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1. Introduction

In the general framework, Caputo and Fabrizio [1] proposed a new fractional derivative now called
Caputo-Fabrizio (CF) fractional derivative in 2015. Compared with previous Riemann-Liouville (RL)
and Riemann-Caputo (RC) fractional derivatives, this derivative has exponential kernel and non-
singularity. The following comparison will reflect their differences. As we all know, when 0 <y < 1,
(t—71)7 and ¢ 77" are the kernels of RC- and CF-fractional derivative with y-order, respectively.
Decidedly, (t — 7)™ — oo (singular) and e 5 (non-singular), as T — ¢. In other words, CF-
fractional derivative has unique advantages in eliminating singularity. Therefore, many scholars have
carried out detailed and in-depth research on the CF-fractional differential equation. For example, some
of them have applied CF-fractional differential equations to describe closed groundwater flows [2],
population dynamics [3, 4], electrical circuit [5, 6], epidemics [7-9] and others [10-12]. There have
been some papers dealing with some theoretical problems of CF-fractional calculus. Tarasov [13]
explored whether CF-fractional derivative operators represent memory or distributed-delay from the
definition of CF-fractional derivative. Pan [14] studied the chaotic behavior of a four dimensional CF-
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fractional differential system. Zhang [15] investigated the exponential Euler schemes for numerical
solutions of CF-fractional differential equation. Tariq et al. [16] obtained the new fractional integral
inequalities for CF-fractional integral operators. Abbas et al. [17] studied a fractional differential
equations with non instantaneous impulses. They applied measures of noncompactness and two fixed
point theorems to obtain the existence of solutions. In addition, the study of Hilfer fractional differential
equations as a generalization of fractional derivatives is one of the recent focuses. Alsaedi et al. [18]
considered a y-Hilfer fractional integral boundary value problem with the p-Laplacian operator. The
authors studied the existence and uniqueness of solutions by using Banach’s contraction mapping
principle. Zhou and He [19, 20] studied the mild solutions to two fractional evolution equations by
analytic semigroup theory.

In 1940s, Hyers and Ulam [21, 22] put forward a new stability named Ulam and Hyers (UH)
stability. After in-depth analysis of the UH-stability structure, some researchers have extended the
concept of UH-stability, such as generalized UH-stability, Ulam-Hyers-Rassias stability, generalized
Ulam-Hyers-Rassias, etc. The study on the UH-type stability of various dynamic systems has received
great attention. Of course, the UH-type stability of fractional differential systems is also favored. There
have been many papers dealing with UH-type stability of fractional differential system (see some of
them [23-39]). However, there are rare works on the UH-type stability of CF-fractional differential
system. It is worth to inquire into the stability of system with CF-fractional derivatives. In addition,
when describing complex systems affected by many factors, fractional differential equations are more
detailed and accurate than a single fractional differential equation. However, the study of the former
is much more difficult than the latter. As far as I am concerned, there are no papers combining CF-
fractional derivative with coupling Laplacian system, which is an interesting and challenging problem.
Therefore, we emphasize on the below nonlinear CF-fractional coupled Laplacian equations

CFDSL [(Dpl(CF-Z)‘(I)}r(Lll(t))] = Fl(t’ q/(l(t)’ WZ(I))9 re (09 l]’
DR [, (FDRU()] = Falt, Uy (), Us(D)), t € (0, 1], (1.1)
U,(0) = ar, U>(0) = a, DL U(0) = by, TDU0) = by,

where ay,a,,b1,b, € R, [ > 0,0 < uy,u2,v1,v2 < 1 and py, p, > 1 are some constants, CFD3+ stands
for the *—order Caputo-Fabrizio (CF) fractional derivative. ®,.(z) = 121Pi7%z(j = 1,2)is p ;—Laplacian.
It is well known that the inverse of 0, 1S O, and Pi/ + qi/ = 1, j = 1,2. The nonlinear function
F;e C([0,[] xR, R), j = 1,2 -

This manuscript focuses on the solvability and stability of (1.1). In Section 2, we need to review
some necessary knowledge of CF-fractional calculus. In Section 3, we apply the contraction mapping
principle to prove that system (1.1) has a unique solution. We further established the GUH-stability of
the system (1.1) in Section 4. Section 5 provides an example to illustrate the correctness of our major
outcomes. We make a brief conclusion in Section 6.

2. Preliminaries

In this section, we first need to introduce the definitions of CF-fractional derivative and integral and
some basic properties of p-Laplacian operator.

Definition 2.1. [40] For0 < a <1, 1> 0 and U € H'(0,1), the left-sided a—order Caputo—Fabrizio
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fractional integral of function U is defined by

CF 7a _ a !
ToU®) = —m( )(LI() th(a/)jo‘ll(s)ds,

where N(a) is a normalisation constant with N(0) = N(1) = 1.

Definition 2.2. [/] For0 < a < 1,1> 0and U € H'(0,]), the left-sided a—order Caputo—Fabrizio
fractional derivative of U is defined by

m (43
oo U@) = L‘”) —m“—sm'(s)ds.
0

Lemma 2.1. [40] Let 0 < a < 1 and H € C[0, 00). Then the unique solution of the following IVP

oL U®T) = H (), t >0,
UO) = U,.

is expressed as

1 -
U =Uy + Na )[‘7-{(t) HO)] + mf H(s)ds.

Lemma 2.2. Let p > 1. The p—Laplacian operator ©,(z) = |z|"~*z admits the properties as follows:
(1) Ifz> 0, then ®,(z) = 271 and ®,(z) is increasing with respect to z,

(i1) Forall z,w € R, ®,(zw) = ©,(2)D,(w);

(iii) If% + é =1, then ®,[D,(2)] = O,[D,(2)] = z, for all z € R;

(iv) Forallz,w > 0, z < w & D (2) < Dy (w);

(V) 020/ (w) & 0 < Dy(z) < w;

—_— _2 .
i -1 Mq - W >2,0<z,w< M,
(vi) |D,(z) — D (w)| < g-1 _2|Z wl, ¢q W
(=DM |z=wl, 1<q<2,z,w2M=0.

