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1. Introduction

Over the past decades, owing to a broad variety of applications in engineering, sciences and
economics, the linear complementarity problem (LCP) has been an active topic in the optimization
community and has garnered a flurry of interest. The LCP is a powerful mathematical model which is
intimately related to many significant scientific problems, such as the well-known primal-dual linear
programming, bimatrix game, convex quadratic programming, American option pricing problem and
others, see e.g., [1–3] for more details. The LCP consists in determining a vector z ∈ Rn such that

z ≥ 0, v = Az + q ≥ 0 and z ⊥ v, (1.1)

where A ∈ Rn×n and q ∈ Rn are given. We hereafter abbreviate the problem (1.1) by LCP(A, q).
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The LCP(A, q) of form (1.1) together with its extensions are extensively investigated in recent
years, and designing efficient numerical algorithms to fast and economically obtain the solution
of the LCP(A, q) (1.1) is of great significance. Some numerical iterative algorithms have been
developed for solving the LCP(A, q) (1.1) over the past decades, such as the pivot algorithms [1, 2, 4],
the projected iterative methods [5–8], the multisplitting methods [9–14], the Newton-type iteration
methods [15, 16] and others, see e.g., [17–19] and the references therein. The modulus-based matrix
splitting (MMS) iteration method, which was first introduced in [20], is particularly attractive for
solving the LCP(A, q) (1.1). Based on the general variable transformation, by setting z = |x|+x

γ
and

v = Ω
γ

(|x| − x), and let A = M − N, Bai reformulated the LCP(A, q) (1.1) as the following equivalent
form [20]

(Ω + M)x = Nx + (Ω − A)|x| − γq,

where γ > 0 and Ω ∈ Rn×n is a positive diagonal matrix. Then he skillfully designed a general
framework of MMS iteration method for solving the large-scale sparse LCP(A, q) (1.1), which exhibits
the following formal formulation.

Algorithm 1.1. ( [20]) (The MMS method) Let A = M − N be a splitting of the matrix A ∈ Rn×n.
Assume that x0 ∈ Rn is an arbitrary initial guess. For k = 0, 1, 2, · · · , compute {xk+1} by solving the
linear system

(Ω + M)xk+1 = Nxk + (Ω − A)|xk| − γq,

and then set

zk+1 =
1
γ

(|xk+1| + xk+1)

until the iterative sequence {zk} is convergent. Here, Ω ∈ Rn×n is a positive diagonal matrix and γ is a
positive constant.

The MMS iteration method not only covers some presented iteration methods, such as the
nonstationary extrapolated modulus method [21] and the modified modulus method [22] as its special
cases, but also yields a series of modulus-based relaxation methods, such as the modulus-based Jacobi
(MJ), the modulus-based Gauss-Seidel (MGS), the modulus-based successive overrelaxation (MSOR)
and the modulus-based accelerated overrelaxation (MAOR) methods. Thereafter, since the promising
behaviors and elegant mathematical properties of the MMS iterative scheme, it immediately received
considerable attention and diverse versions of the MMS method occurred. For instance, Zheng and
Yin [23] established a new class of accelerated MMS (AMMS) iteration methods for solving the large-
scale sparse LCP(A, q) (1.1), and the convergence analyses of the AMMS method with the system
matrix A being a positive definite matrix or an H+-matrix were explored. In order to further accelerate
the MMS method, Zheng et al. [24] combined the relaxation strategy with the matrix splitting technique
in the modulus equation of [25] and presented a relaxation MMS (RMMS) iteration method for solving
the LCP(A, q) (1.1). The parametric selection strategies of the RMMS method were discussed in
depth [24]. In addition, the RMMS method covers the general MMS (GMMS) method [25] as a special
case. In the sequel, by extending the two-sweep iteration methods [26, 27], Wu and Li [28] developed
a general framework of two-sweep MMS (TMMS) iteration method to solve the LCP(A, q) (1.1), and
the convergences of the TMMS method were established with the system matrix A being either an
H+-matrix or a positive-definite matrix. Ren et al. [29] proposed a class of general two-sweep MMS
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(GTMMS) iteration methods to solve the LCP(A, q) (1.1) which encompasses the TMMS method by
selecting appropriate parameter matrices. Peng et al. [30] presented a relaxation two-sweep MMS
(RTMMS) iteration method for solving the LCP(A, q) (1.1) and gave its convergence theories with the
system matrix A being an H+-matrix or a positive-definite matrix. Huang et al. [31] combined the
parametric strategy, the relaxation technique and the acceleration technique to construct an accelerated
relaxation MMS (ARMMS) iteration method for solving the LCP(A, q) (1.1). The ARMMS method
can be regarded as a generalization of some existing methods, such as the MMS [20], the GMMS [25]
and the RMMS [24]. For more modulus-based matrix splitting type iteration methods, see [32–41] and
the references therein.

On the other hand, Bai and Tong [42] equivalently transformed the LCP(A, q) (1.1) into a nonlinear
equation without using variable transformation and proposed an efficient iterative algorithm by using
the matrix splittings and extrapolation acceleration techniques. Then some relaxed versions of the
method proposed in [42] were constructed by Bai and Huang [43] and the convergence theories were
established under some mild conditions. Recently, Wu and Li [44] recasted the LCP(A, q) (1.1) into an
implicit fixed-point equation

(Ω + M)z = Nz + |(A −Ω)z + q| − q, (1.2)

where A = M − N. In fact, if M = A and Ω = I, then (1.2) reduces to the fixed-point equation
proposed in [42]. Based on (1.2), the new MMS (NMMS) method for solving the LCP(A, q) (1.1) was
constructed in [44].

Algorithm 1.2. ([44]) (The NMMS method) Let A = M−N be a splitting of the matrix A ∈ Rn×n and
the matrix Ω + M be nonsingular, where Ω ∈ Rn×n is a positive diagonal matrix. Given a nonnegative
initial vector z0 ∈ Rn, for k = 0, 1, 2, · · · until the iteration sequence {zk} is convergent, compute
zk+1 ∈ Rn by solving the linear system

(Ω + M)zk+1 = Nzk + |(A −Ω)zk + q| − q.

It is obvious that the NMMS method does not need any variable transformations, which is different
from the above mentioned MMS type iteration methods. However, the NMMS method still inherits the
merits of the MMS type iteration methods and some relaxation versions of it are studied.

Remark 1.1. Let A = DA − LA − UA, where DA, −LA and −UA are the diagonal, strictly lower-
triangular and strictly upper-triangular parts of A, respectively. It has been mentioned in [44] that the
Algorithm 1.2 can reduce to the following methods.

(i) If M = A, Ω = I and N = 0, then the Algorithm 1.2 becomes the new modulus method:

(I + A)zk+1 = |(A − I)zk + q| − q.

