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Abstract: The features of numerical sequences and time series have been studied by using entropies
and graphs. In this article, two sequences derived from the divisors of natural numbers are investigated.
These sequences are obtained either directly from the divisor function or by recursively applying the
divisor function. For comparison purposes, analogous sequences formed from the divisors of happy
numbers are also examined. Firstly, the informational entropy of these four sequences is numerically
determined. Then, each sequence is mapped into graphs by employing two visibility algorithms. For
each graph, the average degree, the average shortest-path length, the average clustering coefficient,
and the degree distribution are calculated. Also, the links in these graphs are quantified in terms of
the parity of the numbers that these links connect. These computer experiments suggest that the four
analyzed sequences exhibit characteristics of quasi-random sequences.
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1. Introduction

A numerical sequence is an ordered set of numbers [1–5]. A famous example is the sequence of
Fibonacci numbers [1–5]. A sequence can be created from an explicit formula (such as an arithmetic
progression) or by taking into consideration specific properties of their elements (such as the sequence
of prime numbers) [1–5].

In this article, {x} represents an increasing list of positive integer numbers. A positive integer
number x with d divisors may be called d-prime [6]. Hence, according to this definition, the number 1
is the single 1-prime and the usual prime numbers correspond to the particular case d = 2.

Consider the sequence of divisors {x,D(x)}, in which D(x) = d is the number of divisors of x. The
divisor function D(x) appears in the literature with distinct names and notations [1–5]. For {x} = {n}, in
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which n is a natural number, the sequence of divisors of natural numbers {n,D(n)}n∈N starts as follows:

{(1, 1), (2, 2), (3, 2), (4, 3), (5, 2), (6, 4), (7, 2), . . .} (1.1)

For instance, D(6) = 4, because 6 has four divisors: the numbers 6, 3, 2, and 1; therefore, 6 is a
4-prime. The list {D(n)}n∈N has the code A000005 in the On-Line Encyclopedia of Integer Sequences
(OEIS) [7].

Any positive integer number x can be written as x =
∑∞

p=0 δp10p, with δp ∈ {0, 1, 2, ..., 9}. Now,
replace this number by the sum of the square of its digits; that is, by

∑∞
p=0(δp)2. Repeat this process.

If the number 1 is eventually reached, then x is called happy number in Number Theory [8, 9]. For
instance, 23 is happy because 22 + 32 = 13, 12 + 32 = 10, and 12 + 02 = 1. Let a happy number
be denoted by h and the set of happy numbers by H. In the online database OEIS, the code of the
list {h}h∈H is A007770 [7]. For {x} = {h}, the beginning of the sequence of divisors of happy numbers
{h,D(h)}h∈H is:

{(1, 1), (7, 2), (10, 4), (13, 2), (19, 2), (23, 2), (28, 6), . . .} (1.2)

Consider also the sequence here called sequence of trajectories {x,T (x)}. For x > 1, each pair
(x,T (x)) is obtained from D(di) = di+1 with i = 0, 1, 2, ...,T , in which d0 = x and dT = 2. Since
D(1) = 1 and D(2) = 2, then 1 and 2 are fixed points of the map D(di) = di+1; however, the fixed point
2 is globally attracting for x > 1. Hence, the value of T specifies the amount of steps required to arrive
at this attracting fixed point from any x > 1. For instance, take x = 60, in order to illustrate how this
sequence is formed. Observe that D(60) = 12, D(12) = 6, D(6) = 4, D(4) = 3, and D(3) = 2. As the
fixed point 2 was reached after 5 steps from x = 60, then T (60) = 5. For the natural numbers {n}, the
code of the list {T (n)}n∈N in the online database OEIS is A036459 [7]. The sequence of trajectories of
natural numbers {n,T (n)}n∈N is given by:

{(1, 0), (2, 0), (3, 1), (4, 2), (5, 1), (6, 3), (7, 1), . . . , } (1.3)

The sequence of trajectories of happy numbers {h,T (h)}h∈H is written as:

{(1, 0), (7, 1), (10, 3), (13, 1), (19, 1), (23, 1), (28, 4), . . .} (1.4)

