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Abstract: This paper considers the following fractional (p, g)-Laplacian equation:

(=A)5u + (—AYsu + V() (jul” 2+ Julu) = Af () + |l u inRY,
where s € (0,1),4 > 0,2 < p <g< % (=A)7 with t € {p, g} is the fractional z-Laplacian operator,
and potential V is a continuous function. Using constrained variational methods, a quantitative
Deformation Lemma and Brouwer degree theory, we prove that the above problem has a least energy
sign-changing solution u#, under suitable conditions on f, V and A. Moreover, we show that the energy
of u, is strictly larger than two times the ground state energy.
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1. Introduction and main results

In this paper, we investigate the existence of the least energy sign-changing solution for the
following fractional (p, g)-Laplacian problem:

(—A)Su+ (=A)u + VO (ulP 2w+ ul?u) = Af ) + ul*2u inRY, (1.1)

where s € (0,1),2 < p < g < &, 1 > 0. The potential V € C(RN ,R) and the operator (—A)? with

s

t € {p,q} is the fractional Laplacian which, up to a normalizing constant, may be defined for any
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u : RN — R smooth enough by setting

AV = 2 Tim ) = 4 () = u(y)

. dy, x € RN
&=0% JRM\B,(x) |x — y|N+is

along functions u € Cy°(RY), where B,(x) denotes the ball of R" centered at x € R" and radius & > 0.
When s = 1, problem (1.1) boils down to a (p, g)-Laplacian problem of the following type:

—Aput = Agu+ V() (Jul" 2w + [l u) = fu)  inRY. (1.2)

As can be seen in [5] and [30], the applications in plasma physics, chemical process design, and
biology have generated the majority of interest in this broad class of problems. In the last decade,
many authors investigated problem (1.2), for example, Barile and Figueiredo [5] showed that (1.2) has
a least energy sign-changing solution by using the deformation lemma and the Brouwer degree theory.
For more interesting results involving (p, g)-Laplacian problems, we also mention [9,22,24,30,32,39]
and references therein.

When s € (0,1) and p = g = 2, problem (1.1) appears in the study of standing wave solutions, i.e.,
solutions of the form Y (x, 7) = u(x)e™™, to the following fractional Schrodinger equation:

ihaa—lf =5 (=A)'y + W)W — f(w])  inRY xR, (1.3)
where 7 is the Planck constant, W : R¥ — R is an external potential and f is a suitable nonlinearity.
Laskin [28, 29] first introduced the fractional Schrédinger equation due to its fundamental importance
in the study of particles on stochastic fields modeled by Lévy processes. After that, fractional
Schrodinger equations received a lot of attention, and a lot of interesting results were obtained. We
direct the curious reader to [33] for a basic overview of this topic for more information. For the
existence, multiplicity, and behavior of standing wave solutions to Eq (1.3), we refer
to [10,11,14,16,21,23,36,37] and the references therein.

When p = g # 2, problem (1.1) boils down to the following fractional Laplacian problem:

(A u+ V@lul?u= fu) inR". (1.4)

Problem (1.4) piques the interest of researchers because of its nonlocal character and the operator’s
nonlinearity. In [15], the authors obtained infinitely many sign-changing solutions of (1.4) by using
descent flow with invariant sets. By applying the deformation Lemma and the Brouwer degree, they
also proved that (1.4) has a least energy sign-changing solution. It is noteworthy that Wang and
Zhou [37] used a similar method to obtain the least energy sign-changing of (1.4) with p = 2. In
addition, for Eq (1.4), we refer to [2, 3,18, 19,34, 35] for existence and multiplicity results, to [13,25]
for regularity results.