(ii) If M = A, N = 0 and Ω = αI, then Algorithm 1.2 turns into the new modified modulus iteration
method:

(αI + A)zk+1 = |(A − αI)zk + q| − q.

(iii) Let M = 1
α
(DA − βLA) and N = 1

α
((1 − α)DA + (α − β)LA + αUA), then Algorithm 1.2 reduces to

the new MAOR iteration method:

(αΩ + DA − βLA)zk+1 = [(1 − α)DA + (α − β)LA + αUA]zk + α(|(A −Ω)zk + q| − q). (1.3)
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Evidently, based on (1.3), when (α, β) is equal to (α, α), (1, 1) and (1, 0), respectively, we can obtain the
new MSOR (NMSOR), the new MGS (NMGS) and the new MJ (NMJ) iteration methods, respectively.

The goal of this paper is to further improve the computing efficiency of the Algorithm 1.2 for
solving the LCP(A, q) (1.1). To this end, we utilize the two-sweep matrix splitting iteration technique
in [28, 29] and the relaxation technique, and construct a new class of relaxed acceleration two-sweep
MMS (NRATMMS) iteration method for solving the LCP(A, q) (1.1). Convergence analysis of the
NRATMMS iteration method is studied in detail. By choosing suitable parameter matrices, the
NRATMMS iteration method can generate some relaxation versions. Numerical results are reported to
demonstrate the efficiency of the NRATMMS iteration method.

The remainder of this paper is organized as follows. In Section 2, we present some notations and
definitions used hereinafter. Section 3 is devoted to establishing the NRATMMS iteration method for
solving the LCP(A, q) (1.1) and the global linear convergence of the proposed method is explored.
Section 4 reports the numerical results. Finally, some concluding remarks are given in Section 5.

2. Preliminaries

In this section, we collect some notations, classical definitions and some auxiliary results which lay
the foundation of our developments.
Rn×n denotes the set of all n × n real matrices and Rn = Rn×1. I is the identity matrix with suitable

dimension. |·| denotes absolute value for real scalar or modulus for complex scalar. For x ∈ Rn, xi refers
to its i-th entry, |x| = (|x1|, |x2|, · · · , |xn|) ∈ Rn represents the componentwise absolute value of a vector
x. tridiag(a, b, c) denotes a tridiagonal matrix that has a, b, c as the subdiagonal, main diagonal and
superdiagonal entries in the matrix, respectively. Tridiag(A, B,C) denotes a block tridiagonal matrix
that has A, B, C as the subdiagonal, main diagonal and superdiagonal block entries in the matrix,
respectively.

Let two matrices P = (pi j) ∈ Rm×n and Q = (qi j) ∈ Rm×n, we write P ≥ Q (P > Q) if pi j ≥

qi j (pi j > qi j) holds for any i and j. For A = (ai j) ∈ Rm×n, A⊤ and |A| represent the transpose of A and
the absolute value of A (|A| = (|ai j|) ∈ Rm×n), respectively. For A = (ai j) ∈ Rn×n, ρ(A) represents its
spectral radius. Moreover, the comparison matrix ⟨A⟩ is defined by

⟨ai j⟩ =

{
|ai j|, if i = j,
−|ai j|, if i , j,

i, j = 1, 2, · · · , n.

A matrix A ∈ Rn×n is called a Z-matrix if all of its off-diagonal entries are nonpositive, and it is a P-
matrix if all of its principal minors are positive; we call a real matrix as an M-matrix if it is a Z-matrix
with A−1 ≥ 0, and it is called an H-matrix if its comparison matrix ⟨A⟩ is an M-matrix. In particular,
an H-matrix with positive diagonals is called an H+-matrix [9]. In addition, a sufficient condition for
the matrix A to be a P-matrix is that A is an H+-matrix. A ∈ Rn×n is called a strictly diagonal dominant
matrix if |aii| >

∑
j,i
|ai j| for all 1 ≤ i ≤ n.

Let M be nonsingular, then A = M − N is called an M-splitting if M is an M-matrix and N ≥ 0, an
H-splitting if ⟨M⟩ − |N | is an M-matrix and an H-compatible splitting if ⟨A⟩ = ⟨M⟩ − |N | [45]. Finally,
the following lemmas are needed in the convergence analysis of the proposed method.
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Lemma 1. ( [46]) Let A ∈ Rn×n be an H+-matrix, then the LCP(A, q) (1.1) has a unique solution for
any q ∈ Rn.

Lemma 2. ([47]) Let B ∈ Rn×n be a strictly diagonal dominant matrix. Then for all C ∈ Rn×n,

∥B−1C∥∞ ≤ max
1≤i≤n

(|C|e)i

(⟨B⟩e)i

holds, where e = (1, 1, · · · , 1)⊤.

Lemma 3. ([48]) Let A be an H-matrix, then |A−1| ≤ ⟨A⟩−1.

Lemma 4. ( [49]) If A is an M-matrix, there exists a positive diagonal matrix V such that AV is a
strictly diagonal dominant matrix with positive diagonal entries.

Lemma 5. ([49]) Let A, B be two Z-matrices, A be an M-matrix, and B ≥ A. Then B is an M-matrix.

Lemma 6. ([26]) Let

A =
(
B C
I 0

)
≥ 0 and ρ(B +C) < 1,

then ρ(A) < 1.

Lemma 7. ( [45]) If A = M − N is an M-splitting of A, then ρ(M−1N) < 1 if and only if A is an
M-matrix.

3. The method and convergence

In this section, the NRATMMS iteration method for solving the LCP(A, q) (1.1) is developed, and
the general convergence analysis of the NRATMMS iteration method will be explored.

Let A = M1−N1 = M2−N2 be two splittings of A andΩ = Ω1−Ω2 = Ω3−Ω4 withΩi (i = 1, 2, 3, 4)
being all nonnegative diagonal matrices, then (1.2) can be reformulated to the following fixed point
format:

(Ω1 + M1)z = (N1 + Ω2) [θz + (1 − θ)z] + |(M2 −Ω3)z + (Ω4 − N2)z + q| − q, (3.1)

where θ ≥ 0 is a relaxation parameter. Based on (3.1), the NRATMMS iteration method is established
as in the following Algorithm 3.1.

Algorithm 3.1. (The NRATMMS iteration method) Let A = M1 − N1 = M2 − N2 be two splittings
of A and Ω = Ω1 − Ω2 = Ω3 − Ω4 with Ωi (i = 1, 2, 3, 4) being all nonnegative diagonal matrices
such that M1 + Ω1 is nonsingular. Given two initial guesses z0, z1 ∈ Rn and a nonnegative relaxation
parameter θ, the iteration sequence {zk} is generated by

(Ω1 + M1)zk+1 = (N1 + Ω2)
[
θzk + (1 − θ)zk−1

]
+

∣∣∣(M2 −Ω3)zk + (Ω4 − N2)zk−1 + q
∣∣∣ − q (3.2)

for k = 1, 2, · · · until convergence.