Graphs have been used to examine the relations among prime numbers and natural numbers
[10], prime numbers and even numbers [11], integer numbers and their divisors [12, 13], Fibonacci
numbers [14], rational numbers [15], the gaps between successive d-primes for d ∈ {2, 3, ..., 11} [6].
Informational entropy has been computed in studies on the distribution of primes [16–18] and d-
primes [6]. In this manuscript, the sequences {x,D(x)} and {x,T (x)} are numerically investigated for
{x} = {n} and {x} = {h}. This investigation is based on visibility graphs and informational entropy,
which is the approach that we used to study d-primes [6]. Notice that, in Eqs (1.1)–(1.4), {n} and {h}
are increasing lists, but {D(n)}, {D(h)}, {T (n)}, and {T (h)} are non-monotonic lists.

The aim of this article is to investigate the properties of numerical sequences that are not obtained
from an explicit recurrence relation. The remainder of this article is organized as follows. In Section
2, in order to evaluate the variability of the sequences given by Eqs (1.1)–(1.4), their informational
entropy [19] is calculated in function of the sequence length. In Section 3, the four mentioned
sequences are transformed into undirected graphs by using two visibility algorithms [20, 21]. Thus,
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eight graphs are built and numerically characterized. For each graph, the average degree ⟨k⟩, the
average shortest-path length ⟨l⟩, the average clustering coefficient ⟨c⟩, and the values of A, γ, and
δ of the degree distribution P(k) = Ak−γe−δk are computed. Observe that the degree distribution is
supposed to be fitted by a power law multiplied by an exponential term [22–26]. The percentages of
links between even numbers, between odd numbers, and between an even number and an odd number
are also determined for these eight graphs. In Section 4, the results for {n} and {h} are compared and
discussed.

2. Informational entropy

Let a numerical sequence be written as {x, F(x)} with {F(x)} = {y}. The variability of the list
{y} = (y1, y2, ..., yN) with N elements can be evaluated by computing its normalized informational
entropy ∆ defined as:

∆ =
H

Hmax
=
−

∑J
j=1 q j log q j

log J
(2.1)

in which q j is the relative frequency of the distinct number y j and J is the amount of distinct numbers
y j. Since repetitions in {y} can occur, then J ≤ N. In Eq (2.1), Hmax is the maximum value of the
informational entropy H [19]; thus, 0 ≤ ∆ ≤ 1.

Notice that ∆ = 0 for a sequence in which q j = 1 for j = j∗ and q j = 0 for j , j∗ (which implies
H = 0); that is, a sequence formed by a single y j; and ∆ = 1 for a sequence in which q j = 1/J for
any j (which implies H = Hmax = log J); that is, a sequence derived from an equiprobable distribution.
Therefore, ∆ expresses the level of intrinsic uncertainty in {y}. It increases with the variability in {y},
ranging from 0 for a constant sequence (in which all numbers are the same) to 1 for an equiprobable
sequence (in which the numbers occur with the same relative frequency). The complexity of numerical
sequences (or time series) has been related to its variability. In fact, there are complexity measures
based on informational entropy [27, 28], which have been used, for instance, in analyzes of economic
crises [29] and texture of images [30].

Figure 1 shows how ∆ for {D(n)} and {T (n)} varies with the length N; Figure 2 is for {D(h)} and
{T (h)}. In these figures, N goes up to 30000. The choice of this upper bound was influenced by the
computer processing power required to map these sequences into graphs (see the next section). Figures
1 and 2 show that the dependence of ∆ on N is non-trivial. Two factors account for the oscillations
and jumps observed in these figures. The first factor is the variation of the values of q j (the relative
frequency of y j), as the sequence length increases. In fact, the proportions of the numbers y j vary
with N. The second factor is the introduction of new numbers y j as N increases; thus, J (the amount
of distinct y j) increases with N. The normalized entropy ∆ given by Eq (2.1) depends on q j and J.
Since q j and J vary with N, then ∆ also varies with N. For instance, the jump observed in Figure 1(b)
occurs for n = 5040, because T (5040) = 6 and, for n < 5040, the maximum value of {T (n)} is 5. The
introduction of the number 6 causes the jump.
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Figure 1. The normalized informational entropy ∆ = H/Hmax for {D(n)} (a) and {T (n)} (b) in
function of the sequence length N. For N = 30000, ∆ = 0.582 for {D(n)} and ∆ = 0.687 for
{T (n)}.
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Figure 2. The normalized informational entropy ∆ = H/Hmax for {D(h)} (a) and {T (h)} (b) in
function of the sequence length N. For N = 30000, ∆ = 0.575 for {D(h)} and ∆ = 0.692 for
{T (h)}.

