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Abstract: In this paper, the dynamical behavior of a predator-prey model with discrete time is
discussed in terms of both theoretical analysis and numerical simulation. The existence and stability
of four equilibria are analyzed. It is proved that the system undergoes Flip bifurcation and Hopf
bifurcation around its unique positive equilibrium point using center manifold theorem and bifurcation
theory. Additionally, by applying small perturbations to the bifurcation parameter, chaotic cases occur
at some corresponding internal equilibria. Finally, numerical simulations are provided with the help of
maximum Lyapunov exponent and phase diagrams, which reveal a complex dynamical behavior.
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1. Introduction

In biology, discrete models of interspecific relationships in populations without generation-level
overlap are more generalizable than continuous ones, which has attracted many scholars in recent years
(see [1-12]). Obviously, all these works indicate that discrete systems have more complex dynamic
behavior. The predator-prey model is a class of classical biomathematical model that has been studied
by different scholars in terms of the evolutionary patterns of populations over time [13, 14] and the
effects of different functional responses on the stability of populations [15, 16].

For the predator-prey system, external factors such as food supply, climate change and population
migration can affect predation and population reproduction [17,18]. However, the effects of changes in
predators themselves are often overlooked, such as predator fear [19]. Frightened predators tend to eat
less, which leads to reduced birth rates and increased mortality [19]. Therefore, predator fear, which
cannot be quantitatively described, is more difficult to study.

Sasmal [20] studied a predator-prey model with Allee effect and reduced reproduction of prey due
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to cost of fear. They discussed the effects of time scale separation between prey and predator.

dv (1.1)

= ru(l-4) (- 0) 5 — awv 0<6<k
£ = aauv — my
where u and v are the prey and predator population densities, respectively. r is the maximum growth
rate of the population, k is the carrying capacity, and 6 represents the Allee threshold (0 < 6 < k), below
which the population becomes extinct. f refers to the level of fear, which is due to the anti-predator
response of prey. a is the predation rate, « is the conversion efficiency of predator by consuming prey,
and m represents the predator’s natural mortality rate.

To simplify parameters, define N = %, P= ﬁcv, €=, 0= %, m= aﬂak, f= %, t = aakt. Then,
the system is given by

dt 1+fP

42 — NP — mP

{ W = L[N =N)(N-6) s - NP|
dt

At present, there are some studies on predator-prey systems with Flip bifurcation and Hopf
bifurcation [21] in continuous models, where, however, the chaotic properties have not been mentioned.
For example, Khan studied a discrete-time Nicholson-Bailey host-parasitoid model and obtained
the local dynamics and supercritical Neimark-Sacker bifurcation in 2017 [22]. In 2019, Li et al.
investigated the discrete time predator-prey model undergoing Flip and Neimark Sacker bifurcation
using the center manifold theorem and bifurcation theory [23]. In 2022, Yu et al. gave a description
of the bifurcations in theory for a symmetrically coupled period-doubling system, including the
Transcritical bifurcation, Pitchfork bifurcation, Flip bifurcation and Neimark-Sacker bifurcation [24].
In 2022, Chen et al. studied a discrete predator-prey system with Allee effect, which undergoes Fold
bifurcation and Flip bifurcation. They obtained cascades of period-doubling bifurcation in orbits of
period-2, 4, 8 and chaotic properties [25].

Based on the above analysis and discussion, we obtain the following discrete-time model:

{N,H1 = Ny + A {L [N, (1 = N Ny = 6) 2 = NPy (1.2)

1+/P,
Pn+1 :Prz+h[NnPn_mPn]

where h > 0 refers to the step length of (1.2),0 < 6 < 1.

In this paper, we study the existence and stability of four equilibria of model (1.2) and focus on
local dynamics of the unique positive equilibrium point in Section 2 . In Sections 3 and 4, we study
Flip bifurcation and Hopf bifurcation when bifurcation parameter A varies in a small neighborhood
of the unique positive equilibrium point. In Section 5, we study chaos scenarios of Flip bifurcation.
Meanwhile, some numerical simulations about bifurcations are given by maximum Lyapunov exponent
and phase diagrams to verify our results. Finally, brief conclusions are given in Section 6.

2. Existence and stability of equilibria
Initially, the existence and stability of the equilibrium point of model (1.2) are analyzed.
By calculating model (1.2), obviously, the trivial equilibrium point E; = (0,0) and boundary

equilibria E, = (1,0), E5 = (6,0) are obtained. Since the negative equilibrium point has no practical
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~1+ \/1+4f(1—m)(m—9)) .
is

meaning in biology, the unique positive internal equilibrium point E; = (m, 57

chosen.
The Jacobi matrix of the linear system of (1.2) at any equilibrium point (N*, P*) is given by:

1+fP
hP 1 +hN —mh

h [ -3N2+2(1+6)N-6 h )
J = 1+Z[—_P] Z[( —(1+ON +9N)(1+fp)2_N]]

(N*,P*)
Now, we give some dynamical properties of four equilibria.