The Algorithm 3.1 provides a general framework of NMMS iteration methods for solving the
LCP(A, q) (1.1), and it can yield a series of NMMS type iteration methods with suitable choices of
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the matrix splittings and the relaxation parameter. For instance, when θ = 1 and Ωi = 0 (i = 1, 2, 3, 4),
the Algorithm 3.1 reduces to the new accelerated two-sweep MMS (NATMMS) iteration method

M1zk+1 = N1zk +
∣∣∣M2zk − N2zk−1 + q

∣∣∣ − q.

When θ = 1, Ω1 = Ω3 = Ω, Ω2 = Ω4 = 0, M2 = A and N2 = 0, the Algorithm 3.1 reduces to the
Algorithm 1.2. When M1 =

1
α
(DA − βLA), N1 =

1
α
[(1 − α)DA + (α − β)LA + αUA], M2 = DA − UA,

N2 = LA with α, β > 0, the Algorithm 3.1 gives the new relaxed acceleration two-sweep MAOR
(NRATMAOR) iteration method. If (α, β) is equal to (α, α), (1, 1), and (1, 0), the NRATMAOR
iteration method reduces to the new relaxed acceleration two-sweep MSOR (NRATMSOR) iteration
method, the new relaxed acceleration two-sweep MGS (NRATMGS) iteration method and the new
relaxed acceleration two-sweep MJ (NRATMJ) iteration method, respectively.

The convergence analysis for Algorithm 3.1 is investigated with the system matrix A of the
LCP(A, q) (1.1) being an H+-matrix.

Lemma 8. Assume that A ∈ Rn×n is an H+-matrix. Let A = M1−N1 and A = M2−N2 be an H-splitting
and a general splitting of A, respectively, and Ωi (i = 1, 2, 3, 4) be four nonnegative diagonal matrices
such that M1 + Ω1 is nonsingular. Denote

L̃ = (Ω1 + ⟨M1⟩)−1 [(θ + |1 − θ|)|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|] ,

then the iteration sequence {zk} generated by the Algorithm 3.1 converges to the unique solution z∗ for
arbitrary two initial vectors if ρ(L̃) < 1.

Proof. Let z∗ be the exact solution of the LCP(A, q) (1.1), then it satisfies

(Ω1 + M1)z∗ = (N1 + Ω2) [θz∗ + (1 − θ)z∗] + |(M2 −Ω3)z∗ + (Ω4 − N2)z∗ + q| − q. (3.3)

Subtracting (3.3) from (3.2), we have

|zk+1 − z∗| = |(Ω1 + M1)−1(N1 + Ω2)[θ(zk − z∗) + (1 − θ)(zk−1 − z∗)]
+ (Ω1 + M1)−1|(M2 −Ω3)zk + (Ω4 − N2)zk−1 + q|

− (Ω1 + M1)−1|(M2 −Ω3)z∗ + (Ω4 − N2)z∗ + q||

≤ |(Ω1 + M1)−1||N1 + Ω2||θ(zk − z∗) + (1 − θ)(zk−1 − z∗)|

+ |(Ω1 + M1)−1|
∣∣∣|(M2 −Ω3)zk + (Ω4 − N2)zk−1 + q|

− |(M2 −Ω3)z∗ + (Ω4 − N2)z∗ + q|
∣∣∣

≤ |(Ω1 + M1)−1||N1 + Ω2|[θ|zk − z∗| + |1 − θ||zk−1 − z∗|]
+ |(Ω1 + M1)−1||(M2 −Ω3)(zk − z∗) + (Ω4 − N2)(zk−1 − z∗)|

≤ |(Ω1 + M1)−1||N1 + Ω2|[θ|zk − z∗| + |1 − θ||zk−1 − z∗|]
+ |(Ω1 + M1)−1|[|M2 −Ω3||zk − z∗| + |Ω4 − N2||zk−1 − z∗|]

= |(Ω1 + M1)−1|[θ|N1 + Ω2| + |M2 −Ω3|]|zk − z∗|

+ |(Ω1 + M1)−1|[|1 − θ||N1 + Ω2| + |Ω4 − N2|]|zk−1 − z∗|.

For simplicity, let
F = |(Ω1 + M1)−1|[θ|N1 + Ω2| + |M2 −Ω3|], (3.4)
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and
G = |(Ω1 + M1)−1|[|1 − θ||N1 + Ω2| + |Ω4 − N2|]. (3.5)

Then we have ∣∣∣∣∣∣
(
zk+1 − z∗

zk − z∗

)∣∣∣∣∣∣ ≤
(
F G
I 0

) ∣∣∣∣∣∣
(

zk − z∗

zk−1 − z∗

)∣∣∣∣∣∣ .
Let

L =

(
F G
I 0

)
,

then the iteration sequence {zk} converges to the unique solution z∗ if ρ(L) < 1. SinceL ≥ 0, according
to Lemma 6, ρ(F + G) < 1 implies ρ(L) < 1. To prove the convergence of the Algorithm 3.1, it is
sufficient to prove ρ(F +G) < 1.

Under the conditions that A is an H+-matrix and A = M1−N1 is an H-splitting of A, i.e., ⟨M1⟩− |N1|

is an M-matrix, then by Lemma 5, ⟨M1⟩ ≥ ⟨M1⟩ − |N1| implies that M1 is an H-matrix, and Ω1 + M1 is
also an H-matrix. In the light of Lemma 3, it follows that

0 ≤ |(Ω1 + M1)−1| ≤ (Ω1 + ⟨M1⟩)−1.

Recall (3.4) and (3.5), we obtain

F +G = |(Ω1 + M1)−1|[(θ + |1 − θ|)|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|],

which yields that

0 ≤ F +G ≤ (Ω1 + ⟨M1⟩)−1[(θ + |1 − θ|)|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|] := L̃.

As a consequence, based on the monotone property of the spectral radius, the iteration sequence {zk}

generated by Algorithm 3.1 converges to the unique solution z∗ of the LCP(A, q) (1.1) if ρ(L̃) < 1. The
proof is completed. □

Theorem 3.1. Assume that A ∈ Rn×n is an H+-matrix. Let A = M1 − N1 be an H-compatible splitting
and A = M2 − N2 be an M-splitting of A, and Ωi (i = 1, 2, 3, 4) be four nonnegative diagonal matrices
such that M1 + Ω1 is nonsingular. Denote

L̃ = (Ω1 + ⟨M1⟩)−1[(θ + |1 − θ|)|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|],

then the iteration sequence {zk} generated by the Algorithm 3.1 converges to the unique solution z∗ of
the LCP(A, q) (1.1) for arbitrary two initial vectors if one of the following two conditions holds.