The following lemma is crucial to establishing our main results later.

Lemma 2.3. Let ay,a;,b1,b, € R, [ > 0, 0 < yuy,u0,vi,v2 < 1 and py, p, > 1 are some constants,

F; € C(0,1] x R4, R), j = 1,2. Then the nonlinear CF—fractional coupled Laplacian Eq (1.1) is
equivalent to the following integral equations

U @) = al + *R;:l) [, (G (2, U (1), Us(1))) — by ]
m(ﬂ) b (I)q1 (G1(s, U (s), Uy(9)))ds, t €[0,1], 2.1
Us(1) =ay + m;f)[ 0 (Ga(t, Uy (1), Us(1))) — bs] .
5 [ D, (Gals, U (s), Un(s))ds, 1 € [0, 1),

where [% + % =1(j=1,2), and

Gi(t, U (1), U(1)) = (Dpl(bl)+

ROy LR (6, U (1), U (0)
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- F1(03a19a2)] +

4 !
o) fo Fi(r, Uy (1), Uy ())dr,

Go(t, U (1), U(2)) = D, (b2) +

[Fz(l U, (1), U(1))
N(v2)

V2
N0rs) j(; Fr(r, U (1), U (1))dT.

- F5(0,ay,a,)] +

Proof. Assume that (U,(1), U>(t)) € C([0,1],R) x C([0,[],R) satisfies the Eq (1.1).

Lemma 2.1 and the first equation of (1.1), we have

O, (DU (1)) = D, (TDLU(0)) .l L E (6 U (1), Us(1)

N(v1)
— F(0, U, (0), U(0)] +

1
N Jo

It follows from (2.2) and (iii) in Lemma 2.2 that

FORU ) = ql(q)pl(CFDﬁ+ﬂ1(0)) + L U (0, Ua (D)

N(v1)

= F1(0,U,(0), U>(0))]
where pil + % =1, p; > 1. Denote G(t, U,(t), U, (1)) by

G1(t, Ui (1), Un(D) = @, (T"DLLU(0)) .

o) DLF 6 U (D, Us(1)

1
N I) Fi(r, U (1), Us(7))dT.

Combined (2.3), (2.4) and Lemma 2.1, we obtain

— F1(0, U, (0), U(0)] +

U (1) =U(0) . S [, (G (1, U (D), U (1)) = Dy (G1 (0, Uy (0), Ts(0)))]

th(#1)

H CI)q,(Gl(s, U, (), Us(s)))ds, 1 € [0,1].

" W)

Similar to (2.2)—(2.5), one derives from the second equation of (1.1) that

U (1) =U(0) . 2 (@, (Gt T (1), UD)) = By (G0, U1 (0), Ur(0))]

N(u2)

!

K2 " @, (Gals. Us(s), Un(s))ds, 1 € [0, 1],

" Rw)

1 1 _
where t L= 1, p > 1,and

Go(t, U (1), Us(1)) = pz(CFDgifuz(O)H

o )[Fz(t UV, U (D)

f Fi(r, U (7), Us(T))dT, t €]0,]].

+9;(/11/1)f;Fl(T,W1(T),(H2(T))dT), te[0,1],

, from

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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V2

N(v2)

Substituting the initial value conditions U, (0) = a,, U»(0) = a,, ¥ Z)’(;L(Lll (0) = by and F Z)gi‘LIZ(O)
= b, into (2.4)—(2.7), one easily gets (2.1), that is, (U;(1), U(?)) € C([0,1],R) x C([0,I],R) is a
solution of the integral equations (2.1). Noticing that z — ®,(z) is reversible, one knows that the
above derivation is completely reversible. Vice versa, if (U, (1), U»(t)) € C([0, ], R)x C([0,],R) is the
solution of the integral Eq (2.1), then it is also a solution of (1.1). The proof is completed. O

— F>(0, U, (0), U>(0)] +

f Fy(r, U (1), U, (1))dT. 2.7
0

3. Existence and uniqueness of solution

This section mainly applies the contraction mapping principle to discuss the existence and
uniqueness of solution to (1.1).

Lemma 3.1. (contraction mapping principle [41]) Let X be a Banach space and ¢ # E C X be closed.
If 7 . E — Eis contract, then 7 admits a unique fixed point u* € E.

According to Lemma 2.3, we take X = C([0, [],R) x C([0, [],R). For all w = (u,v) € X, define the
norm |[w|| = [|(u, v)|| = max{sup_,; [u(?)|, sup,.,; [v(H)|}, then (X, ||-]|) is a Banach space. Subsequently,
we will inquire into the solvability and stability of (1.1) on (X, || - ||). For convenience, we introduce
the following conditions and symbols.

Hy)a # Oora, # 0, ,by,b, > 0,0 < uy,u2,vi,v2 < 1 and py,p, > 1 are some constants,
Fj e C([0,1] x R2,R), j=1,2.

(H,) Forall 7 € [0,1], u,v € R, there exist some constants m;, M; > 0 such that
m; < Fit,u,v) <M;, j=1,2.
(H3) Forall 7 € [0,1], u,u,v,v € R, there exist some continuous functions L;; (1), Lj>(¢) > 0 such that

|[Fi(t,u,v) — Fi(t,u,v)] < Ljj(Olu—ul + Lp@®)v -V

Denote
M; =b""" - ! _VJ(M-—m-) + Lm-l,
— N(vy) ! ! N(v;) !
M= b s o M —m) + —L ML,
b 077 I 1€ 07 I

o - L= —v)  A—ppvil  A—vpul  wyil?
’ m(ﬂj)m(vj) th(,Uj)in(vj) m(ﬂj)m(vj) %(ﬂj)m(vj)’

_ ~ 42

K= 0,(q; — DM 1Lyl + 1L,

K5 = 0,(g; = DMP ULl + L1,
ILjill = max{L;(#) : 0 <t <1}, ji=12.