Theorem 2.1. For the trivial equilibrium E,, with eigenvalues 1, = 1 — h?a and 1, =1 — hm.
() Eyisasinkif0 < h< mln{26 2} with eigenvalues |1;| < 1 and |1;| < 1.

(i) E, is a source if h > max{%, 2} with eigenvalues |1;| > 1 and |1;| > 1.

(iii) E, is a saddle pointi <h< % with eigenvalues |1;| > 1 and |1;| < 1, or % <h< 27; with
eigenvalues |A;| < 1 and |1;| > 1.

(iv) Flip bifurcation occurs at E if h = 26 < % with eigenvalues 11 = —1 and |A;| < 1, or
h = = with eigenvalues 1, = —1 and |4,| < l

Theorem 2.2. For the boundary equilibrium E,, with eigenvalues 1; = 1 + ’f(@ -1Dand 1, =1+
h(1 —m).

() E, is a sink lf{ ER with eigenvalues |1;| < 1 and |1;| < 1.

0<h<1mn(

h>max{z—ﬁ —=

(i1) E, is a source zf{ e ]% or{ >l 21 with eigenvalues |A;| > 1 and |1;| > 1.

m> 1 . .
or { 2 < with eigenvalues |1;| > 1 and |A;| < 1, or

(iii) E, is a saddle point zf{

{'::% with eigenvalues |A;] < 1 and |,] > 1.

<h<
m]

1 . .
m: .2 with eigenvalues 1, = —1 and || < 1, or
9 m—1

(zv) Fllp bifurcation occurs at E, if {
h = - < 75 with eigenvalues 1, = —1 and |/11| <1

~ lze , with eigenvalues 1, = 1 and |1;| < 1.

(v) Transcritical bifurcation occurs at E, if { b <

Theorem 2.3. For the equilibrium E3, with eigenvalues 1, = 1 + 29(1 —and 1, =1+ h(@—m).

. . . 6<m
(i) E5 is a source zfQ>mor{h>ﬁ

(ii) E5 is a saddle point zf{

, with eigenvalues |1;| > 1 and |1;| > 1.

, with eigenvalues |1;| > 1 and |1;| < 1.

0<h<

There is no situation as |4,| < 1, i.e., stability does not exist.

Theorem 2.4. For the internal equilibrium E,,
(i) E4 is a sink if

144

€

m(1+6—2m) L2 2 | m(1-m)(m—6) V1+4f(1—-m)(m—6)
1+ A/ 1+4f(1-m)(m—0) € [1+ A 1+4f(1=m)(m— 0J

m(1—-m) (m—06) \/1 +4f(1-m)y(m-60) >0

L+6-2m N [2(l—m)(m—9) 1+4f(l—m)(m—6)] <0

1+ A/ 1+4 f(1-m)(m—6) [1+ A1+4£01 —m)(m—@)r
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(ii) Transcritical bifurcation occurs at Ey4 if
m=1lorm=46

-2e<h

1+ A/ 1+4f(1—-m)(m—06)

2m(1+6—-2m) :| <0

(i) Flip bifurcation occurs at E4 if

142 m(1+6-2m) " 2 | m(1-m)(m—6) \/1+4f(1—m)(;n—9) ~0
€| 1+ A 1+4f(1-m)(m—6) € [1+ \/1+4f(l—m)(m—0)]

4 < h[l m(1+6-2m) ]< Y
+

€ A 1+4f(1-m)(m—6)

(iv) Hopf bifurcation occurs at Ey4 if

2m—6-1)| 1+ \/1+4 f(1-m)(m—06)
e ke

2(1-m)(m—6) \/ 1+4 f(1-m)(m—0)

_4<@[1 m(1+6—2m) ]<0
+

€ A 1+4f(1-m)(m—6)
Proof. The Jacobi matrix of (1.2) at point E4 = (N, Py) is

14k 2m(1+6-2m) h | Z2mt N 1+4f(1-m)(m-0)
€ | 1+ \1+4£(1-m)(m-0) 1+ \/T+4 £ (1-m)(m—6)

€

J | = 2.1
(o-Po) h(—l+ \1+4 f(l—m)(m—e)) .
2f
wheren =1 + \/1 +4f (1 —m)(m—06).
Meanwhile, the characteristic polynomial of J|,, ,, 1s given by:
fQO=2-A+1DA+(A+BC)=0 (2.2)
where
A:1+ﬁ 2m (1 + 6 —2m) ’
€11+ \1+4f(1—m)(m-6)

h

€

—2m+\/1+4f(1—m)(m—9)] C_h(—1+«/1+4f(1—m)(m—0))
1+ JT+df(I-mm-0 | 2f

Then, eigenvalues of J| y , are 4; = A“T“g and 1, = A“%g, where 4 = (A — 1) - 4BC.