However, only a few papers considered fractional (p, g)-Laplacian problems. For instance, the
authors of [17] investigated the existence, nonexistence and multiplicity of solutions for a fractional
(p, g)-Laplacian problem with subcritical growth. Alves et al [1] studied the following problem:

(=A)su+ (—A)u + V(ex) (lul”u + ul’*u) = fu) inRY, (1.5)
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where the potential V(x) satisfies the Rabinowitz conditions. By virtue of the Ljusternik-Schnirelmann
theory and minimax theorems, they explored the existence, multiplicity, and concentration of nontrivial
solutions provided that ¢ is sufficiently small. Ambrosio and Radulescu [4] considered the existence
and concentration of positive solutions for (1.5) with the del Pino-Felmer type potential conditions. For
the other work on (1.1) or similar problems, we refer the reader to [4,20,26,40—44] and the references
therein.

Motivated by the above results, it is natural to ask, whether the problem (1.1) had sign-changing
solutions when the nonlinear term f has critical growth. To our knowledge, this question is open.
In [23], the authors considered the following problem:

(=A)Yu = Af(x,u) + [u>?uin Q, L6
u=0 inRM\Q, (1.6)

where Q c R" is a bounded domain, 2* = % and f satisfies some suitable conditions. By using
the constrained variational methods, they proved the least energy sign-changing solution of (1.6) when
A sufficiently large. However, since (1.1) contains the nonlocal and nonlinear term (—A)Is7 + (=A%,
the decomposition of functional I, (see the definition in (1.10)) is more complicated than that in [23].
Therefore, some difficulties arise in studying the existence of a least energy sign-changing solution for
problem (1.1), and this makes the study interesting.

To study problem (1.1), we consider the following assumptions on V and f:

(V) Vix)eC (RN ) and there exists V; > 0 such that V(x) > V, in RY. Moreover, lim ;_,., V(x) = +co.

0 _,

(fi) lim

-0+ |¢[P~1

(f>) f has a “quasicritical growth” at infinity, namely,

SO _y

1 *
lfl—-+oco |¢]95~1

We suppose that the function f satisfies the Ambrosetti-Rabinowitz condition:

(f3) There exists 6 € (g, g%) such that

0<8F() = Qf f(s)ds < f(0)t forall [¢t| > 0, where F(t) := f f(r)dr,
0 0

furthermore, we assume that:

(fs) The map f and its derivative f” satisfy

f@®>(@q- 1)@ forallz # 0.

t
Clearly, (f1) implies that the map ¢ — lfqu_)l is strictly increasing for all |¢| > 0.
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Before starting our results, we recall some useful notations. Let 1 < { < oo, we denote by [u|, the

—— s,
Lf-norm of u : R¥ — R belonging to L¢ (RN). For 0 < s < 1, let us define D¢ (RN) = C> (RV) 4,

where 1
_ 4 z
. = [ [ dedy] |
RZN

Jox — y|+se

Let us denote by W*¢ (RN ) the set of functions u € L¢ (RN ) such that [u],; < oo, endowed with the
natural norm
lullS,, = [u] -+ Ll
According to [33], let s € (0,1) and N > sq, there exists a sharp constant S, > 0 such that for any
ue D (RY)
ull, < " [uld,, (1.7)

where ¢ = NNT‘; is the Sobolev critical exponent. Moreover, W*¢ (RN ) is continuously embedded in

L (RN) for any y € [¢, ¢%] and compactly in L (Bg(0)), for all R > 0 and for any y € [1, ¢%) .
To ensure that problem (1.1) has a variational structure, we consider the following Sobolev space:

X = wr (RY) 0w (RY) (1.8)
endowed with the norm
llly <= lellys ey + lllyaey-

Notice that W*" (RN ) is a separable reflexive Banach space for all r € (1, +00), then X is also a separable
reflexive Banach space. We also introduce the following Banach space

Xy = {u eX: f V(x) (ul’ + ul?) dx < +oo}, (1.9)
RN

endowed with the norm
lleel| == Nl = lully,y + lleallyg,

where ||u||tVJ = [ulf, + fRN V(x)|ul'dx for t € {p, q}. For the weak solution to (1.1), we mean a function
u € Xy such that

f |M(X) - M(Y)|p_2(u(x) - u(}’))(‘ﬁ(x) - ‘P(}’))dxdy + f V(X)ll/l(X)lp_zu(X)QD(X)dx
R2N |x — yN+sp RV