In this position, we present one of our main results as follows.
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Theorem 3.1. Assume that (H,)-(H3) and M; > 0(j = 1,2) are true. Further assume that one of
the conditions holds as follows: when ql,qz_z 2, ki,ky < lLyorqy 22,1 < q, <2, k1,6 < 13 0r
1 <q1 <2,q0 22 k1,60 < ly0r1 <qi,q2 <2, ki,kp < 1. Then system (1.1) has a uniqu_e nonzero
solution (W’f(t),(u’z“(t)_) eX. -

Proof. (U,(0), U2(0)) = (a1,a2) # (0,0) indicates (U (1), U(2)) # (0,0), ¥i € [0,]], that is, the
solution of (1.1) is nonzero. For all (U, U,) € X, based on Lemma 2.3, we define the vector operator
T : X > Xas

T (U, Up)(0) = (Z(Ur, U)@D), S(U, U)(D)), (3.1

where

1-
T(UL, U =a; + —— gﬁ('ul) [q)CIl(Gl(t U (D), Ux(1))) — bi]

Hi
th(,Ul)

(I)q1 (G1(s, U (s), Us(s)))ds, t €[0,1], (3.2)

1-
S(U,, U)(H) =ar + 92(/1 )[ 0 (G2(t, U (1), Us(1))) — bs]

gﬁ(ﬂz) D, (Ga(s, Us(s), Un(s)))ds, t € [0,1], (3.3)

G(t, U (), U>(t)) and G,(t, U, (t), U>(t)) are the same as (2.1).

For all U = (U, U;) and 1 € [0, [], we derive from (2.1), (H;) and (H,) that

Gi(t, Uy (1), Us(1) < BV + TN My —my) + e I)Mll =M, (3.4

Gi(t, Ui (), U(1)) 2 b’f] T o) (Ml mp) + o l)mll =M, (3.5)

Ga(t, U (), Us(0) < B + T my) + m&)le = M, (3.6)
and

Go(t, Ui (1), Uy(1)) > bgz—l - ERZVZ)Z (M —my) + N z)mzl = M2 (3.7

Obviously, M1 < Ml, Mz < Mz Thus, for all U = (U, U>), U= ((u],ﬂz) e X,and t € [0, /], it
follows from (3.2), (3.4), (3.5), (H3) and (vi) of Lemma 2.2 that

| T (U, Un) (D) — Ti(Uy, U
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S )[cbql (G0, U (0, Ua(1))) — Dy, (Gt T 1), Tha(1))
mﬁll) 104G, Ty (), La(5)) — @4 (G5, Ty (), Tho(s)) s
_W) ” 0 (G1 (6, U (1), Un(2))|
m@ ) |®q1 (G1(5, Ur(9), Us(9))) = Dy, (G (5, Ui (5), Un(s)))|ds. (3.8)

When ¢g; > 2, (3.8) gives

| T (U, U)D) — Ti(Uy, U))@))

1 — N P

<5 (ﬂ“)l (g1 = DM |G, T (1), o 1)) = G (8, T (1), Tho(0)|
+ W )<q1 - M f |G1(s, Ui (5), Un(5)) — G (s, Uy (s5), Ua(s))|dss
1 -

< (ﬂ“)‘ (g1 - DM;" [m( . — Py, T (1), To(0)

ER(V ) f |F1(T U (1), Uy(T)) — F (T, (Lll(T) (LIQ(T))|dT]

Wl)@l— HM," f [m( 1)|F1<s Uy (s), Un(s)) = Fi (s, Uy (5), U (s))

f [FA( (0, o) = F e, T (), oo,

g»R(Vl)
1 _
< ‘ﬁ(,ul) (611 - )Ml [%( ) [Li1OIU,(r) - U (O] + L0 U(1) - U,(0)l]
e f L1 (@) - T (D] + L@ o) - Ta(D)]dr
! 1 — _ J—
%(’ul)(% - )Ml f(; [‘ﬁ(v?)l [L11)IU(s) — U (s)| + L12()|U(s) — U(s)]]
+ 2 [Ll TOIUNT) = UL + Lia (0 U(T) — @(r)l]dr]ds.
gﬁ(Vl) 0
1- —aq-2[1
< W‘l‘; (g1 - DM, [m( ULl I =T+ Lol = T
l R
00 f Lol - U =T+ | Lol - U - wn]dr]
(g1 - DM, fl[l_“[uz: - 11U = U + | Laally - U = U]
iR(/Jl) q1 NETS 111l 121l

sﬁ(vl) fo MLl - U = U+ 11 Lol - U - all]d‘r]ds

:[(1 — )L =) N (I =il N (I = vl N w2 ]
N(u)NRO) N)NROv)  Nu)N)  Ru)NRO)
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—q1-2 - _ -
X (g1 = DMLl + 1LY - U = &IU U] (3.9)
When 1 < g; < 2, similar to (3.9), (3.8) leads

T (U, Us)(E) — Fi(Uy, U)W
< (A= =) N (I =punil N (1 =vuil N wvil?
UOR@ORe) RN RE)Re) T Rw)RE)
X (g1 = DM ULl + 1 LoDIU - Ul = kiU - U]l (3.10)

It is similar to (3.8)—(3.10) that

| T5(Uy, Us)(1) — To(Uy, Un)(@)|

< (1 =) =) N (1 = ol N (1 = vl N oV l?
N(u2)N(v2) N)N(2)  Nu)N(O2)  NR(u)N(v2)
% (g2 = DM (1 Latlls + 1 LoalDIU - TN = BlU - U, g2 > 2, (3.11)

and

| B(Uy, U (D) — Fo(Uy, U (D)
< (I = )1 =) N (1 =)ol N (1 = vo)usl N paval?
N(2)N(v2) N)N(v2)  NRu)N(2)  N(u)(v2)
X (g2 = DM (1 Lol + 1 L2DIU = Ull = U = UL, 1< g2 < 2. (3.12)