(i) (No, Py) is a sink, if |4y] < 1 and |4;] < 1. From the Jury Criterion [26], we obtain

1+(A+1)+(A+BC)>0
1-A+1D+A+BC)>0
1-(A+BC)>0

(@) IfA4>0,4 =1and || <1lord, =1and|4] < Lthenwehave{BC:O '

1Al < 1
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i) If 4> 0, 2y = =1 and | 1] < 1 or & = —1 and || < 1, then we have { /' /<1 ~°
(iv) If 4 < 0, |4;] = |1;] = 1, which is a pair of conjugate complex roots, then we have { QZﬁC+_1|l< 5 -

When 4; and 4, is a pair of conjugate complex roots, we assume A; = a + bi and A, = a — bi
(@>+b2=1,b#0),ie.0<al < 1. Since (A= 4)) (A= L) = 2= (A + L) A+ 14, = 0, obviously
wehave 41+ A, =A+1=2aand /14, =A + BC = 1.

All of the expressions A, B,C can be brought into equations mentioned above to obtain the
corresponding conclusions. O

3. Flip bifurcation at £,

In this section, we discuss how system (1.2) undergoes Flip bifurcation around its internal

—1+\/1+4f(1=m)(m—6)

equilibrium E; = (m, ! T

) when £ is chosen as bifurcation parameter. The necessary

conditions for Flip bifurcation to occur is given by the following curve:

mn-1){m-2)

2F Qm-1-0) + 2\/f2(1 +6-2mP+ L (n—1)(n-2) efn
U={(mn,0,f e eR}:h=h"= , D] <1

_h m(1+6-2m) _ = ~
WhereD—€(1+\/m)+3andn 1+ 1+4f (1 —m)(m-0).

3.1. Existence condition of Flip bifurcation at E,

The Jacobi matrix of the linear system of (1.2) at the equilibrium point (Ny, Py) is given by:

1 + h L2m(1+6—2m)] h [—Zm(n—l)]
I livo,p)= ( < hn-2)" ‘ 1" ] (3.1)

2f

wheren =1+ \/1 +4f(1 —m)(m-—6).
In order to obtain the bifurcation properties, we consider translations N,,; = N,+1 — Ny, P, =
P,+1 — Py for shifting (Ny, Py) to the origin. Then, the model (1.2) is given by

=T {2+ 90) (1= 7 0) (¥ + o — ) e — (4 ) (B + P0))

1+f(Pa+Po)
h[(N +N())(P_n+P0)—m(P_n+P0)]
(3.2)
Using Taylor expansion at the point E4 (Ny, Py) yields the following expression :

N N\ Lo (VP
(52 )= (B ) oo i) =

where A
U1 (NnPr) = biNy. + bsNoPo + b3Py- + buNy +bsNy Py +boNy P, +biPy +0(( P_,,)),
(V. P) = N, P,
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13395

_ _3Np+146 _ [35g2a+0N+0]f _ [-N3++0)NZ-6Ny | £ 0 _
3N 1bz>f i 0 D2 S (1+/Po)’ Lo b = (1+fPy)’ o b= R bs =
o—1—

(1+fPg)*

be — [3N2-2(1+6)No+6] £ b = [N3-(1+6)N3+6Ny | £

6= (U+fPoy 1T (1+fP)"

. ) . D(n-2 h [ 4m(1+6-2
From the characteristic polynomial (2.2), we obtain f (—1) = [%] 2 [M] + 4.

Since step size h > 0, the bifurcation parameter is chosen as

2f(2m—1—9)+2\/f2(1+9—2m)2+%(n—l)(n—2)efn
mmn—-—1)(n-2)

h* =

where parameter m satisfies “9 <m<1.

Consider parameter h w1th a small perturbation 6, i.e., h = h* + 9, |6| < 1, and the system (3.3)
becomes

W 1+ (h* +6) [2m(1+9 2m)] (h*:(s) [_zm,(ln_l)] ﬁ * wl (ﬁ P_n)
(R Y E o ) o

The characteristic polynomial of (3.4) is given by

h'+6

g(/l):/lz—[2+

2m(1+60-2 h*+6
m{ m)”/l+1+

n

2m(1 +6 - 2m)]+ (h*+06)?

n

mn—-1)(n-2)
]

€ €

The transversal condition at (N, Pg) is

dg() | :_4_2mh*(1+9—2m)
ds =10 en

If dgu) |l i=_1 5=0# 0, then Flip bifurcation will occur at Ej.