. f lu(x) — u(*(u(x) — u(y)(@(x) — ()
RQN

|x — y[V+sa

dxdy + f V(x)lu(x)lq_zu(x)go(x)dx
RN
= fR , Af (u(x))@(x) + |u(x)| = u(x)p(x)dx

for all ¢ € Xy.
Define the energy functional 7, : Xy — R by

L =+ f ) = 4O gy 4 L f ) = O gy L f Vlu()Pdx
R2N R2N P JRrN

p |x — Vs q |x — y[¥+as
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+1f V(x)lu(x)lqu—/lf F(u(x))—l*f lu(x)|%dx. (1.10)
q Jr¥ RV q N

s VR

By the similar arguments as in [1], we can deduce that I,(u) € C'(Xy,R).
For convenience, we consider the operator A, : Xy — Xj, and A, : Xy — X, given by

Ju(x) = uIP> (x) = u(@)(x) = v())

|x — ¥+

(R0), Vs, = f

R2N

+f V)|ulP 2uvdx, Nu,v e Xy
RN

dxdy

and

_ -2 _ _
(A1) Wy, x, = f ju(x) = uWIT(u(x) = uG)O) = vy) dy

R2V |x — y|NV+as

+f VOOlul'2uvdx, Yu,v € Xy,
RN

where X7, is the dual space of Xy. In this sequel, for simplicity, we denote (-, -)x: x, by (-, -). Moreover,
we denote the Nehari set N, by

Na = {u € X\{0} : (I3w), u)y. x, =0} (1.11)

Clearly, N, contains all the nontrivial solutions of (1.1). Denote u*(x) := max {u(x),0} and u~(x) :=
min {#(x), 0}. Then, the sign-changing solutions of (1.1) stay on the following set:

My ={ueXy\{0}: u™ #0, (Ij(w),u") =0, (I}(u),u") =0}. (1.12)
Set
c:= inf I(u), (1.13)
and
¢y = inf I(u). (1.14)
MEM/{

The main results of this paper are stated in the following theorem.

Theorem 1.1. Suppose that (f,) — (f4) are satisfied. Then there exists A > O such that for all 1 > A,
the problem (1.1) possesses a least energy sign-changing solution u,. Moreover, c, > 2c.

The proof of Theorem 1.1 is based on the arguments presented in [8]. First, we make sure that
the minimum of functional I, restricted on set M, can be achieved. Then, we demonstrate that it is
a critical point of 1, by applying a suitable variant of the quantitative deformation Lemma. However,
one cannot obtain a corresponding equivalent definition of (—A); by the harmonic extension approach
because of the two fractional 7-Laplacian operators (—A); with s € (0, 1) and 7 € {p, g} (see [11]). Thus,
we don’t get the decomposition

L) = L") + L) and (I, u®) = (L), u®), (1.15)
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which is very useful to get sign-changing solutions of (1.1), see for instance [5-8,12]. Furthermore, we
could not adapt similar methods like in [23,37] to conclude the set M, is non empty. This is because
for the linear operator (—A)*, one can easily deduce that

)~ @D -6 [ -G
o o T L T e
(D () + 1 ()
_ LZN s dxdy,

which is important to prove that M, is non-empty. But, for the nonlinear operators (—A);, and (-A);,
the above decomposition seems invalid. Fortunately, we find a new way to overcome those difficulties.
We use another decomposition estimation by dividing R?" into several regions (see Lemma 2.2) as
following:

f Ju(x) — w7 @(x) — u@)) @ (x) = u* () J
xdy
R2N

|.X _ y|N+ts
_ f )~ ol f i) —w I
®Vyrx@Nys X =y Y (RN )+ (RN Y- |x — y|N+is Y
N f ™ (x) - ”+(Y)|t_]”+(Y)dxdy
(RN)-x(RN)* |x — yV+rs ’

