firstly, we assume that f (x, s) is the strictly convex in s. In this situation, we obtain

f (x, v−(x)) − f (x, u(x)) ≥ f ′u(x, u(x))(v−(x) − u(x)), in Ω−, (3.1)

f (x, v+(x)) − f (x, u(x)) ≥ f ′u(x, u(x))(v+(x) − u(x)), in Ω+, (3.2)

with the strict inequality whenever v−(x) , u or v+(x) , u. Furthermore, we set

w− = v− − u in Ω−, and w+ = v+ − u in Ω+.

Then, since v− (or v+) is also a solution of (1.1) in Ω− (or Ω+), using the symmetry of f and g with
respect to T ν0 , by (1.1) and (3.1), we have,

−∆pv− − (−∆pu) = f (x, v−) − f (x, u) ≥ f ′u(x, u)(v− − u), in Ω−, (3.3)

−∆pv+ − (−∆pu) = f (x, v+) − f (x, u) ≥ f ′u(x, u)(v+ − u), in Ω+, (3.4)

and the strict inequality holds whenever w−(x) , 0 or w+(x) , 0, and

w− = 0 on ∂Ω−, w+ = 0 on ∂Ω+. (3.5)

Actually, if w+ and w− are both nonnegative in domains Ω+ and Ω−, respectively, then w+ ≡ w− ≡ 0,
by the definition. Then, we get u is symmetric w.r.t. T ν0 at once.

Now, we can use two methods to prove w+ and w− are nonnegative in Ω+ and Ω−, respectively.

3.1. First proof of nonnegativity of w+ and w− in Ω+ and Ω−, respectively

In this proof, we argue by a contradiction. So we assume one of two functions, without loss of
generality, w− is negative somewhere in Ω−. Then, by (3.3), it follows that

−∆pv− − (−∆pu) − f ′u(x, u)(v− − u) ≥ 0 in Ω−, (3.6)

with the strict inequality whenever w−(x) , 0. Next, considering a connected component D in Ω− of
the set where w− < 0, multiplying w− on the both sides of (3.6), integrating and by (3.5), we get∫

D
(|∇v−|p−2∇v− − |∇u|p−2∇u) · ∇w− −

∫
D

f ′u(x, u)(w−)2 < 0. (3.7)

But by Lemma 2.1, Eqs (1.3), (2.1) and (2.2), we have∫
D

(|∇v−|p−2∇v− − |∇u|p−2∇u) · ∇w− −
∫

D
f ′u(x, u)(w−)2

=

∫
D

(|∇v−|p−2∇v− − |∇u|p−2∇u) · (∇v− − ∇u) −
∫

D
f ′u(x, u)(w−)2

≥

∫
D

c(|∇v−| + |∇u|)p−2|∇v− − ∇u|2 −
∫

D
f ′u(x, u)(w−)2 (3.8)

> 0.

So it contradicts to (3.7).
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3.2. Second proof of nonnegativity of w+ and w− in Ω+ and Ω−, respectively

In this proof, we use the weak maximum principle. Now, since f and g are symmetric with respect
to the hyperplane T ν0 , by (1.1), differencing the equation for v− and u inΩ−, v+ and u inΩ+, respectively,
and applying the mean value theorem, by (2.3), for w− and w+, we obtain

−

N∑
i, j

a′i j(x)w−i j +

N∑
i

b′i(x)w−i = f (x, v−) − f (x, u), in Ω−, (3.9)

−

N∑
i, j

a∗i j(x)w+i j +

N∑
i

b∗i (x)w+i = f (x, v+) − f (x, u), in Ω+, (3.10)

where w∓i j =
∂w∓
∂xi∂x j
, w∓i =

∂w∓
∂xi

, a′i j(x) and b′i(x), a∗i j(x) and b∗i (x) are bounded continuous functions in
Ω− and Ω+ respectively, i, j ∈ 1, ...,N, the matrix {a′i j} is positive definite for x ∈ Ω−, and the matrix
{a∗i j} is positive definite for x ∈ Ω+.