For N = 30000, the maximum values in {D} and {T } are: max({D(n)}) = 96, max({D(h)}) = 160, and
max({T (n)}) = max({T (h)}) = 6. The minimum values in these sets are: min({D(n)}) = min({D(h)}) =
1 and min({T (n)}) = min({T (h)}) = 0. Therefore, the sets {T (n)} and {T (h)} are within the same range
and the sets {D(n)} and {D(h)} belong to different ranges. For N = 30000, ∆ = 0.582 for {D(n)},
∆ = 0.575 for {D(h)}, ∆ = 0.687 for {T (n)}, and ∆ = 0.692 for {T (h)}. Thus, for N = 30000, ∆ ≃ 0.6
for {D(n)} and {D(h)}, and ∆ ≃ 0.7 for {T (n)} and {T (h)}.

3. Graphs from sequences

There are several ways of converting a numerical sequence into a graph [31]. Here, two visibility
algorithms are employed for transforming the sequence {x, F(x)} into undirected graphs, because these
graphs inherit some properties of the converted sequences [20, 21]. Visibility algorithms have been
used in studies, for instance, on infection spread [32] and precipitation records [33].
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Assume that each node of the visibility graphs corresponds to a distinct value of x. Assume also
that xa < xi < xb. In the natural visibility (NV) graph [20], the nodes xa and xb are linked if:

F(xi) < F(xa) + (F(xb) − F(xa))
(

xi − xa

xb − xa

)
(3.1)

Therefore, these nodes are linked if any intermediate point (xi, F(xi)) is below the straight line
connecting (xa, F(xa)) and (xb, F(xb)) in the plot x × F(x).

In the horizontal visibility (HV) graph [21], the nodes xa and xb are linked if:

{F(xa), F(xb)} > F(xi) (3.2)

Hence, these nodes are linked if any intermediate point (xi, F(xi)) is below the horizontal line
connecting (xa, F(xa)) and (xb, F(xb)) in the plot x × F(x). If two nodes are connected in the HV
graph, then they are connected in the corresponding NV graph; however, the reverse is not true. Figure
3 illustrates this statement.
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Figure 3. The sequence {(a, F(a)), (i, F(i)), (b, F(b))} in the plot x × F(x) can be converted
into graphs by using visibility algorithms. In the NV graph (the graph with red links), the
nodes a and b are connected, since F(i) is below the (red dashed) straight line connecting
(a, F(a)) and (b, F(b)). In the HV graph (the graph with black links), the nodes a and b
are not connected, because F(i) > F(a); that is, the (black dashed) horizontal line passing
through (a, F(a)) can not reach (b, F(b)) without crossing the bar representing (i, F(i)). In
both graphs, a is connected to i and i is connected to b.

Figures 4 and 5 respectively exhibit the partial graphs and the degree distributions P(k) obtained
from {n,D(n)} and {n,T (n)} by using the NV algorithm; in Figures 6 and 7, the HV algorithm is
employed. Figures 8 and 9 are for {h,D(h)} and {h,T (h)} with the NV algorithm; in Figures 10 and 11,
the HV algorithm is used.

In the partial graphs (Figures 4, 6, 8, and 10), only the first 100 links are shown, in order to
better visualize their structure. Observe the small-world characteristic [34] of these graphs; that is,
the existence of long-range links that shorten the path between any pair of nodes. This characteristic is
also present in biological, social, and technological networks that were investigated in classic papers
on complex networks [34–36].