3.2. The direction of Flip bifurcation at E,

1+ [2m(1+0 2m)] I [ 2m(n 1)]
To facilitate discussion, define A = ( (n_z)" € 1n ]

2f
If the eigenvalue of A goes for A = —1, the corresponding eigenvector is given as:

B | 2mn-1)
T, = ( 5 _EE [Qy:ll(]+6)—2m)] )
€ n

If the eigenvalue of A goes for A = A,, the corresponding eigenvector is given as:

h* [ 2m(n—1)
T, = [ A — 1 [2111(1+H 2m)] ]

n

Then, we have the invertible matrix

AIMS Mathematics Volume 8, Issue 6, 13390-13410.
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B [—Zm(n—l)] B [—Zm(n—l)]
T = (T1, T2) - [_2 _E B [2n’:(1+9—2m):| A — 16_ B [2m(1+92m)])
Using translation (x") =T! ( g ) , system (3.4) turns into

where

(3.5)

oo

—_~
=
T
S

— — —2 —_— —2 —3 —2— ——
£i(N P, 8) = ay N6 +anpP,6+by N, +bioN, Py+bi3P, +buN, +bisN, P,+biN, P,

—3 —2 —_ — —3 —— ——
+ b17Pn +c;N,, 0+c1oN, P,0+ci3P, 0+ciauN, 0+cisN,, P,0+cigN, P, ¢

—3
+ C17Pn 0

— — — —2 —_— —2 —3 —2— )
g1(Na P 6) = a2 N,6+a0P,5+by Ny +bnN, Py+bysP, +byuN, +bysN, P,+byN, P,

—3 — —_ —2 —3 — —_—
+ b27Pn +cy N, 6+cnN, P,0+cy3P, 6+cuN, 0+cysN, P,0+cyN, P, 6

—3
+C27Pn6
1 [2m—-1-0 h* | 2m (1 + 0 —2m) n—2
an = —-1-— -
h+1)| n-1 € n 2f (L + 1)
1 b1 h* |1 2m (1 + 6 —2m)
a = —_ - —
P+ D\ € n
1 [2m—-1-6 h | 2m(1+60-2m) n—2
a| = 2+ — +
L+ | n-1 € n 2f (AL + 1)
1 h|12m(1+6—2m)
= 24 —
2t ) e[ n ])
1 n ] h [2m(1+60—-2m)]
by = A—1-— b
! AL+1|-2m@m-1)) 2 €| n ] :
1 n ] R [2m(1+60—-2m)] h*
by, = H—-—1—— b, —
2T h+1|2mn- D)\ €| n [ a+1
1 | n ] h [2m(1 + 60 —2m) |
b Hh—1-—— b
PT L+ | —2m(n—1) | ? €| n :
1 n h* [2m(1+6—2m)
by = A—1-— b
T LA —2m(n—1)]( ? e[ n ]) !
cij=h'b;; (i=12;j=12,---,7)
AIMS Mathematics Volume 8, Issue 6, 13390-13410.
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. . [Ny n
Using translation ( +1) =T (; + ), system (3.5) becomes
n+1 n+1

Xn+1 —Xn f2 (-xn’ Yn, 6) )
(yn+1) (/IZyn) ( 82 (xn’yna 6) ( )
where

2 2 3 2 2
o (X, Y0, 0) = d11X,0 + d12Y,0 + e11X, + €12X, Yy + €13y, + €14X;, + e15X, Y, + €16XnY,,
3 2 2 3 2 2
+ ep7y, + fux,0 + fiax,yu0 + f13y,0 + f1ax,0 + fisx,yn0 + fi6XnY;,0
3
+ f17yn5

22 (X0s Vs 0) = da1 X0 + dypy,6 + €21 + €20 XYy + €232 + €24X) + 25XV, + 26X, Y
+ ey, + 120 + FaXuyul + fr3720 + X0 + fr5sXoynd + freXnYad
+ f27y,315
kip = kip = [M] kyy = =2 — [M] kyy =y — 1 — [M]

n

diy = ankyy + ankyy, dip = anki + apksn, e = bllk%l + biokiiky + b13k%1,

er = 2byikiikia + bio (kiikay + kinkat) + 2b13kai ko, €13 = bnkfz + biokiokay + b13k%2,
€14 = b14k11 + b15k11k21 + b16k11k21 + b17k21’

€5 = 3b14k11k12 + bis (k11k22 + 2k11k12k21) + b1 (2k11k21k22 + kukil) + 3b17k§1k22,
€6 = 3b14k11k%2 + bis (2k11k12k22 + k%szI) + b1 (knk§2 + 2k12k21k22) + 3b17k21k§2,
e17 = biaki, + biskiyka + bigkiaks, + birks,,

dyy = agikyy + axka, dn = ankiy + ankn, e = b21k%1 + baokirko + b23k%1,

e = 2by1kiikio + by (ky1koy + kiokay) + 2baskaikas, €33 = bZIk%Q + byrkioky + bz3k§2,
€4 = bz4k11 + b25k11k21 + bzekukz] + bz7k21,

€5 = 3bz4k11k12 + bys (k11k22 + 2k11k12k21) + b (2k11k21k22 + knkgl) + 3b27k§1k22,
€6 = 3bz4k11k%2 + bys (2k11k12k22 + k%szI) + by (knk§2 + 2k12k21k22) + 3b27k21k%2,
ex7 = bykiy + byskiykay + bagkiok3, + byrks,,

fij=he; (=12;j=12,---,7).