(i) 0 < θ ≤ 1 and Ωi (i = 1, 2, 3, 4) satisfy⟨A⟩Ve > Ω4Ve, if Ω3 ≥ DM2 ,

(⟨A⟩ + Ω)Ve > DM2Ve, if Ω3 < DM2 .
(3.6)

(ii) θ > 1 and Ωi (i = 1, 2, 3, 4) satisfyθ < 1 + min
1≤i≤n

[(⟨A⟩−Ω4)Ve]i
[(|N1 |+Ω2)Ve]i

and [(⟨A⟩−Ω4)Ve]i
[(|N1 |+Ω2)Ve]i

> 0, if Ω3 ≥ DM2 ,

θ < 1 + min
1≤i≤n

[(⟨A⟩+Ω−DM2 )Ve]i

[(|N1 |+Ω2)Ve]i
and

[(⟨A⟩+Ω−DM2 )Ve]i

[(|N1 |+Ω2)Ve]i
> 0, if Ω3 < DM2 .

(3.7)
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Here, Ω = Ω1 − Ω2 = Ω3 − Ω4 and V is an arbitrary positive diagonal matrix such that (Ω1 + ⟨M1⟩)V
is a strictly diagonal dominant matrix.

Proof. According to Lemma 8, we only need to demonstrate ρ(L̃) < 1. Then, on the basis of Lemma 2
and Lemma 4, it follows that

ρ(L̃) =ρ(V−1L̃V) ≤ ||V−1L̃V ||∞
=||[(Ω1 + ⟨M1⟩)V]−1[(θ + |1 − θ|)|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|]V ||∞

≤max
1≤i≤n

{[(θ + |1 − θ|)|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|]Ve}i
[(Ω1 + ⟨M1⟩)Ve]i

.

When 0 < θ ≤ 1, it holds that

ρ(L̃) ≤ max
1≤i≤n

{[|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|]Ve}i
[(Ω1 + ⟨M1⟩)Ve]i

. (3.8)

Since A = M2 − N2 is an M-splitting of A, M2 is an M-matrix. Let M2 = DM2 − BM2 be a splitting of
M2, where DM2 is the positive diagonal matrix of M2.

If Ω3 ≥ DM2 , it can be concluded that

(Ω1 + ⟨M1⟩)Ve − [|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|]Ve

= (Ω1 + ⟨M1⟩ − |N1 + Ω2| − |Ω3 − M2| − |Ω4 − N2|)Ve

= (Ω1 + ⟨M1⟩ − |N1 + Ω2| − |Ω3 − DM2 + BM2 | − |Ω4 − N2|)Ve

≥ (Ω1 + ⟨M1⟩ − |N1 + Ω2| − |Ω3 − DM2 | − |BM2 | − |Ω4 − N2|)Ve

≥ (Ω1 + ⟨M1⟩ − |N1| −Ω2 −Ω3 + DM2 − |BM2 | −Ω4 − |N2|)Ve

= (Ω1 + ⟨M1⟩ − |N1| −Ω2 −Ω3 + ⟨M2⟩ −Ω4 − |N2|)Ve

= (2⟨A⟩ + Ω1 −Ω2 −Ω3 −Ω4)Ve

= (2⟨A⟩ − 2Ω4)Ve. (3.9)

If Ω3 < DM2 , we get

(Ω1 + ⟨M1⟩)Ve − [|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|]Ve

= (Ω1 + ⟨M1⟩ − |N1 + Ω2| − |M2 −Ω3| − |Ω4 − N2|)Ve

= (Ω1 + ⟨M1⟩ − |N1 + Ω2| − |DM2 −Ω3 − BM2 | − |Ω4 − N2|)Ve

≥ (Ω1 + ⟨M1⟩ − |N1 + Ω2| − |DM2 −Ω3| − |BM2 | − |Ω4 − N2|)Ve

≥ (Ω1 + ⟨M1⟩ − |N1| −Ω2 + Ω3 − 2DM2 + DM2 − |BM2 | −Ω4 − |N2|)Ve

= (Ω1 + ⟨M1⟩ − |N1| −Ω2 + Ω3 − 2DM2 + ⟨M2⟩ −Ω4 − |N2|)Ve

= (2⟨A⟩ − 2DM2 + Ω1 −Ω2 + Ω3 −Ω4)Ve

= (2⟨A⟩ − 2DM2 + 2Ω)Ve. (3.10)

According to (3.8), (3.9) and (3.10), we have ρ(L̃) < 1 if (3.6) holds.
When θ > 1, it follows that

ρ(L̃) ≤ max
1≤i≤n

{[(2θ − 1)|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|]Ve}i
[(Ω1 + ⟨M1⟩)Ve]i

. (3.11)
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If Ω3 ≥ DM2 , it can be derived that

(Ω1 + ⟨M1⟩)Ve − [(2θ − 1)|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|]Ve

= (Ω1 + ⟨M1⟩ − (2θ − 1)|N1 + Ω2| − |Ω3 − M2| − |Ω4 − N2|)Ve

= (Ω1 + ⟨M1⟩ − (2θ − 1)|N1 + Ω2| − |Ω3 − DM2 + BM2 | − |Ω4 − N2|)Ve

≥ (Ω1 + ⟨M1⟩ − (2θ − 1)|N1| − (2θ − 1)Ω2 − |Ω3 − DM2 | − |BM2 | −Ω4 − |N2|)Ve

= (Ω1 + ⟨M1⟩ − (2θ − 1)|N1| − (2θ − 1)Ω2 −Ω3 + DM2 − |BM2 | −Ω4 − |N2|)Ve

= (Ω1 + ⟨M1⟩ − |N1| − 2(θ − 1)|N1| − 2(θ − 1)Ω2 −Ω2 −Ω3 + ⟨M2⟩ −Ω4 − |N2|)Ve

= (2⟨A⟩ − 2Ω4 − 2(θ − 1)(|N1| + Ω2))Ve,

from which we have
[2⟨A⟩ − 2Ω4 − 2(θ − 1)(|N1| + Ω2)]Ve > 0 (3.12)

provided that 1 < θ < min
1≤i≤n

1 + [(⟨A⟩−Ω4)Ve]i
[(|N1 |+Ω2)Ve]i

and [(⟨A⟩−Ω4)Ve]i
[(|N1 |+Ω2)Ve]i

> 0 (i = 1, 2, · · · , n).