From (3.9)—(3.12), we obtain

max{x;, &} - [ U - Ull, q1.92 > 2,
max{ky, ko} - [|U — Ul, ¢22,1<q <2,
{k
{

T (U, U))@)) — T (U, U0 < =
17 (UL Uo)O) = T (U U TV IU-T. 1<qy <2405 2.
)

(3.13)

max

max U -Ull, 1<qi,q <2

15 K2

Let x; € {kj,k;},j = 1,2, then 0 < max{«;,k} < 1. So (3.13) means that .7 : X — X is
contractive. Hence, we conclude from Lemma 3.1 and Lemma 2.2 that .7 has a unique fixed point
U (1) = (U; (1), U5(1)) € X, which is the solution of (1.1). The proof is completed. O

4. GUH-stability

In the portion, we mainly discuss the GUH-stability of (1.1) by direct analysis methods. We first
give the definitions of UH- and GUH-stability corresponding to problem (1.1) as follows.
Let U = (U, U;) € X and € > 0. Consider the following inequality

CFDSL [(Dpl(CFDgiq/ll (t))] - Fl (t’ q/ll (t)7q/[2(t)) < €, re (O’ l]’
FDRNDp, (FDGE U] ~ Folt, Ui (1), Un(1) < €, 1 € (0, 1], (4.1)
UL0) = ay, U0) = az, TDLLUN(0) = by, TD U 0) = by
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Definition 4.1. Assume that, Ve > 0 and VU = (U, U,) € X satisfying (4.1), there exist a unique
= (U}, U3) € X satisfying (1.1) and a constant w, > 0 such that

U@ - U D < wre,

then problem (1.1) is called Ulam-Hyers (UH) stable.

Definition 4.2. Assume that, Y€ > 0 and VU = (U, U,) € X satisfying (4.1), there exist a unique
= (U7, U3) € X satifying (1.1) and ¢ € C(R,R") with 9(0) = O such that

U@ - U Dl < Ie),

then problem (1.1) is called generalized Ulam-Hyers (GUH) stable.

Remark 4.1. U = (U, U,) € X is a solution of inequality (4.1) iff there exists ¢ = (¢1,$,) € X such
that

(1) (1] < € and |p(D| < €, 0 <1< [;

2) FOR®@,, (FORL U] = Fi(t, Un(0), Us (1) + ¢1(1), 0 <1<
3) CFD H@p, (TDEULD)] = Falt, Ui (1), Un(t) + (1), 0 <t <1
“4) %(0) = ar, Us(0) = az, TORUN0) = by, TDEUN0) = by.

Theorem 4.1. If all conditions of Theorem 3.1 hold, then problem (1.1) is GUH-stable.

Proof. Based on Lemma 2.3 and Remark 4.1, the inequality (4.1) is solved by

U (1) = ar + \,t;:g [@,, (G, U (1), Ua(1))) = 1]

+ fo D, (G (s, Uy (s), Un(5)))ds, t € [0,1],

Us(t) = az + g5 (G5(1 U (1), Ua(1) = 2]

+*Jt(ﬂ2) 0 612(G¢(S 7/(l(s) ﬂz(S)))dS te [0 l]

4.2)

GI(t, U, (1), Us(t)) = c1>,,1(b1)+

e )[Fl(t UV, U D) + ¢1()

— F1(0,a1,a2) — ¢1(0)] + f [F1(r, Ui (1), Us(T)) + ¢1(D)]dT, (4.3)
0

V1
NOy)

G5 (1, U (1), Un(1)) = D, (b2) . ZLE (1, U, Us(0) + (1)

N(2)
f [F2(7, U (1), Ua(7)) + ¢(T)]d. 4.4)

= F2(0,a1,a2) — $2(0)] +

2(0,a1,az) — ¢ N ( >

According to Theorem 3.1 and Lemma 2.3, the unique solution U*(r) = (U (1), U5(2)) € X of (1.1)

satisfies (2.1). For all € > 0(e small enough), from (H;), (H,) and (1) of Remark 4.1, it similar to
(3.4)—(3.7) that

GU(t, Uy (1), Us(r)) < B +

—m1+26)+

1
NOv,) e 1)(M1 + )l = Mi(e), (4.5)
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G2, U, Uy (D) > B — —2(My —my - 2€) +

ER( 1) m( 1)
G U0, U (0) < 5 + (VS my — 2€) + mZiz)(Mz + ol = My(e),
and
Go(t, Uy (1), Us()) > b~ — e ) my — 2€) + (VZ)(m2 — )l = My(e) > 0.

Clearly, 0 < Mi(€) < My < M; < Mi(€), 0 < May(€) < My < My < My(e).