Next, by using the center manifold theorem and normal form theories, the direction of Flip
bifurcation at E, is given.

Of 10fPf (1&F (182rY
@ =\oz5 T 20002) 00 2= |5am 2w |leor

where the coefficients of @; and a, are derived from (3.6).

Theorem 3.1. If a; # 0, ay # 0, then the system undergoes Flip bifurcation at the immobile point
(No, Py), and if ay > 0(< 0), then the two-cycle point is stable (unstable).

AIMS Mathematics Volume 8, Issue 6, 13390-13410.
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For sufficiently small neighborhoods of the parameter 6 = 0, there exists a central manifold at
(0,0):

WE0,0) = { (£, 5) © unt = miTy, +mafnd ) (3.7)
Substituting (3.7) into (3.6), the solution is given as

_en_ bukj + byokiky + bysk, oo~ _ =@k + anks)
1- 2, 1- 2, ’ T 1+ 1+,

ny

Restricting the system of equations on W¢ (0, 0) , the results are as follows.

Koot = =%, + L5, + b%,0 + BE0 + 11,07 + 1553 + O ((1%,] + 16)*)

_ _ 2 2 _ _ _ _
where [} = ey = by1k{| +biokikoy +bi3ky, , L =diy = anky +anks , I3 =dom+ fii+epms , Iy =
diomy , Is = ejpm + eyy.

According to the normal form theories related to bifurcation analysis, we require the following
quantity at (x,y, ) = (0,0,0).

OFf  10fPf 183F  (12f)
“‘:(ax,,fm@ loo=htbe =g+ |G oo+l

For numerical simulations, we choose the following parameters to prove our theoretical
discussion. The unique positive equilibrium point (Ny, Py) ~ (0.89,0.0708765) of the model can be
obtained by giving the parameters 4 = 0.1, e = 0.023933614, 0 = 0.2, f = 1, m = 0.89. By choosing
the initial value of (0.9,0.07115), the result can be obtained by numerical simulation as Figure 1.

It is obvious from the diagrams that variables N and P appear as two-point solutions with a period
for a given parameter condition and gradually stabilize near the equilibrium point, which verifies Flip
bifurcation occurs at this point.

AIMS Mathematics Volume 8, Issue 6, 13390-13410.
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0.895 -
0ot
08 007
0.89
. ot >
0885 0.885
...............
0.0709 *
- o8l
Jooros
. ‘ ‘ ) i 0,875 . . . . . . . . . ,
0 20 4 60 80 1w 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
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0.07115
0.0711 1
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0.071
N .
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0.0709 | **
0.07085 F e
0.0708 [ ittt s e as s sens
0.07075 : : :
0 50 100 150 200
t
©

Figure 1. Flip bifurcation occurs at the equilibrium point (Ny, Py) ~ (0.89,0.0708765). (a)
is the comparison of the trend of variables N and P with the change over time ¢. (b) and (c)
mark the period two bifurcation cases for both variables N and P, respectively.

4. Hopf bifurcation at £,

In this section, we still choose £ as the bifurcation parameter to discuss Hopf bifurcation around
its positive equilibrium (Ny, Py). The necessary conditions for Hopf bifurcation to occur is given by

the following curve:

@m—-1-0)|1+ T+4f T —m)(m—-0)|

S ={(mn,6,f,e)eR}: h=h}= , |E| <2
2(1 =m)(m—0) \/1 +4f (1 -—m)(m—0)
where E = 2 ( il rb-2m) ) +2.
€\ 1+ \/1+4f(1=m)(m-6)
AIMS Mathematics Volume 8, Issue 6, 13390-13410.
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4.1. Existence condition of Hopf bifurcation at E,

For emergence of Hopf bifurcation around positive equilibrium (Ny, Py), two roots of the
characteristic polynomial (2.2) must be complex conjugate with unit modulus. Therefore, it is easy
(2m—9—l)(l+ \1+4 f(1—m)(m—9))
2(1-m)(m—6) \/1+4 f(1-m)(m—6)

We still consider parameter /& with a small perturbation ¢, and then characteristic equation (2.2)
can be rewritten as:

>0, i.e., O<m<00r1+9<m<1

to obtain the bifurcation parameter 4] =

L+p@)A+q) =0

where
h+0 _
p(d):—{2+( 16 ) 2m(1+na 2m)ﬂ’
. . 2
q(é):H(hﬁé) 2m(1+9—2m)]+(hi+5) m(n—l)(n—2)]
€ n € fn

The roots of the characteristic equation of J|, , , are

p(6) +i4/4q(8) — p(6) e p(6) —i4q(6) — p(©6)
2

11: 2 i 2 =
Also,
1
d |, AF(1+0-2m2 2Cm—-1-6)]"7(1+6-2m)(m-2)
Aial= g0 , ——|_=1|1- +
| ]’2| 90 do -0 [ en(n—1)(n—-2) emn ] en

where dn lzl |s_o> 0 if and only jfw > 0.

pr(O)iO,l,wehave—%iZ 3, which means 2, # 1, n=1,2,3,4.