where (RV)* = {x € RV : u(x) > 0} and (RY)™ = {x € R" : u(x) < 0}. As we can see that it will also
play an important role in proving deg(‘¥';, D, 0) = 1 (see Section 4), and then we can get the minimizer
u, of ¢, (that is, I,(u,) = c,) is exactly a sign-changing solution of Problem (1.1). Besides, due to
the critical growth of the nonlinear term, another difficulty arises in verifying the compactness of the
minimizing sequence in Xy. Fortunately, thanks to the sharp constant §,, we overcome this difficulty
by choosing A appropriately large to ensure the compactness of the minimizing sequence. Therefore, to
obtain the least energy sign-changing solutions of (1.1), a more accurate investigation and meticulous
calculations are needed in our setting.

The paper is organized as follows: Section 2 contains some compactness results and the
decomposition characteristics of 7, which will be crucial to proving the main results. In Section 3, we
provide several technical lemmas. The main results are proved in Section 4 by combining the reduced
arguments with a variation of the Deformation Lemma and Brouwer degree theory.

Throughout this paper, we will use the following notations: L*(R") denotes the usual Lebesgue
space with norm | - |; C, Cy, C,, - - - will denote different positive constants whose exact values are not
essential to the exposition of arguments.

2. Preliminaries

We provide the variational framework for the problem (1.1) in this section and provide some
preliminary Lemmas. To begin with, we obtain the following compactness results by recalling the
notion of fractional Sobolev space Xy in (1.9).

Lemma 2.1. Suppose that (V) holds, then for all y € [p,q.], the embedding Xy — L” (RN ) is
continuous. For all y € |p, q%), the embedding X, — L’ (RN ) is compact.

AIMS Mathematics Volume 8, Issue 6, 13325-13350.
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Proof. Denote Y = L (RN ) and By = {x eRN: |x < R} ,BS, = RMB. Denote
X, :={ue W (RY): [[, V(@)luldx < +oo.

For any p < y < ¢, the space X, is continuously embedded in Y, the space Xy is continuously
embedded in X,,, so Xy < Y is continuous.

For any p <y < g}, Let X,,(2) and Y(£2) be the spaces of functions u € X,,,u € Y restricted onto
Q c R respectively. Then, it follows from theorems 6.9,6.10 and 7.1 in [33] that X, (Bg) = Y (Bg)

is compact for any R > 0. Denote Vi = infxeB;a V(x). By (V}), we deduce that Vx — oo as R — oo.
Therefore, we have

1 1
f ul’dx < — | V(luldx < —|lull}, ,
B, Ve JB; Ve

which implies

, Il (By,)
lim sup ——— =
Ro+oo exviop  llx,
By virtue of Theorem 7.9 in [27], we can see that X, — Y is compact, moreover, Xy < X, is compact,

therefore, by interpolation inequality, the embedding Xy < Y is compact for any p <y < ¢;. m|

Remark 2.1. It follows from Lemma 2.1 and (f), (f>) that I, is well-defined on Xy. Moreover, I, €
C' (Xy.RY) and

_ -2 _ _
(T (), v) :f |u(x) — u()IP~=(u(x) — u(y))(v(x) v(y))dxdy+f VOOl 2uvdx
R2V |x — y|N+ps RN

N f Ju(x) = u)* > (ux) = u())E) = ()
R2N

|x — y[V+es

—/lf f(u)vdx—f | 2uvdx
RN RN

for all v € Xy. Consequently, the critical point of 1, is the weak solution of the problem (1.1).

dxdy + f VOl 2uvdx  (2.1)
RN

Our goal is to find the sign-changing solution to the problem (1.1). As we saw in section 1, one of
the challenges is the fact that the functional /; does not possess a decomposition like (1.15). Inspired
by [15,37], we have the following:

Lemma 2.2. Let u € Xy with u* # 0. Then,
(i) Li(w) > L (u®) + L (u7),
(i) (I (), 1) > (I (), u*).