If Ω3 < DM2 , it is implied that

(Ω1 + ⟨M1⟩)Ve − [(2θ − 1)|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|]Ve

= (Ω1 + ⟨M1⟩ − (2θ − 1)|N1 + Ω2| − |M2 −Ω3| − |Ω4 − N2|)Ve

= (Ω1 + ⟨M1⟩ − (2θ − 1)|N1 + Ω2| − |DM2 −Ω3 − BM2 | − |Ω4 − N2|)Ve

≥ (Ω1 + ⟨M1⟩ − (2θ − 1)|N1| − (2θ − 1)Ω2 − |DM2 −Ω3| − |BM2 | −Ω4 − |N2|)Ve

= (Ω1 + ⟨M1⟩ − (2θ − 1)|N1| − (2θ − 1)Ω2 − DM2 + Ω3 − |BM2 | −Ω4 − |N2|)Ve

= (Ω1 + ⟨M1⟩ − |N1| − 2(θ − 1)|N1| − 2(θ − 1)Ω2 − 2DM2 −Ω2 + Ω3 + ⟨M2⟩ −Ω4 − |N2|)Ve

= (2⟨A⟩ + 2Ω − 2DM2 − 2(θ − 1)(|N1| + Ω2))Ve,

from which we have
[2⟨A⟩ + 2Ω − 2DM2 − 2(θ − 1)(|N1| + Ω2)]Ve > 0 (3.13)

provided that 1 < θ < min
1≤i≤n

1 + [(⟨A⟩+Ω−DM2 )Ve]i

[(|N1 |+Ω2)Ve]i
and [(⟨A⟩+Ω−DM2 )Ve]i

[(|N1 |+Ω2)Ve]i
> 0 (i = 1, 2, · · · , n).

According to (3.11), (3.12) and (3.13), we have ρ(L̃) < 1 if (3.7) holds. □

Theorem 3.2. Assume that A ∈ Rn×n is an H+-matrix. Let ϱ � ρ(D−1
A |BA|). Assume that the choices

of the four nonnegative diagonal matrices Ωi (i = 1, 2, 3, 4) and the three positive parameters α, β, θ
such that M1 +Ω1 is nonsingular and either Ω3 ≤ DA ≤ min{2Ω, 2Ω− 2(θ − 1)Ω2} or max{2Ω4, 2Ω4 +

2(θ − 1)Ω2} ≤ DA < Ω3. Then the NRATMAOR iteration method is convergent for arbitrary two initial
vectors if one of the following eight conditions holds:

(i) 0 < θ ≤ 1, 0 < α ≤ 1, 0 < β ≤ α, ϱ < 1
2 ;

(ii) 0 < θ ≤ 1, 1 < α < 2, 0 < β ≤ α, ϱ < 2−α
2α ;

(iii) 0 < θ ≤ 1, 0 < α ≤ 1, 0 < α ≤ β, ϱ < α
2β ;

(iv) 0 < θ ≤ 1, 1 < α < 2, 0 < α ≤ β, ϱ < 2−α
2β ;

(v) 1 < θ < 2−α
2αϱ−2α+2 ,

2(θ−1)
2θ−1 < α ≤ 1, 0 < β ≤ α, ϱ < 1

2 ;
(vi) 1 < θ < α

2αϱ+2α−2 , 1 < α <
2θ

2θ−1 , 0 < β ≤ α, ϱ <
2−α
2α ;

(vii) 1 < θ < 2−α
2βϱ−2α+2 ,

2(θ−1)
2θ−1 < α ≤ 1, 0 < α ≤ β, ϱ < α

2β ;
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(viii) 1 < θ < α
2βϱ+2α−2 , 1 < α <

2θ
2θ−1 , 0 < α ≤ β, ϱ <

2−α
2β .

Proof. For the NRATMAOR iteration method, we have A = M1 − N1 = M2 − N2 with

M1 =
1
α

(DA − βLA), N1 =
1
α

[
(1 − α)DA + (α − β)LA + αUA

]
(3.14)

and
M2 = DA − UA, N2 = LA,

where α, β > 0 are parameters. In order to use the result of Lemma 8, we need A = M1 − N1 to be an
H-splitting of A. Since A is an H+-matrix, we have DA > 0. It follows from (3.14) that

⟨M1⟩ − |N1| =

〈
1
α

(DA − βLA)
〉
−

∣∣∣∣∣1α [(1 − α)DA + (α − β)LA + αUA]
∣∣∣∣∣

=
1
α

(DA − β|LA|) −
1
α
|[(1 − α)DA + (α − β)LA + αUA]|

=
1
α

DA −
β

α
|LA| −

|1 − α|
α

DA −
|α − β|

α
|LA| − |UA|

=
1 − |1 − α|
α

DA −
β + |α − β|

α
|LA| − |UA| � S

If 0 < β ≤ α, then

S =
1 − |1 − α|
α

DA − |LA| − |UA| =
1 − |1 − α|
α

DA − |BA|,

and it follows from Lemma 7 that S is an M-matrix if

1 − |1 − α| > 0 and ϱ <
1 − |1 − α|
α

,

which is satisfied if
0 < α ≤ 1 and ϱ < 1

or
1 < α < 2 and ϱ <

2 − α
α
.

If 0 < α ≤ β, then

S ≥
1 − |1 − α|
α

DA −
2β
α
|LA| − |UA| ≥

1 − |1 − α|
α

DA −
2β
α
|BA| � S̄ . (3.15)

It follows from Lemma 7 that S̄ is an M-matrix if

1 − |1 − α| > 0 and ϱ <
1 − |1 − α|

2β
,

which is satisfied if
0 < α ≤ 1 and ϱ <

α

2β
(3.16)
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or
1 < α < 2 and ϱ <

2 − α
2β
. (3.17)

In this case, since S is a Z-matrix, it follows from Lemma 5 and (3.15) that S is an M-matrix if (3.16)
or (3.17) holds.

In conclusion, A = M1 − N1 is an H-splitting of A (or, equivalently, S is an M-matrix) if one of the
following four conditions holds:

0 < α ≤ 1, 0 < β ≤ α, ϱ < 1, (3.18)

1 < α < 2, 0 < β ≤ α, ϱ <
2 − α
α
, (3.19)

0 < α ≤ 1, 0 < α ≤ β, ϱ <
α

2β
(3.20)

or
1 < α < 2, 0 < α ≤ β, ϱ <

2 − α
2β
. (3.21)

In the following, let Â = M̂−N̂ with M̂ = Ω1+⟨M1⟩ and N̂ = (θ+|1−θ|)|N1+Ω2|+|M2−Ω3|+|Ω4−N2|,
then L̃ = M̂−1N̂. In order to prove the convergence of the NRATMAOR iteration method, based on
Lemma 8, it suffices to prove ρ(L̃) < 1 provided that A = M1 − N1 is an H-splitting of A.

Since

M̂ = Ω1 +

〈
1
α

(DA − βLA)
〉
= Ω1 +

1
α

(DA − β|LA|)

is a lower triangular matrix with positive diagonal entries and non-positive off-diagonal entries, it is an
M-matrix. In addition, N̂ ≥ 0. According to Lemma 7, Â is an M-matrix implies ρ(L̃) < 1. Thus, we
will prove that the Z-matrix Â is an M-matrix in the following.