Similar to (3.8) and (3.9), when g; > 2, we derive from (2.1), (4.2), (4.3) and (4.5) that

U @) — U D] = ' B0, (GL1 U (1), (1)) — @,y (G (1, U (1), U (1))

RN(uy)
m‘(‘;]) T, (G, Uy (5). L) — G, U, (), L))
_W ) " o (G (U (1), U3 (1))
W ) f 94, (G205, U (5), U(5)) - G, Ui (5), T3]
l
L (g1 = DM 2|G2 Ui (1), Us (1)) - G (1, U (1), U3 (0)|
W )
+ W )(ql — DMy(e)" f |G7 (s, UL (), Ua(5)) = Gi(s, U (s), Us(s))|ds
1
< it~ DM z[m( 70,0 0. U0 = P8 250,450 + 26
;U |F1(T, Uy (1), Un(D)) — F (1, U (1), Uy (7))| + 2€ldr
NOvy)
1 -
m(ﬂl)(% — DM (e)" 2f e 1) |F1(S U (5), Us(5)) = Fi(s, Ui (s), Uz (s))| + 2e]
+ |F1 (7, Uy (1), Us(7)) — Fi(x, Ui (7), Us(D)| + 26]d7]ds.
gﬁ(Vl)

Hgr - DMy(e)” 2[ [ LU () = U0 + L®IUs(t) — U (0] + 2]

_9{(/11) 9t( 1)

f [Li(DIU(T) = UT(D)] + Lio(DIU(T) = Us(T)| + 2€]dT

(1 — DM ()2 f [

o)
1-

Ny
[£11(T)|(U1 (1) = U (D) + LU (T) = U (T)| + 26]dT]dS.

gﬁ(ﬂl)

4
N1 Jo

(my — &)l = My(e) > 0,

LU (s) = US| + Lio(8)U(s) — U (s)| + 2€]

(4.6)

4.7)

(4.8)
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_l-'tl _ 1 -2 1 — V1 . B . . B ]
< () (g1 — DMy(e) [fR(Vl) Ll - U = U+ | Ll - U = U+ 2€]
1
+ f Ll 1U = U+ Lol - U = U+ 26]dT]
Nv) Jo

I
Hi ) - . «
+ - DM (e)" f Lol - U =UN+ Ll - U — U +2
R( 1)(41 M (e) | [m(vl)[ﬂ il -l I+ L2l -l | + 2€]

/
i f Lol - 1U = U N+ Lol - U = U+ 26]dT]ds
NOv1) Jo

Ad-pp—v) A-ponl A -voul w2 - 12
- -1 q1
e Wit * Waion * Ty @~ UM

X [ILull + I LlDIU — Ul + 2€] = T1(IIU — Ul + 24, ()e, (4.9)

—+

where T1(€) = @,(q1 — DM (L1l + 1L12ll), Ar(e) = O(gr — DM, ()2,

Analogy to (4.9), we apply (4.6)—(4.8) to obtain

[U(t) — U0 < ToENU — U || + 2A5(e)e, g2 =2, (4.10)
U () — U @) < T1OIU — U +2A1()e, 1 < gy <2, (4.11)

and
(U0 — U5 (1)) < ToIU — U || + 245(e)e, 1< g2 <2, (4.12)

where Ta(€) = ©x(qx — DM 2(1Laally + 122111, Ti(e) = ©1(q1 — DM (1 Lull + 1 L121l),
T26) = Os(gs — DM Latll + 1Lnll). Ax(e) = Oalgs — DM, Asle) = Or(qs —
DMi(e)?72, and Ay(€) = Os(g2 — DMa(e)®72.
For all € > 0 (e small enough), we have 0 < T_l(e),ﬁ(e),'l‘_z(e),ﬁ(e) < 1. Take Tj(e) €
{?j(e), T;(e)}, and Aj(e) € {A_j(e), Aj(e)}, j = 1,2, then it follows from (4.9)—(4.12) that
2max{A(e), A,(e
U - U|| < l—ma){i{'Il’(]()e), ;,(2()6})}6. (4.13)

Therefore, we know from (4.13) and Definition 4.2 that problem (1.1) is GUH-stable. The proof is
completed. O

5. An illustrative example

The purpose of this section is to verify the correctness and applicability of our main results through
an illustrative example.
To do so, consider the following specific nonlinear CF-fractional coupled Laplacian system

2+cos(U . U
DR Dy, (TDY U] = F5G 2 + 5l sin(@lpgraes £ € 0,11,

CEDIS[@,,,(FDUU(1)] = ZEBED[37 4 arctan(U; (1) + Ua(1))], t € (0, 1], 5.1)

100 4

U\(0) = =1, U(0) = 1, DU (0) = 1, TDFUH0) = 1.
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ObViOUSly,l— 1 M1 :0.7,V1 —04 /12—03 V2:08 a :—1,612:b1

:l’)2:1 F](Z'MV):

T 4+ Sl sin(n)l s, Fa(t,u,v) = 25523 + arctan(u + v)]. Take R(x) = 1 —x+ 25,0 < x < 1,
then ‘R(O) =91(1) = 1. By a simple calculation, we have
1 4 157
—< F t, < <F t, < —
100 = Fruv) < 755, 400 2 u,v) < 750
| sin(?)| _
|Fi(t,u,v) — Fi(t,u,v)| < —I —ul + 100 v =,
2+ 3t
Faltuv) - Fat, )] < 2300000 g -
100
Thus, the conditions (H,)—(Hs) are true. Consequently, my = w5, My = 155, My = 75, My = 12,
Li(0) = 1, L) = B £01() = Lop() = 28880 1 £4]] = <5, (1Ll = 252 (1Loylly = (1Ll =
13@, and
A =p)d=v))  A=pnl (1 =v)ul vy 2
@, = ~ 1.5269,
N(u)NRO) NNy RNy NR(u)N(vy)
@, = (1) =v) A=l A=)l paalt 14085
2 — ~ . .
N(u2)N(v2) N()NO2)  Ru)N(Ov2)  N(u)N(v2)
Case 1: When p; = 3, p, = 2, theng; =3 > 2,9, =5> 2, and
— 1- V1 V1
=p - M, —m) + [~0.9821 > 0,
Mi=br = iy Mmoo+ g™ g
_ 1- V2 Vo
My =" - M, — m,) + I ~0.9823 > 0,
M= ﬂtm)( 2o ) m(vnmz
M= b 4 + Myl ~ 1.0436,
M=bi+ 56 1> ~ ) m( 1) :
Myo=b w2y, - Myl ~ 1.1239,
M= m<2>( 2= M)+ irt( 2) 2

K =0(q; - 1)M1
K = 0s(qs — 1)H2q2

(||£11||1 + |1 L12ll)) = 0.0587 < 1,
)
(Laall + 1L22Ml) = 0.3202 < 1.