The plots of P(k) (Figures 5, 7, 9, and 11) and the calculations of the network properties shown in
Tables 1 and 2 were made by taking the first 30000 natural numbers and the first 30000 happy numbers.
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(a) (b)

Figure 4. The first 100 links in the graphs built from {n,D(n)} (a) and {n,T (n)} (b) by
employing the NV algorithm.
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Figure 5. Degree distribution P(k) for {n,D(n)} (a) and {n,T (n)} (b) for the graphs obtained
from the NV algorithm by considering the first 30000 natural numbers. The solid line is the
fitted curve P(k) = Ak−γe−δk.

(a) (b)

Figure 6. The first 100 links in the graphs built from {n,D(n)} (a) and {n,T (n)} (b) by
employing the HV algorithm.
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Figure 7. Degree distribution P(k) for {n,D(n)} (a) and {n,T (n)} (b) for the graphs obtained
from the HV algorithm by considering the first 30000 natural numbers. The solid line is the
fitted curve P(k) = Ak−γe−δk.
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Figure 8. The first 100 links in the graphs built from {h,D(h)} (a) and {h,T (h)} (b) by
employing the NV algorithm.
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Figure 9. Degree distribution P(k) for {h,D(h)} (a) and {h,T (h)} (b) for the graphs obtained
from the NV algorithm by considering the first 30000 happy numbers. The solid line is the
fitted curve P(k) = Ak−γe−δk.
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Figure 10. The first 100 links in the graphs built from {h,D(h)} (a) and {h,T (h)} (b) by
employing the HV algorithm.
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Figure 11. Degree distribution P(k) for {h,D(h)} (a) and {h,T (h)} (b) for the graphs obtained
from the HV algorithm by considering the first 30000 happy numbers. The solid line is the
fitted curve P(k) = Ak−γe−δk.

Table 1 presents the values of ⟨k⟩, ⟨l⟩, ⟨c⟩, A, γ, and δ. Recall that the node degree k is the number
of edges linked to the node, the path length l is the shortest distance between two nodes, and the node
clustering coefficient c is percentage of neighbors that are linked together [35,36]. The average values
⟨k⟩, ⟨l⟩, and ⟨c⟩ are calculated by considering all nodes in the graph. Also, P(k) is the percentage of
nodes with degree k [35,36]. The values of A, γ, δ, and the mean squared error (MSE) of fitted function
P(k) = Ak−γe−δk were determined from the least square fitting method [37].

Table 2 presents χ1 and χ2, which respectively are the percentages of odd nodes and even nodes
in each graph. Obviously, χ1 + χ2 = 1. For N = 30000, there are 49.6% of odd happy numbers and
50.4% of even happy numbers, and, obviously, 50% of odd natural numbers and 50% of even natural
numbers. Table 2 also presents m11, m22, m12, and m21, which respectively denote the percentages of
links between odd nodes, links between even nodes, links from an odd node to an even node, and links
from an even node to an odd node. Notice that, despite the visibility algorithms generating undirected
graphs, m12 and m21 express properties of nodes of directed graphs. This can be done by associating
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the horizontal axis x in Figure 3 to the direction of time of {x, F(x)} [21]. As time x passes, links start
from the current node to arrive at nodes in the future (for instance, in Figure 3, links start from x = a
and arrive at x = i and x = b, in the NV graph). Obviously, m11 + m12 + m21 + m22 = 1 and m12 + m21

represent the percentage of links between nodes with distinct parity, if the presumed orientation of the
links is ignored. Table 2 also shows M, which is the total number of links in each graph. Recall that
⟨k⟩ = 2M/N [35, 36].

Table 1. Values of average degree ⟨k⟩, average shortest-path length ⟨l⟩, average clustering
coefficient ⟨c⟩, and A, γ, and δ of the degree distribution P(k) = Ak−γe−δk (and the mean
squared error (MSE) of this fitted function) of the graphs obtained from the algorithms of
natural visibility (NV) and horizontal visibility (HV). These algorithms were applied on the
sequences of divisors ({D(x)}) and trajectories ({T (x)}) of natural ({x} = {n}) and happy
({x} = {h}) numbers. The corresponding figure numbers are given in the first column.