Case I: 0 < θ ≤ 1. In this case, we have

N̂ =|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|

=

∣∣∣∣∣1α [(1 − α)DA + (α − β)LA + αUA] + Ω2

∣∣∣∣∣ + |DA −Ω3 − UA| + |Ω4 − LA|

≤
|1 − α|
α

DA +
α + |α − β|

α
|LA| + 2|UA| + Ω2 + Ω4 + |DA −Ω3| � P̃,

from which we have

Â =M̂ − N̂ ≥ M̂ − P̃

=Ω1 +
1
α

(DA − β|LA|) −
|1 − α|
α

DA −
α + |α − β|

α
|LA| − 2|UA| −Ω2 −Ω4 − |DA −Ω3|

= (Ω3 − 2Ω4 − |DA −Ω3|) +
1 − |1 − α|
α

DA −
α + β + |α − β|

α
|LA| − 2|UA|. (3.22)

It can be easy to prove that the first term of (3.22) is nonnegative if

Ω3 ≤ DA ≤ 2Ω (3.23)
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or
2Ω4 ≤ DA < Ω3. (3.24)

Then it follows from (3.22) that

Â ≥
1 − |1 − α|
α

DA −
α + β + |α − β|

α
|LA| − 2|UA|. (3.25)

(i) If 0 < β ≤ α, then it can be deduced from (3.25) that

Â ≥
1 − |1 − α|
α

DA − 2|LA| − 2|UA| =
1 − |1 − α|
α

DA − 2|BA| � T,

from which and Lemma 5, we obtain that Â is an M-matrix whenever T is. It follows from
Lemma 7 that T is an M-matrix if

1 − |1 − α| > 0 and ϱ <
1 − |1 − α|

2α
,

which is satisfied if
0 < α ≤ 1 and ϱ <

1
2

or
1 < α < 2 and ϱ <

2 − α
2α
.

(ii) If 0 < α ≤ β, it can be deduced from (3.25) that

Â ≥
1 − |1 − α|
α

DA −
2β
α
|LA| − 2|UA|

≥
1 − |1 − α|
α

DA −
2β
α
|BA| = S̄ ,

which is an M-matrix if (3.16) or (3.17) holds.

In Case I, it can be concluded from (i) and (ii) that Â is an M-matrix if one of the following four
conditions holds:

0 < θ ≤ 1, 0 < α ≤ 1, 0 < β ≤ α, ϱ <
1
2
, (3.26)

0 < θ ≤ 1, 1 < α < 2, 0 < β ≤ α, ϱ <
2 − α

2α
, (3.27)

0 < θ ≤ 1, , 0 < α ≤ 1, 0 < α ≤ β, ϱ <
α

2β
(3.28)

or
0 < θ ≤ 1, 1 < α < 2, 0 < α ≤ β, ϱ <

2 − α
2β
. (3.29)

Case II: θ > 1. In this case, we have

N̂ =(2θ − 1)|N1 + Ω2| + |M2 −Ω3| + |Ω4 − N2|

=(2θ − 1)|
1
α

[(1 − α)DA + (α − β)LA + αUA] + Ω2| + |DA −Ω3 − UA| + |Ω4 − LA|
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≤
(2θ − 1)|1 − α|

α
DA +

α + (2θ − 1)|α − β|
α

|LA| + 2θ|UA| + (2θ − 1)Ω2 + Ω4 + |DA −Ω3| � Ñ,

from which we obtain

Â =M̂ − N̂ ≥ M̂ − Ñ

=Ω1 +
1
α

(DA − β|LA|) −
(2θ − 1)|1 − α|

α
DA −

α + (2θ − 1)|α − β|
α

|LA|

− 2θ|UA| − (2θ − 1)Ω2 −Ω4 − |DA −Ω3|

=(Ω3 − 2Ω4 − 2(θ − 1)Ω2 − |DA −Ω3|)

+
1 − (2θ − 1)|1 − α|

α
DA −

α + β + (2θ − 1)|α − β|
α

|LA| − 2θ|UA|. (3.30)

The first term of (3.30) is nonnegative if

Ω3 ≤ DA ≤ 2Ω − 2(θ − 1)Ω2 < 2Ω (3.31)

or
2Ω4 ≤ 2Ω4 + 2(θ − 1)Ω2 ≤ DA < Ω3. (3.32)

Then it follows from (3.30) that

Â ≥
1 − (2θ − 1)|1 − α|

α
DA −

α + β + (2θ − 1)|α − β|
α

|LA| − 2θ|UA|. (3.33)

(a) If 0 < β ≤ α, then it follows from (3.33) that

Â ≥
1 − (2θ − 1)|1 − α|

α
DA − 2θ|BA| � R,

from which and Lemma 5, we find that Â is an M-matrix whenever R is. It follows from
Lemma 7 that R is an M-matrix if

1 − (2θ − 1)|1 − α| > 0 and ϱ <
1 − (2θ − 1)|1 − α|

2θα
,

which is satisfied if

2(θ − 1)
2θ − 1

< α ≤ 1, 1 < θ <
2 − α

2αϱ − 2α + 2
, ϱ <

1
2

or
1 < α <

2θ
2θ − 1

, 1 < θ <
α

2αϱ + 2α − 2
, ϱ <

2 − α
2α
.

(b) If 0 < α ≤ β, then

Â ≥
1 − (2θ − 1)|1 − α|

α
DA −

2θβ − 2α(θ − 1)
α

|LA| − 2θ|UA|

=
1 − (2θ − 1)|1 − α|

α
DA −

(
2θβ
α
|LA| + 2θ|UA|

)
+ 2(θ − 1)|LA|
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≥
1 − (2θ − 1)|1 − α|

α
DA − 2θ

(
β

α
|LA| + |UA|

)
≥

1 − (2θ − 1)|1 − α|
α

DA −
2θβ
α
|BA| � R̃,

from which and Lemma 5, we find that Â is an M-matrix whenever R̃ is. It follows from
Lemma 7 that R̃ is an M-matrix if

1 − (2θ − 1)|1 − α| > 0 and ϱ <
1 − (2θ − 1)|1 − α|

2θβ
,

which is satisfied if

2(θ − 1)
2θ − 1

< α ≤ 1, 1 < θ <
2 − α

2βϱ − 2α + 2
, ϱ <

α

2β

or
1 < α <

2θ
2θ − 1

, 1 < θ <
α

2βϱ + 2α − 2
, ϱ <

2 − α
2β
.