Thus, all conditions of Theorem 3.1 are fulfilled. From Theorem 3.1 and Theorem 4.1, we claim that

system (5.1) has a unique solution and is GUH-stable.

Case 2: When p; = %, pr=5theng =3>2, 1 <q, = % < 2, and the values of&, &, M, E

and k; are same as Case 1, as well as

K2 = ©(g2 — DM (|| Laally + | Loally) = 0.0214 < 1.

Thus, all conditions of Theorem 3.1 are fulfilled. From Theorem 3.1 and Theorem 4.1, we claim that

system (5.1) has a unique solution and is GUH-stable.
Case 3: When p; = 3, p» = 3
and k, are same as Case 1, as well as

3thenl < gq = % < 2,¢g, =5 > 2, and the values of&, &, M, My

K1 = 01(g1 — DMLl + 1 L2ll) = 0.0142 < 1,
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Thus, all conditions of Theorem 3.1 are fulfilled. From Theorem 3.1 and Theorem 4.1, we claim that
system (5.1) has a unique solution and is GUH-stable. L
Case 4: When p; =3, p, =5,then1 < ¢; =3 <2,1 < ¢, = 2 <2, and the values of My, My, My,

E, Ky and Ky are same as Cases 1-3. Thus, all conditions of Theorem 3.1 are fulfilled. From Theorem
3.1 and Theorem 4.1, we claim that system (5.1) has a unique solution and is GUH-stable.

6. Conclusions

The integer order differential equation with p-Laplacian is a class of special second-order ordinary
differential equations that have been extensively and deeply studied. Some scholars have also
conducted some research on Riemann-Liouville or Caputo fractional differential equations with p-
Laplacian. However, the study on CF-fractional differential equations p-Laplacian has not been
seen so far. Therefore, it is novel and interesting for us to choose the system (1.1) as the research
object. We establish the existence, uniqueness, and GUH-stability of the solution for problem (1.1)
by using the Banach’s contraction mapping principle and the direct analysis method. From the proof
of Lemma 2.3 and Theorem 3.1, it can be seen that our difficulty lies in establishing the integral
equation corresponding to system (1.1) and verifying the contractility of vector operator .7 defined
by (3.1)—(3.3). The methods and steps used in this manuscript can be summarized as follows: (i)
Convert differential system (1.1) to integral system (2.1); (ii) Define an operator .7 according to
integral system (2.1); (iii) Prove that the operator .7 is contractive. The above methods and steps
can be used for reference in the study of other types of fractional differential equations. In addition,
illuminated by some of the latest achievements [42—48], we intend to apply fractional calculus theory
and diffusion partial differential equation theory to the study of some ecosystems in the future.

Acknowledgments

The author would like to express his heartfelt gratitude to the editors and reviewers for their
constructive comments. The APC was funded by research start-up funds for high-level talents of
Taizhou University.

Conflict of interest

All authors declare that they have no competing interests.

References

1. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress
in Fractional Differentiation Applications, 1 (2015), 73-85.

2. A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined
aquifer, J. Eng. Mech., 143 (2017), 5. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091

3. M. Alquran, K. Al-Khaled, T. Sardar, J. Chattopadhyay, Revisited Fisher’s equation
in a new outlook: a fractional derivative approach, Physica A, 438 (2015), 81-93.
https://doi.org/10.1016/j.physa.2015.06.036

AIMS Mathematics Volume 8, Issue 6, 13351-13367.


http://dx.doi.org/https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091
http://dx.doi.org/https://doi.org/10.1016/j.physa.2015.06.036

13364

4.

10.

11.

12.

13.

14.

15.

16.

17.

A. Atangana, B. S. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative
without singular kernel, Entropy, 17 (2015), 4439-4453. https://doi.org/10.3390/e17064439

A. Atangana, B. S. T. Alkahtani, Extension of the resistance, inductance, capacitance electrical
circuit to fractional derivative without singular kernel, Adv. Mech. Eng., 7 (2015), 1-6.
https://doi.org/10.1177/1687814015591937

S. Alizadeh, D. Baleanu, S. Rezapour, Analyzing transient response of the parallel RCL
circuit by using the Caputo-Fabrizio fractional derivative, Adv. Differ. Equ., 2020 (2020), 55.
https://doi.org/10.1186/s13662-020-2527-0

D. Baleanu, H. Mohammadi, S. Rezapour, Analysis of the model of HIV-1 infection of
CD4* T-cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020), 71.
https://doi.org/10.1186/s13662-020-02544-w

D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling
of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020),
109705. https://doi.org/10.1016/j.chaos.2020.109705

M. Rahman, S. Ahmad, R. Matoog, N. A. Alshehri, T. Khan, Study on the mathematical
modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Fract., 150 (2021),
111121. https://doi.org/10.1016/j.chaos.2021.111121

T. Sitthiwirattham, M. Arfan, K. Shah, A. Zeb, S. Djilali, S. Chasreechai, Semi-analytical solutions
for fuzzy Caputo-Fabrizio fractional-order two-dimensional heat equation, Fractal Fract., 5 (2021),
139. https://doi.org/10.3390/fractalfract5040139

Y. N. Anjam, R. Shafqat, I. E. Sarris, M. ur Rahman, S. Touseef, M. Arshad, A fractional order
investigation of smoking model using Caputo-Fabrizio differential operator, Fractal Fract., 6
(2022), 623. https://doi.org/10.3390/fractalfract6110623

A. Igbal, T. Akram, A numerical study of anomalous electro-diffusion cells in cable sense with
a non-singular kernel, Demonstr. Math., 55 (2022), 574-586. https://doi.org/10.1515/dema-2022-
0155