Figs. sequence algorithm ⟨k⟩ ⟨l⟩ ⟨c⟩ A γ δ MSE
4, 5 {D(n)} NV 5.78 7.92 0.33 0.17 −2.27 0.78 1.6 × 10−5

4, 5 {T (n)} NV 5.04 28.3 0.06 0.38 −0.76 0.48 2.4 × 10−5

6, 7 {D(n)} HV 3.58 16.3 0.27 1.68 1.53 0.14 3.3 × 10−5

6, 7 {T (n)} HV 2.98 257 0.26 1.87 0.60 0.46 1.6 × 10−4

8, 9 {D(h)} NV 6.61 7.39 0.35 0.10 −2.25 0.66 9.6 × 10−6

8, 9 {T (h)} NV 5.33 100 0.14 0.19 −2.19 0.77 7.2 × 10−6

10, 11 {D(h)} HV 3.51 15.4 0.27 1.34 0.71 0.33 9.8 × 10−6

10, 11 {T (h)} HV 2.92 157 0.26 1.71 −0.39 0.77 1.4 × 10−4

Table 2. Percentages of odd nodes (χ1), even nodes (χ2), links between odd nodes (m11),
links from an odd node to an even node (m12), links from an even node to an odd node (m21),
and links between even nodes (m22) in the eight graphs. The total number of links (M) is
given in the last column.

sequence algorithm χ1 χ2 m11 m12 m21 m22 M
{D(n)} NV 50.0 50.0 3.4 26.7 26.7 43.2 86645
{T (n)} NV 50.0 50.0 3.7 28.7 28.4 39.2 75579
{D(n)} HV 50.0 50.0 1.0 31.8 31.8 35.4 53723
{T (n)} HV 50.0 50.0 1.3 37.2 37.2 24.3 44655
{D(h)} NV 49.6 50.4 11.1 23.6 22.6 42.7 99143
{T (h)} NV 49.6 50.4 13.2 23.0 23.1 40.7 79940
{D(h)} HV 49.6 50.4 14.6 23.3 22.7 39.4 52626
{T (h)} HV 49.6 50.4 17.4 25.8 25.6 31.2 43755
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4. Discussion and conclusions

As far as we know, this is the first analysis of the sequences {n,D(n)}, {h,D(h)}, {n,T (n)}, and
{h,T (h)} based on the computation of informational entropy and on the construction of visibility
graphs. These mathematical tools were selected for the following reasons. Since these four sequences
do not exhibit any evident pattern, it is relevant to estimate their variability by calculating their
informational entropy. Since visibility graphs inherit some properties of the associated sequences,
the study of these graphs may provide hints about the underlying process generating such sequences.

Evidently, the set of the happy numbers {h} is a subset of the set of the natural numbers {n}. Table
2 shows that the percentage of odd (even) happy numbers is similar to the percentage of odd (even)
natural numbers for N = 30000. Figure 1 reveals that, for N = 30000, ∆ ≃ 0.6 for {D(n)} and {D(h)}.
Despite the similarity in this value of the normalized entropy, which implies comparable variability,
and despite the similar proportion of odd and even numbers in {n} and {h}, the sequences given by Eqs
(1.1) and (1.2) are mapped into graphs with distinct topological measures. This statement is also true
for the sequences given by Eqs (1.3) and (1.4). Observe that ∆ ≃ 0.7 for {T (n)} and {T (h)}, as can be
seen in Figure 2; however, these sequences are transformed into graphs with different features.

For N = 30000, 1 ≤ D(n) ≤ 96, 1 ≤ D(h) ≤ 160, and 0 ≤ T (n),T (h) ≤ 6. Thus, the number
of distinct values in the {D}-sequences is much higher than in the {T }-sequences. Surprisingly, the
normalized entropy ∆ is higher for the {T }-sequences than for the {D}-sequences.

The HV graph is subgraph of the corresponding NV graph [20, 21, 31]; hence, as expected, Table
2 shows that M is higher in NV graphs than in HV graphs and Table 1 shows that ⟨k⟩ is higher in
NV graphs than in HV graphs and ⟨l⟩ is lower in NV graphs than in HV graphs. For instance, for
{D(n)}, MNV = 86645 > MHV = 53723, ⟨k⟩NV = 5.78 > ⟨k⟩HV = 3.58, ⟨l⟩NV = 7.92 < ⟨l⟩HV = 16.3.
However, the highest amount of edges in the NV graphs does not imply higher ⟨c⟩. For instance,
⟨c⟩NV = 0.33 > ⟨c⟩HV = 0.27 for {D(n)}, but ⟨c⟩NV = 0.06 < ⟨c⟩HV = 0.26 for {T (n)}.