The transversal condition at (Ny, Py) is given by

d|q ) dl, . d
a5 0= ()” o Ya ) =0
_ m(1+6-2m) [3+ 2mh; (1 + 6 — 2m) . mh; (n—1) (n - 2)
€n en €fn

If == ”9 <m < 1, we have d“" l;_o> 0. Then, Hopf bifurcation will occur at (Ny, Py).

4.2. The direction of Hopf bifurcation at E,4

Now, let

a=1+

h: [m(1+9—2m)] ﬁ_h*\/m(n—l)(n—Z) m? (1 + 0 — 2m)?
— —_—_—nm . = 1 -

€ n efn €’n?
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The invertible matrix 7 is given by

- ( g I:—Zml(/ln—l) 0 ]
a—1- h [2m(1+9—2m)] _ﬂ

€ n

( n+1):T(xn+l)
Pn+1 Yn+1
Then, the Eq (3.4) transforms to
( Xn+1 )_ (a _ﬁ)( )_Cn ) ( f()_cna.)_}n) )
= _ + _
Yn+l B Vn 8 (X, ¥n)
where

F G ¥n) = i X + LoXo 3 + LaPy + LaX, + LisX P+ LisXads + 1179,

8 (%n, 3n) = b1 X + X9 + Ia Py, + baX, + bs ki Y+ beXaTs + L,

Ly =bia® + b,d?B + o + bsaB®, 1, = —2b1aB + ba’ + Ba? — braB® — B + 2bzaB,

lis = biaf® — b,aB— af® + b3, L4 = bya* + bsaB + bea’B* + bra5°,

li5 = —3b4a/38 + bsat — 2b5a%82 + 2b6a3ﬂ - b6a/,83 + 3b7cy%82,

Lie = 3bsa B> + bsaf’ — 2bsaB + bea* — 2bga’B* + 3b7aB,

Li; = —bsa8’ + bsa’B* — bea’B + b,

Ly = biaB + byaf® — aB + b3S, 1y = —2b1af* + braB — b3 — &’ + aff* + 2bza°,

Ly = b1 — byaff> + @B + b3a°B, oy = byaB + bsa B + beaf’ + b8,

s = =3bsaB* + bsaB — 2bsa’ + 2bsa B> — beB* + 3b708°,

L = 3bsa’ + bs* — 2bsa’B* + beaB — 2bgaS’ + 3b7aB%,

by = ~byB* + bsaf® — bsa’B’ + bra B

Next, by using the center manifold theorem and normal form theories, the direction of Hopf

bifurcation at E,4 is given. According to the normal form theories related to bifurcation analysis, we
require the following quantity at (x, y,6) = (0,0, 0).

Using the following translation

=

L=-Re [%51@20] - % €111” = €0al* + Re (/_1521)
where
&0 = % [f)'w'c + fis + 285 + i(gxx — 8y~ 2f)‘cy)] , én = % [ffcfc +fi + i(g)'c)'c + gw)] ;
b = g [fee— fi #2855+ (g 55+ 2],
& = 11_6 [f)'w‘cfc + fegy + 8uww + &y + i(g;,—c; + gy — fary — fm)] ’

ffo‘c =2l , fxy =l fx;‘cx =64, fx)‘cy =25, fxyy =2l , fy> =23, fyyy = 6l7,
8w = 2l , 835 = by, gxzx = 624 , 8xxy = 25, 855 = 2l , 8yy = 2Dy, 8y = 657 .
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Theorem 4.1. If the above conditions hold, and L + 0, the Hopf bifurcation occurs at the point
(No, Po). When 6 > 0, if L < 0, then it attracts at that point; when 6 < 0, if L > 0, then it repels at that
point.

To verify whether the condition is correct, we select the following parameters for numerical
simulations and obtain the following conclusions. By selecting the first set of parameters 4 ~ 0.062163,
e=1,0=0.1, f =1, m = 0.554 , the unique positive equilibrium point (Ny, Py) =~ (0.554,0.004932)
of the model can be obtained. By choosing the initial value K; = (0.5, 0.005), the following results can
be obtained by numerical simulation.

Figure 2 reflects that variable N gradually tends to oscillate steadily at the equilibrium point N =
0.554 with the increase of the number of iterations n, while variable P also gradually oscillates steadily
with the increase of the number of iterations N, but the equilibrium point is attracted to P ~ 0.157.

04 0.05 j

03 L L L L L L L L L , L L L L L L L L L ,
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n-lteration times n-lteration times

(@) (b)

Figure 2. Hopf bifurcation occurs at the equilibrium point (Ny, Py) ~ (0.554,0.004932) .
(a) and (b) are the variations of N,P with the number of iterations n, respectively.