V. E. Tarasov, Caputo-Fabrizio operator in terms of integer derivatives: memory or distributed lag?,
Comp. Appl. Math., 38 (2019), 113. https://doi.org/10.1007/s40314-019-0883-8

Y. H. Pan, Nonlinear analysis of a four-dimensional fractional hyper-chaotic system based on
general Riemann-Liouville-Caputo fractal-fractional derivative,Nonlinear Dyn., 106 (2021), 3615—
3636. https://doi.org/10.1007/s11071-021-06951-w

T. W. Zhang, Y. K. Li, Exponential Euler scheme of multi-delay Caputo-Fabrizio
fractional-order differential equations, Appl. Math. Lett., 124 (2021), 107709.
https://doi.org/10.1016/j.am1.2021.107709

M. Tariqg, O. Alsalami, A. Shaikh, K. Nonlaopon, S. K. Ntouyas, New fractional integral
inequalities pertaining to Caputo-Fabrizio and generalized Riemann-Liouville fractional integral
operators, Axioms, 11 (2022), 618. https://doi.org/10.3390/axioms11110618

S. Abbas, M. Benchohra, J. J. Nieto, Caputo-Fabrizio fractional differential equations with
non instantaneous impulses, Rend. Circ. Mat. Palermo, II. Ser, 71 (2022), 131-144.
https://doi.org/10.1007/s12215-020-00591-6

AIMS Mathematics Volume 8, Issue 6, 13351-13367.


http://dx.doi.org/https://doi.org/10.3390/e17064439
http://dx.doi.org/https://doi.org/10.1177/1687814015591937
http://dx.doi.org/https://doi.org/10.1186/s13662-020-2527-0
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02544-w
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.109705
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111121
http://dx.doi.org/https://doi.org/10.3390/fractalfract5040139
http://dx.doi.org/https://doi.org/10.3390/fractalfract6110623
http://dx.doi.org/https://doi.org/10.1515/dema-2022-0155
http://dx.doi.org/https://doi.org/10.1515/dema-2022-0155
http://dx.doi.org/https://doi.org/10.1007/s40314-019-0883-8
http://dx.doi.org/https://doi.org/10.1007/s11071-021-06951-w
http://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107709
http://dx.doi.org/https://doi.org/10.3390/axioms11110618
http://dx.doi.org/https://doi.org/10.1007/s12215-020-00591-6

13365

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

A. Alsaedi, M. Alghanmi, B. Ahmad, B. Alharbi, Uniqueness of solutions for a y-Hilfer fractional
integral boundary value problem with the p-Laplacian operator, Demonstr. Math., 56 (2023),
20220195. https://doi.org/10.1515/dema-2022-0195

Y. Zhou, J. W. He, A Cauchy problem for fractional evolution equations with Hilfer’s
fractional derivative on semi-infinite interval, Fract. Calc. Appl. Anal., 25 (2022), 924-961.
https://doi.org/10.1007/s13540-022-00057-9

J. W. He, Y. Zhou, Hélder regularity for non-autonomous fractional evolution equations, Fract.
Calc. Appl. Anal., 25 (2022), 378-407. https://doi.org/10.1007/s13540-022-00019-1

S. Ulam, A collection of mathematical problems-interscience tracts in pure and applied
mathmatics, New York: Interscience, 1906.

D. H. Hyers, On the stability of the linear functional equation, P. Natl. A. Sci., 27 (1941), 222-224.
https://doi.org/10.1073/pnas.27.4.222

A. Zada, H. Waheed, J. Alzabut, X. M. Wang, Existence and stability of impulsive coupled

system of fractional integrodifferential equations, Demonstr. Math., 52 (2019), 296-335.
https://doi.org/10.1515/dema-2019-0035

X. Yu, Existence and S-Ulam-Hyers stability for a class of fractional differential equations with
non-instantaneous impulses, Adv. Differ. Equ., 2015 (2015), 104. https://doi.org/10.1186/s13662-
015-0415-9

X. Wang, D. F. Luo, Q. X. Zhu, Ulam-Hyers stability of Caputo type fuzzy fractional
differential equations with time-delays, Chaos Soliton. Fract.,, 156 (2022), 111822.
https://doi.org/10.1016/j.chaos.2022.111822

D. F Luo, T. Abdeljawad, Z. G. Luo, Ulam-Hyers stability results for a novel nonlinear
nabla Caputo fractional variable-order difference system, Turk. J. Math., 45 (2021), 456—470.
https://doi.org/10.3906/mat-2008-53

X. Wang, D. Luo, Z. Luo, A Zada, Ulam-Hyers stability of Caputo-type fractional
stochastic differential equations with time delays, Math. Probl. Eng., 2021 (2021), 5599206.
https://doi.org/10.1155/2021/5599206

D. F Luo, Z. G. Luo, H. J. Qiu, Existence and Hyers-Ulam stability of solutions for a mixed
fractional-order nonlinear delay difference equation with parameters, Math. Probl. Eng., 2020
(2020), 9372406. https://doi.org/10.1155/2020/9372406

D. F. Luo, Z. G. Luo, Existence and Hyers-Ulam stability results for a class of fractional order
delay differential equations with non-instantaneous impulses, Math. Slovaca, 70 (2020), 1231-
1248. https://doi.org/10.1515/ms-2017-0427

D. F. Luo, K. Shah, Z. G. Luo, On the novel Ulam-Hyers stability for a class of nonlinear -
Hilfer fractional differential equation with time-varying delays, Mediterr. J. Math., 16 (2019), 112.
https://doi.org/10.1007/s00009-019-1387-x

K. H. Zhao, S. K. Deng, Existence and Ulam-Hyers stability of a kind of fractional-order multiple
point BVP involving noninstantaneous impulses and abstract bounded operator, Adv. Differ. Equ.,
2021 (2021), 44. https://doi.org/10.1186/s13662-020-03207-6