In Case II, it can be concluded from (a) and (b) that Â is an M-matrix if one of the following four
conditions holds:

θ > 1,
2(θ − 1)
2θ − 1

< α ≤ 1, 0 < β ≤ α, 1 < θ <
2 − α

2αϱ − 2α + 2
, ϱ <

1
2
, (3.34)

θ > 1, 1 < α <
2θ

2θ − 1
, 0 < β ≤ α, 1 < θ <

α

2αϱ + 2α − 2
, ϱ <

2 − α
2α
, (3.35)

θ > 1,
2(θ − 1)
2θ − 1

< α ≤ 1, 0 < α ≤ β, 1 < θ <
2 − α

2βϱ − 2α + 2
, ϱ <

α

2β
(3.36)

or

θ > 1, 1 < α <
2θ

2θ − 1
, 0 < α ≤ β, 1 < θ <

α

2βϱ + 2α − 2
, ϱ <

2 − α
2β
. (3.37)

The proof is completed by combining (3.18)–(3.21), (3.23), (3.24), (3.26)–(3.29), (3.31), (3.32) and
(3.34)–(3.37). □

4. Numerical results

In this section, three numerical examples are performed to validate the effectiveness of the
NRATMMS iteration method.

All test problems are conducted in MATLAB R2016a on a personal computer with 1.19 GHz central
processing unit (Intel (R) Core (TM) i5-1035U), 8.00 GB memory and Windows 10 operating system.
In the numerical results, we report the number of iteration steps (denoted by “IT”), the elapsed CPU
time in seconds (denoted as “CPU”) and the norm of the absolute residual vector (denoted by “RES”).
Here, RES is defined by

RES(zk) �
∥∥∥min{Azk + q, zk}

∥∥∥
2
.

As [44], the following three examples are used.
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Example 4.1. ([20]) Consider the LCP(A, q), where the matrix A = Â + µIm2(µ ≥ 0) with

Â = Tridiag(−Im, S m,−Im) ∈ Rm2×m2
, S m = tridiag(−1, 4,−1) ∈ Rm×m,

and q = −Az∗ ∈ Rm2
with z∗ = (1, 2, 1, 2, · · · , 1, 2, · · · )⊤ being the unique solution of the

LCP(A, q) (1.1).

Example 4.2. ([20]) Consider the LCP(A, q), where the matrix A = Â + µIm2(µ ≥ 0) with

Â = Tridiag(−1.5Im, S m,−0.5Im) ∈ Rm2×m2
, S m = tridiag(−1.5, 4,−0.5) ∈ Rm×m,

and q = −Az∗ ∈ Rm2
with z∗ = (1, 2, 1, 2, · · · , 1, 2, · · · )⊤ being the unique solution of the

LCP(A, q) (1.1).

Example 4.3. (Black-Scholes American option pricing). In [50], the original Black-Scholes-Merton
model changes to the following partial differential complementarity system

(
∂y
∂τ
−
∂2y
∂x2 )(y(x, τ) − g(x, τ)) = 0,

∂y
∂τ
−
∂2y
∂x2 ≥ 0, y(x, τ) − g(x, τ) ≥ 0. (4.1)

The initial and boundary conditions of the American put option price y(x, τ) become y(x, 0) = g(x, 0)
and lim

x→±∞
y(x, τ) = lim

x→±∞
g(x, τ), where g(x, τ) is the transformed payoff function. For the price x ∈

[a, b], (a, b) is equal to (−1.5, 1.5), (−2, 2) or (−4, 4). Let ϑ, η be a number of time steps and a number
of x-nodes, σ,T be fixed volatility and expiry time. According to [50], by discretizing (4.1), we obtain
the LCP:

w := Au − d ≥ 0, u − g ≥ 0 and w⊤(u − g) = 0, (4.2)

with A = tridiag(−τ, 1 + 2τ,−τ) and τ = ∆t
(∆x)2 , where ∆t = 0.5σ2T

ϑ
, ∆x = b−a

η
denote the time step and

the price step, respectively. And then, if we employ a transformation z = u − g and q = Ag − d to
formula (4.2), the American option pricing problem can be rewritten as LCP (1.1). In our numerical
computations, we take g = 0.5z∗, and z∗ = (1, 0, 1, 0, · · · , 1, 0, · · · )⊤. The vector d is adjusted such that
d = Az∗ − w∗, where w∗ = (0, 1, 0, 1, · · · , 0, 1, · · · )⊤. The involved parameters are detailed in Table 3.

As shown in [44], the NMGS method can be top-priority when the six tested methods there are
used to solve the LCP(A, q) in the three examples. Therefore, in this paper, we focus on comparing
the performance of the NMGS method in [44] with the NRATMGS method. For the NMGS iteration
method,Ω = DA is used [44]. For the NRATMGS method, we takeΩ1 = Ω3 = DA,Ω2 = Ω4 = 0, M2 =

A, N2 = 0 and α = β = 1. In addition, the optimal parameter θexp in the NRATMGS iteration method is
obtained experimentally (ranging from 0 to 2 with step size 0.1 for Example 4.1 and Example 4.2, and
with step size 0.01 for Example 4.3) by minimizing the corresponding iteration step number. For the
sake of fairness, each methods are run 10 times and we take the average value of computing times as
the reported CPU. Both methods are started from the initial vectors z0 = z1 = (1, 0, 1, 0, · · · , 1, 0, · · · )⊤

and stopped if RES(zk) < 10−5 or the prescribed maximal iteration number kmax = 500 is exceeded.
The involved linear systems are solved by “ \ ”. Numerical results for Examples 4.1–4.3 are reported
in Tables 1–3. It follows from Tables 1–3 the NRATMGS method is better than the NMGS method
(and the other methods tested in [44]) in terms of the iteration step number and CPU time when the
parameter θexp is selected appropriately.
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Table 1. Numerical results of Example 4.1.

Method
m

16 32 64 128

µ = 2

NMGS
IT 28 31 32 34
CPU 0.0009 0.0018 0.0055 0.0364
RES 9.6887 × 10−6 6.1988 × 10−6 8.7866 × 10−6 6.8116 × 10−6

NRATMGS

θexp 1.4 1.4 1.4 1.4
IT 24 25 26 28
CPU 0.0005 0.0012 0.0048 0.0318
RES 6.6171 × 10−6 8.5424 × 10−6 9.5986 × 10−6 5.5387 × 10−6

µ = 4

NMGS
IT 18 20 21 21
CPU 0.0003 0.0009 0.0036 0.0224
RES 9.3072 × 10−6 4.4327 × 10−6 4.2816 × 10−6 9.0760 × 10−6

NRATMGS

θexp 1.2 1.2 1.3 1.3
IT 16 17 17 18
CPU 0.0002 0.0009 0.0032 0.0161
RES 9.3811 × 10−6 9.4009 × 10−6 8.9594 × 10−6 5.9780 × 10−6