Meanwhile, by (1.2) and Remark 2.1 or Lemma 2.1 in [8], we know the Eqs (3.9) and (3.10) are
uniformly elliptic in Ω− and Ω+, respectively. Actually, since Ω doesn’t contain the set Z of critical
points of u, the Eqs (3.9) and (3.10) are uniformly elliptic. This is an easy consequence of Z = ∅ and
of the linearized process exposed by Serrin in [1].

So, by (1.3), applying the weak maximum principle in the following problems, respectively, −
N∑
i, j

a′i j(x)w−i j +
N∑
i

b′i(x)w−i − f ′u(x, u)w− ≥ 0, in Ω−,

w− = 0, on ∂Ω−,
(3.11)

 −
N∑
i, j

a∗i j(x)w+i j +
N∑
i

b∗i (x)w+i − f ′u(x, u)w+ ≥ 0, in Ω+,

w+ = 0, on ∂Ω+,
(3.12)

we obtain
w− ≥ min

x∈Ω−
w− = min

x∈∂Ω−
w− = 0, in Ω−,

w+ ≥ min
x∈Ω+

w+ = min
x∈∂Ω+

w+ = 0, in Ω+.

Secondly, we assume that f is convex. Then, we can also get (3.3)–(3.5). To prove the symmetry
of u in Ω, the fact that w− ≥ 0 and w+ ≥ 0 are both nonnegative in the respective domains Ω− and Ω+

are useful. In this situation, the arguments to prove that w+ and w− are both negative are similar to the
situation above. On the one hand, we can argue by a contradiction. In this way, we still assume w− is
negative somewhere in Ω−. Next, the (3.7) is changed to∫

D
(|∇v−|p−2∇v− − |∇u|p−2∇u) · ∇w− −

∫
D

f ′u(x, u)(w−)2 ≤ 0, (3.13)

and the (3.8) still holds. Then, we get a contradiction by (3.13) and (3.8). On the other hand, we
can also get w+ ≥ 0 and w− ≥ 0 in Ω+ and Ω− by the weak maximum principle, respectively. So the
symmetry of u w.r.t. T ν0 is proved.
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Remark 3.1. (1) Since the domainΩ can be not convex in the direction ν in our problem and the method
of moving planes can’t be applied to the symmetry of the solutions, we don’t get the monotonicity of
the solutions in Ω+ or Ω− by our method.
(2) The assumption that the critical set Z = ∅ plays an important role to guarantee the quasilinear
second order operator in (1.1) is nondegenerate and the quasilinear Eqs (2.3), (3.9) and (3.10) are
uniformly elliptic.

As the critical set Z = {x ∈ Ω|∇u(x) = 0} , ∅, the authors in [5, 14] considered not only the
symmetry but also the monotonicity of the positive solution of the problem{

−∆pu = f (u), in Ω,

u = 0, on ∂Ω,
(3.14)

where Ω is an open bounded smooth convex domain in RN ,N ≥ 2, 1 < p < 2 or p > 1.
Exactly, in [5], for 1 < p < 2, the authors considered the symmetry and monotonicity for the

positive solution u of −∆pu = f (u) satisfying an homogenuous Dirichlet boundary condition in Ω by
MMP, and in [14], for p > 1, under the assumption that the critical set Z has only one point inΩ that is
the origin, i.e., Z ∩ Ω = {0}, the symmetry and monotonicity of the positive solution of (3.14) is gotten
by MMP.

4. Conclusions

In this paper, we get the symmetry of the positive solutions of the problem−∆pu = f (x, u), in Ω,

u = g(x), on ∂Ω,

where ∆pu = div(|∇u|p−2∇u) with p > 1, Ω is an open smooth bounded domain in RN ,N ≥ 2, and
symmetric w.r.t. the hyperplane T ν0(ν is a direction vector in RN , |ν| = 1), both f and g are symmetric
w.r.t. T ν0 . Assuming some nonlinearities, we prove that the solutions are symmetric w.r.t. the direction
ν by a novel simple idea even if Ω is not convex in the direction ν and there are nonzero boundary
values. In this paper, the symmetry is different from that gotten by the method of moving planes. So,
by our method, the monotonicity of the solutions is not gotten.
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