By choosing the second set of parameters & ~ 1.120901, ¢ = 1,6 = 0.61, f = 1, m = 0.823 the
only internal equilibrium point (Ny, Py) =~ (0.823,0.020442) of the model can be obtained. Choosing
the initial value K, = (0.8, 0.02), the following results can be obtained by numerical simulation.

Figure 3 shows that as the number of iterations n increases, eventually, the variable P will also be
attracted to stabilize at P ~ 0.035.

.015
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n-lteration times n-lteration times

(a) (b)

Figure 3. Hopf bifurcation occurs at the equilibrium point (Ny, Py) ~ (0.823,0.020442). (a)
and (b) are the variations of N,P with the number of iterations n, respectively.
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5. Chaos analysis

In this section, chaotic cases at bifurcating points are analyzed using numerical simulations. We
give maximum Lyapunov exponents and phase diagrams for different perturbation parameters to prove
our results. The chaos theory analysis of Flip bifurcation and Hopf bifurcation is given as follows.

Definition 5.1. [27] The formula for the maximum Lyapunov index is given by

n—1

1= lml 1n‘df(xn,u)
0

dx

n—oo 1

Theorem 5.1. [27] If A < O, the neighboring points eventually come together and merge into a single
point, which corresponds to stable immobile points and periodic motion. If 1 > 0, the neighboring
points eventually separate, which corresponds to local instability of the orbit generating chaotic
situations.

In the following, we choose two different equilibria to consider the Flip bifurcation with chaotic
cases. Initially, we select the parameters 7 = 0.95, ¢ = 0.1841359, 6 = 0.5, f = 1, m = 0.961, and
obviously the model comes to

1+P

{Nn+1 N, +0.95 {g7tmms [Na (1 = N)) (N, = 0.5) - = NP, |}

P, =P, +095[N,P,—0.961P,]

where the internal equilibrium point is (Ny, P;) = (0.961,0.01807).
After selecting the perturbation 6 € (0,0.2) and analyzing the trend of N with ¢ by numerical
simulation, we obtain the chaotic bifurcating cases (see Figure 4).

Next, choosing the parameters 4 = 0.95, e ~ 0.184136,0 = 0.5, f = 1, m = 0.9601, we obtain the
model

- NPy

1+P

Nyt = Ny +0.95 {5 [N (1 = N (N, - 0.5)
Py = P, +0.95[N,P, — 0.9601P,]

Obviously, the internal equilibrium point (N,, P;) = (0.9601,0.0180734). We still choose the
perturbation ¢ € (0,0.2) to analyze the trend of N with 6. The chaotic bifurcating case is obtained
(see Figure 5). By calculating the bifurcating diagrams and the maximum Lyapunov exponent for two
bifurcating points with small differences, it can be shown that the small change of the initial value
near the equilibrium point has a great influence on the stability of the initial state. Although they
are different perturbed bifurcating cases, the two cases tend to go the same during the process of ¢
gradually increasing.

In the following, we choose two different equilibria to consider Hopf bifurcation with chaotic
cases. By picking the first set of parameters 7 ~ 0.062163, ¢ = 1,6 = 0.1, f = 1, m = 0.554, the
unique internal equilibrium point (N3, P3) = (0.554,0.004932) of the model can be obtained.

After choosing perturbation ¢ € (0, 0.5), we obtain phase diagrams (see Figure 6).
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Figure 4. 6 € (0,0.2)-bifurcation diagrams at point (N, P;) = (0.961,0.01807) compared
with maximum Lyapunov exponent. (a) indication that in the range of 6 €(0,0.2), the
bifurcation diagram corresponds to the maximum Lyapunov exponent. The accuracy of
the conclusions can be seen by comparing bifurcation amplifications and the maximum
Lyapunov exponent amplifications in the same range of ¢ from (b) to (k).

AIMS Mathematics Volume 8, Issue 6, 13390-13410.



13405

-0.02 1 i

0.005 0.01 0.015 0.02

0.02

0.75
0.03 0.031 0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.04
8

(c) 6 €(0.03,0.04)

H H
§ 5
2 2
§ §
& i g
[y | N I o 4
3 | 3 ||
5 | E Il
gou I g0t l
3 3
£ | £ .0.02 |
£ 008 | g !
E | ]
08 = | = 008
-0.08 I \l
075 |l -0.04 |
.t A P PR P PR P L PP PP P J
07 -0 005
0075 0076 0077 0078 0079 008 0.081 0 0002 0.004 0006 0.008 0.01 0012 0.014 0.016 0.018 002 003 0.031 0032 0033 0034 0035 0036 0.037 0.038 0.039 0.04
§ 5 5
(d) 6 €(0.075,0.081) (e) 6 €(0,0.02) (f) 6 €(0.03,0.04)
0.06 12 12
_ oo ~
H \ v,
2
§
2 002 f
w A
= O s .
g o . I AP _
i} . 08
£ \ |/ |
£ -0.02 \ a { |
\ | o7
= 1 U S [ D DO
|/ I
004 I/ | 06
-0.06 05
0075 0076 0077 0078 0079 008 0.081 0.189 0.1895 0.19 0.1905 0.191 0.1915 0.192 0.1925 0.193 0.1935 0.194
§ 5