µ = 6

NMGS
IT 15 16 16 17
CPU 0.0002 0.0011 0.0030 0.0194
RES 4.3687 × 10−6 3.6549 × 10−6 8.1157 × 10−6 5.6681 × 10−6

NRATMGS

θexp 1.2 1.2 1.2 1.2
IT 13 14 14 15
CPU 0.0002 0.0009 0.0025 0.0138
RES 5.5869 × 10−6 3.4746 × 10−6 6.9767 × 10−6 3.9164 × 10−6

µ = 8

NMGS
IT 13 13 14 15
CPU 0.0003 0.0006 0.0027 0.0173
RES 4.0397 × 10−6 9.9549 × 10−6 5.9143 × 10−6 3.3650 × 10−6

NRATMGS

θexp 1.2 1.2 1.2 1.2
IT 11 12 12 13
CPU 0.0003 0.0006 0.0022 0.0118
RES 8.9972 × 10−6 4.0405 × 10−6 6.4052 × 10−6 2.6779 × 10−6
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Table 2. Numerical results of Example 4.2.

Method
m

16 32 64 128

µ = 2

NMGS
IT 24 26 28 29
CPU 0.0007 0.0011 0.0051 0.0324
RES 8.9826 × 10−6 9.8366 × 10−6 7.5002 × 10−6 9.2033 × 10−6

NRATMGS

θexp 1.8 1.9 1.9 1.9
IT 18 19 20 21
CPU 0.0003 0.0010 0.0037 0.0232
RES 8.1939 × 10−6 9.1146 × 10−6 7.2571 × 10−6 5.7367 × 10−6

µ = 4

NMGS
IT 16 17 18 19
CPU 0.0002 0.0007 0.0030 0.0238
RES 8.3608 × 10−6 8.5767 × 10−6 7.6698 × 10−6 6.2746 × 10−6

NRATMGS

θexp 1.5 1.5 1.6 1.6
IT 13 14 17 14
CPU 0.0002 0.0007 0.0026 0.0145
RES 6.5082 × 10−6 4.9487 × 10−6 6.5055 × 10−6 9.6328 × 10−6

µ = 6

NMGS
IT 13 14 15 15
CPU 0.0003 0.0008 0.0028 0.0224
RES 7.5880 × 10−6 5.6490 × 10−6 3.6901 × 10−6 7.7841 × 10−6

NRATMGS

θexp 1.4 1.4 1.4 1.4
IT 11 11 12 12
CPU 0.0002 0.0008 0.0022 0.0121
RES 4.7675 × 10−6 8.9849 × 10−6 3.8629 × 10−6 7.2580 × 10−6

µ = 8

NMGS
IT 12 12 13 13
CPU 0.0003 0.0005 0.0024 0.0163
RES 2.8368 × 10−6 7.0877 × 10−6 3.6923 × 10−6 7.7385 × 10−6

NRATMGS

θexp 1.3 1.3 1.3 1.3
IT 10 10 11 11
CPU 0.0002 0.0005 0.0021 0.0112
RES 3.3256 × 10−6 7.2249 × 10−6 2.6219 × 10−6 5.2755 × 10−6
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Table 3. Numerical results of Example 4.3.

Case Grid(η,ϑ) τ
NMGS NRATMGS

IT CPU RES θexp IT CPU RES

σ = 0.2
T = 0.5
a = −1.5
b = 1.5

(4000, 2000) 8.8889 23 0.0034 3.4764 × 10−6 0.95 20 0.0028 3.2943 × 10−6

(6000, 3000) 13.3333 26 0.0062 7.7964 × 10−6 0.93 22 0.0046 5.1432 × 10−6

(8000, 5000) 14.2222 25 0.0075 1.5296 × 10−6 1.03 23 0.0062 7.9327 × 10−6

(8000, 8000) 8.8889 23 0.0065 4.9204 × 10−6 0.95 20 0.0056 4.6315 × 10−6

(10000, 10000) 11.1111 23 0.0077 9.1134 × 10−7 1.04 21 0.0073 5.2285 × 10−6

σ = 0.2
T = 0.25
a = −1.5
b = 1.5

(6000, 3000) 6.6667 21 0.0043 6.0408 × 10−6 0.93 18 0.0038 7.5730 × 10−6

(8000, 4000) 8.8889 23 0.0064 4.9204 × 10−6 0.95 20 0.0055 4.6315 × 10−6

(10000, 5000) 11.1111 23 0.0078 9.1134 × 10−7 1.04 21 0.0073 5.2285 × 10−6

(15000, 15000) 8.3333 22 0.0111 8.1100 × 10−6 0.82 19 0.0101 7.3832 × 10−6

(20000, 20000) 11.1111 23 0.0177 1.2828 × 10−6 1.04 21 0.0152 7.2461 × 10−6

σ = 0.3
T = 0.5
a = −2
b = 2

(4000, 2500) 9 23 0.0034 3.8926 × 10−6 0.95 20 0.0029 3.1298 × 10−6

(6000, 3000) 16.875 27 0.0056 7.5378 × 10−6 1.1 25 0.0052 7.0849 × 10−6

(8000, 4000) 22.5 32 0.0088 5.2859 × 10−6 0.99 28 0.0076 4.8398 × 10−6

(8000, 6000) 15 26 0.0071 4.9459 × 10−6 0.86 23 0.0062 7.8720 × 10−6

(10000, 10000) 14.0625 25 0.0087 2.5353 × 10−6 1.05 23 0.0081 6.5500 × 10−6

σ = 0.3
T = 0.25
a = −4
b = 4

(8000, 4000) 2.8125 18 0.0050 6.2985 × 10−6 0.92 16 0.0045 8.3277 × 10−6

(16000, 8000) 5.625 21 0.0112 5.5724 × 10−6 0.94 18 0.0101 7.3356 × 10−6

(20000, 10000) 7.0313 23 0.0177 6.2544 × 10−7 0.91 20 0.0144 6.1941 × 10−6

(24000, 15000) 6.75 23 0.0202 6.6919 × 10−7 0.91 20 0.0179 6.9170 × 10−6

(30000, 24000) 6.5918 23 0.0275 7.3343 × 10−7 0.91 20 0.0243 7.7511 × 10−6

5. Conclusions

In this paper, by applying the matrix splitting, relaxation technique and two-sweep iteration form
to the new modulus-based matrix splitting formula, we propose a new relaxed acceleration two-sweep
modulus-based matrix splitting (NRATMMS) iteration method for solving the LCP(A, q) (1.1). We
investigate the convergence properties of the NRATMMS iteration method with the system matrix
A of the LCP(A, q) (1.1) being an H+-matrix. Numerical experiments illustrate that the NRATMMS
iteration method is effective, and it can be superior to some existing methods. However, the choices of
the optimal parameters in theory require further investigation.
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