By employing the NV algorithm, the graphs built from the sequence of divisors {D} present greater
⟨k⟩, lower ⟨l⟩, and greater ⟨c⟩ than the respective graphs built from the sequence of trajectories {T },
for natural and happy numbers. For instance, for the NV-graphs, ⟨k⟩{D(h)} = 6.61 > ⟨k⟩{T (h)} = 5.33,
⟨l⟩{D(h)} = 7.39 < ⟨l⟩{T (h)} = 100, and ⟨c⟩{D(h)} = 0.35 > ⟨c⟩{T (h)} = 0.14. By using the HV algorithm, the
{D}-graphs present greater ⟨k⟩ and lower ⟨l⟩ than the respective {T }-graphs, but ⟨c⟩ is similar in both
graphs.

The expression ⟨l⟩random = log N/ log⟨k⟩, usually employed to estimate the average shortest path
length in purely random graphs, gives lower values than those shown in Table 1. For instance, for
the NV graph for {D(h)}, ⟨l⟩ = 7.39 > ⟨l⟩random = 5.49; for the HV graph for {D(h)}, ⟨l⟩ = 15.4 >
⟨l⟩random = 8.21. In fact, the graphs obtained from visibility algorithms are not purely random; hence,
⟨l⟩ in Table 1 is higher than ⟨l⟩random. However, the plots of P(k) suggest that the four sequences can be
viewed as quasi-random.

The fitted function P(k) qualitatively changes from the NV plot to the HV plot, for the natural
and happy numbers considered here. Loosely speaking, the NV algorithm creates random/small-
world networks [35, 36] and the HV algorithm creates scale-free networks [35, 36]; that is, P(k) in
the NV graphs is a Poisson-like distribution (Figures 5 and 9) and P(k) in the HV graphs is a scale-free
distribution with an exponential cutoff (Figures 7 and 11). Since a random sequence is mapped by the
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NV algorithm into a graph with a Poisson degree distribution [20] and by the HV algorithm into a graph
with an exponential degree distribution [21], the plots of P(k) suggest that the four analyzed sequences
behave like quasi-random sequences. However, these sequences are not generated by a purely random
process, because such a process would present ∆ = 1 and these sequences have ∆ ≃ 0.6 − 0.7. The
MSE of the fitted function in these plots could be decreased by increasing the sequence length used
in the numerical experiments. Thus, the discrepancies between the data and the fitted function usually
found for k above a critical number could be reduced.

Table 2 reveals that, in all graphs, the least frequent type of connection is that between odd numbers
(that is, m11 < m12,m21,m22); however, this type of connection is more prevalent in the graphs derived
from happy numbers than those derived from natural numbers. For instance, by considering the NV
algorithm, m11,{D(h)} = 0.111 > m11,{D(n)} = 0.034. This table also reveals that connections from
odd number to even number and connections from even number to odd number appear in similar
percentages (that is, m12 ≃ m21) in all graphs. Notice that links between odd numbers and links
between even numbers connect non-consecutive nodes in the graphs for {n}; however, this is not true
in the graphs for {h}.

In short, in this manuscript, four sequences of purely mathematical nature were mapped into
graphs with ⟨l⟩ ≳ ⟨l⟩random and 0 ≪ ⟨c⟩ < 1, which are connectivity features usually found in
real-world networks [34–36]. Thus, from a topological perspective, mathematical networks can be
similar to networks representing biological, social, and technological systems. Also, the monotonically
decreasing degree distributions obtained from the HV-algorithm and the bell-type degree distributions
obtained from the NV-algorithm may be a consequence of mapping quasi-random sequences. This
study also showed that {D}-graphs are more connected than the corresponding {T }-graphs; and even
numbers are more connected than odd numbers. These conclusions were drawn for the four sequences
of natural and happy numbers taken into account in this manuscript and they can be useful in the
proposition of a theoretical model for these graphs.
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