AIMS Mathematics Volume 8, Issue 6, 13351-13367.


http://dx.doi.org/https://doi.org/10.1515/dema-2022-0195
http://dx.doi.org/https://doi.org/10.1007/s13540-022-00057-9
http://dx.doi.org/https://doi.org/10.1007/s13540-022-00019-1
http://dx.doi.org/https://doi.org/10.1073/pnas.27.4.222
http://dx.doi.org/https://doi.org/10.1515/dema-2019-0035
http://dx.doi.org/https://doi.org/10.1186/s13662-015-0415-9
http://dx.doi.org/https://doi.org/10.1186/s13662-015-0415-9
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.111822
http://dx.doi.org/https://doi.org/10.3906/mat-2008-53
http://dx.doi.org/https://doi.org/10.1155/2021/5599206
http://dx.doi.org/https://doi.org/10.1155/2020/9372406
http://dx.doi.org/https://doi.org/10.1515/ms-2017-0427
http://dx.doi.org/https://doi.org/10.1007/s00009-019-1387-x
http://dx.doi.org/https://doi.org/10.1186/s13662-020-03207-6

13366

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

. K. H. Zhao, S. Ma, Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard
fractional integral boundary value problem with impulses, AIMS Math., 7 (2022), 3169-3185.
https://doi.org/10.3934/math.2022175

K. H. Zhao, Y. Ma, Study on the existence of solutions for a class of nonlinear neutral Hadamard-
type fractional integro-differential equation with infinite delay, Fractal Fract., S (2021), 52.
https://doi.org/10.3390/fractalfract5020052

K. H. Zhao, Stability of a nonlinear ML-nonsingular kernel fractional Langevin
system with distributed lags and integral control, Axioms, 11 (2022), 350.
https://doi.org/10.3390/axioms 11070350

K. H. Zhao, Existence, stability and simulation of a class of nonlinear fractional Langevin
equations involving nonsingular Mittag-Leffler kernel, Fractal Fract., 6 (2022), 469.
https://doi.org/10.3390/fractalfract6090469

H. Huang, K. H. Zhao, X. D. Liu, On solvability of BVP for a coupled Hadamard
fractional systems involving fractional derivative impulses, AIMS Math., 7 (2022), 19221-19236.
https://doi.org/10.3934/math.20221055

K. H. Zhao, Stability of a nonlinear Langevin system of ML-type fractional derivative affected
by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725.
https://doi.org/10.3390/fractalfract6120725

K. H. Zhao, Stability of a nonlinear fractional Langevin system with nonsingular
exponential kernel and delay control, Discrete Dyn. Nat. Soc., 2022 (2022), 9169185.
https://doi.org/10.1155/2022/9169185

K. H. Zhao, Existence and UH-stability of integral boundary problem for a class of nonlinear
higher-order Hadamard fractional Langevin equation via Mittag-Lefller functions, Filomat, 37
(2023), 1053-1063.

J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progress in
Fractional Differentiation and Applications, 1 (2015), 87-92.

D. J. Guo, V. Lakshmikantham, Nonlinear problems in abstract cone, Orlando: Academic Press,
1988.

K. H. Zhao, Local exponential stability of four almost-periodic positive solutions for a classic
Ayala-Gilpin competitive ecosystem provided with varying-lags and control terms, Int. J. Control,
in press. https://doi.org/10.1080/00207179.2022.2078425

K. H. Zhao, Local exponential stability of several almost periodic positive solutions for a classical
controlled GA-predation ecosystem possessed distributed delays, Appl. Math. Comput., 437
(2023), 127540. https://doi.org/10.1016/j.amc.2022.127540

K. H. Zhao, Existence and stability of a nonlinear distributed delayed periodic AG-ecosystem with
competition on time scales, Axioms, 12 (2023), 315. https://doi.org/10.3390/axioms12030315

K. H. Zhao, Coincidence theory of a nonlinear periodic Sturm-Liouville system and its
applications, Axioms, 11 (2022), 726. https://doi.org/10.3390/axioms 11120726

AIMS Mathematics Volume 8, Issue 6, 13351-13367.


http://dx.doi.org/https://doi.org/10.3934/math.2022175
http://dx.doi.org/https://doi.org/10.3390/fractalfract5020052
http://dx.doi.org/https://doi.org/10.3390/axioms11070350
http://dx.doi.org/https://doi.org/10.3390/fractalfract6090469
http://dx.doi.org/https://doi.org/10.3934/math.20221055
http://dx.doi.org/https://doi.org/10.3390/fractalfract6120725
http://dx.doi.org/https://doi.org/10.1155/2022/9169185
http://dx.doi.org/https://doi.org/10.1080/00207179.2022.2078425
http://dx.doi.org/https://doi.org/10.1016/j.amc.2022.127540
http://dx.doi.org/https://doi.org/10.3390/axioms12030315
http://dx.doi.org/https://doi.org/10.3390/axioms11120726

13367

46. K. H. Zhao, Global stability of a mnovel nonlinear diffusion online game
addiction model with unsustainable control, AIMS Math., 7 (2022), 20752-20766.
https://doi.org/10.3934/math.20221137

47. K. H. Zhao, Probing the oscillatory behavior of internet game addiction via diffusion PDE model,
Axioms, 11 (2022), 649. https://doi.org/10.3390/axioms 11110649

48. K. H. Zhao, Attractor of a nonlinear hybrid reaction-diffusion model of neuroendocrine
transdifferentiation of mankind prostate cancer cells with time-lags, AIMS Math., in press.

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

@ AIMS Press

AIMS Mathematics Volume 8, Issue 6, 13351-13367.


http://dx.doi.org/https://doi.org/10.3934/math.20221137
http://dx.doi.org/https://doi.org/10.3390/axioms11110649
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Existence and uniqueness of solution
	GUH-stability
	An illustrative example
	Conclusions