(g) 0 €(0.075,0.081)

(h) 6 €(0.115,0.14)

(i) 6 €(0.189,0.194)

005 - 0.08
» Al N
Y N\
4l WYV A
| 0.04 i
- 0 =
< ~ AN c I
5 \ 5
2 g |
g | g
£ S 002 |
[} w |
> 005 5
3 \ / 3 |
2 | 2
3 32 o0 |
2 |/ g -
g | S |
3 | 3
g 01 Il € |
H h g 002 \
8 k] \
= =
0.15
-0.04
02 0.06
0.115 012 0.125 0.18 0.135 014 0.189 0.1895 0.19 0.1905 0.191 0.1915 0.192 0.1925 0.193 0.1935 0.194

§ s

() 6 €(0.115,0.14) (k) 6 €(0.189,0.194)

Figure 5. ¢ €(0,0.2)-bifurcation diagrams at point (N,, P,) = (0.9601, 0.0180734) compared
with maximum Lyapunov exponent. (a) indication that in the range of 6 €(0,0.2), the
bifurcation diagram corresponds to the maximum Lyapunov exponent. The accuracy of
the conclusions can be seen by comparing bifurcation amplifications and the maximum
Lyapunov exponent amplifications in the same range of ¢ from (b) to (k).
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The analysis mentioned above shows that with the perturbation ¢ increasing, the asymptotic
stability of variable N gradually becomes weaker, and the range of periodic solutions gradually
becomes larger, but the convergence speed comes faster increases (see Figure 6).

By choosing the second set of parameters 4 ~ 1.120901,e = 1,0 = 0.61, f = 1, m = 0.823, we
can obtain the unique internal equilibrium point (N4, P4) ~ (0.823,0.020442) of the model.

After choosing perturbation ¢ € (—1, 1), we obtain phase diagrams (see Figure 7).
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(d) 6=0.5

Figure 6. Phase diagrams under different perturbations at the equilibrium point (N3, P3) =
(0.554,0.004932) . (a) indicates that N will slowly stabilize without perturbation. (b), (c) and
(d) show that the rate of convergence to stability will become faster with increasing 6. No

chaotic situations occur.
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Figure 7. Phase diagrams under different perturbations at the equilibrium point (Ny4, Py) =
(0.823,0.020442) . (a) and (b) tend to stabilize at a center point. However, (c), (d), and(e) are
stable in a orbit. No chaotic situations occur.

6. Conclusions

Our work deals with the study of local dynamical properties of a predator-prey model with
discrete time (1.2), Flip bifurcation and Hopf bifurcation associated with the periodic solution, as
well as their chaotic cases. We prove that the system (1.2) has four unique equilibria. In addition,
their stability and instability conditions are given, which mark the final equilibrium state of both
groups as fear, climate and other factors change. We focus on the unique positive equilibrium point
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E. = (m, “14 A/T+4f(1—m)(m—6)

37 ), with stability condition:

h

€

1+

m(1+6—2m) p2 | m(1=m)(m—6) \1+4 f(1-m)(m—6)
+ - 3 >0
1+ \/1+4(1-m)(m~6) [1+ N f(l—m)(m—@)]

m(l —m)(m—6) \/1+4f(1—m)(m—9)>0

1+0—2m +h 2(1—m)(m—6)\/1+4f(1—m)(r2n—0) <0
1+ \/1+4£(1-m)(m—6) [1 A/l +4f(l—m)(m—9)]

Significantly, after analyzing the formation conditions of Flip bifurcation and Hopf bifurcation at
(No, Py), we give their chaotic scenarios from both theoretical and numerical simulations. Moreover, it
is found that Flip bifurcation is more prone to chaos scenarios, and Hopf bifurcation is closely related
to periodic solutions.

Biologically, the occurrence of Flip bifurcation implies the number of predators and prey will
alternate around a value instead of converging to a fixed value, eventually. The corresponding chaotic
scenario suggests that small perturbations in the variable parameters will eventually have a significant
impact on the population, ultimately leading to chaos. The appearance of Hopf bifurcation points
indicates that the equilibrium point of the system loses its attraction and eventually produces a closed
orbit, which implies the existence of periodic oscillations of predators and prey. Therefore, we can
precisely change the biological density of predators and prey to achieve the desired goal by regulating
the number of bifurcation parameters h, for the fact that the chaotic scenario does not exist. All
the conclusions illustrate the effect of fear on populations. Finally, the accuracy of the theory is
demonstrated using the maximum Lyapunov exponent and phase diagrams.

In future work, the model can be investigated using different discrete methods. In addition, to
obtain specific biological properties, new bifurcation parameters can be selected for the study to obtain
the desired conclusions.
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