Proof. Observe that

1 1 1 .
Li(u) = ;Ilullff,p + 5I|M|I§q - /lfN F(u)dx - q—f lul*dx

R s JRN

- },(y‘p(“)’ ) + % (Ao, ) + é (A0, u") + é<ﬂq(u), u”) (22)

1 * 1 *
— ﬂf F(u"')dx - /lf Fu)dx - — f |u+|11sdx -— lu”|dx.
RY RV qs JrN qs Jr¥
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By density (see Theorem 2.4 in [33] ), we can assume that u is continuous. Defining
N _ N. . + N _ N. —
(R )+—{x€R 7 (x)ZO} and (R )_ —{xeR su (x)SO}.
Then for u € Xy with u* # 0, by a straightforward computation, one can see that

(A = [ MO0 HOD (L) 100

3 lx — y|Vers

dxdy+f V()|lu*Pdx
RN

lu*(x) — u+(y)|P f |t (x) — u—(y)lp—l u*(x)
- dxd dxd
f(VRNLX(RN)+ |x — y|N+ps xay + () (). x|V xay

- + -1+
+f lu=(x) —ut ()"~ u (y)dxdy+f VOt Pdx
(RY)_x(RY), RN

|x — y[V+ps
+ R )4
> f ) O gy + f Volu'Pdx
(V) x(my), x=yIFP RV

+ P + p
+ f —lu (XA)/| dxdy + f —lu (y}?) dxdy
(=V), x(&Y)_ e = yNre (=V)_x(&Y), lx =yt

= (A, () )

and

_ ) _ N
(ﬂ,,(u),u‘): f lu(x) — u)|P=(u(x) — u(y)) (™ (x) —u(y)) dxdy + f Vol "dx
2N RN

R |x — yN+ps

_ _ + - -1,
:j‘ muru@ww@+f ) — I Cu )
(@) x(my). ey (), x(7). e — yIeee

_ i 1,
+ f ") = O D) f VOl |Pdx
(RN)_x(&Y), RN

|x — ¥+
- — P
>f (0 Zf):)l dxdy+f V()|lu |Pdx
&) x(®v)_ =y RV

|u”(WI” f lu” ()l
——=—dxd ————dxd
T f(RN)+x(RN)_ e =y T (&¥)_x(®V), [X =YV *

= <&le (u), u_> .

Similarly, we also have

<ﬂq(u), u+> > <ﬂq ("), u+> and <.?Iq(u), u_> > <.?lq (u), u_> .

(2.3)

dy

(2.4)

(2.5)

Taking into account (2.3)—(2.5), we deduce that 7,(u) > I,(u*)+1,(u"). Analogously, one can prove (ii).

O

The following Brézis-Lieb type Lemma will be very useful in this work, its proof is similar to

Lemma 2.8 in [1] and we omit it here.
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Lemma 2.3. Let {u,} C Xy be a sequence such that u,, — u in Xy. Set v, = u, — u, then we have:
@) val?, + al?, = (12, + [12,) = ([uls, + (1) + 04(1),

(i) f V() (val” + vl dx = f V(x) (Junl? + lunl®) dx—f V() (lul” + lul?) dx + 0,(1),
RN N N

R R

(i) | (F )= F(u,) + Fu) dx = 0,(1),
RN

() sup [ |(f (va) = f (un) + f(w)) Wl dx = 0,(1).

wli<t JRN

3. Some technical lemmas

The purpose of this section is to prove some technical lemmas related to the existence of a least
energy sign-changing solution. Firstly, we collect some preliminary lemmas which will be fundamental
to prove our main results.

Now, fixed u € Xy with u* # 0, we define function ¢, : [0,00) X [0,00) — R and mapping
T, : [0, ) X [0, ) — R? by

V(o) =1 (ou” +1u”)

and
T, (o,1) =l (ou" +71u”),ou’), (I} (ocu" +1u),Tu")).

Lemma 3.1. For any u € Xy with u* # 0, there exists a unique maximum point pair (t,, o,) of the
function ¥, such that t,u™ + o,u” € M,.

Proof. Our proof will be divided into three steps.
Step 1: For any u € Xy with u* # 0, in the following, we will prove the existence of o, and 7,. Form
(f1), (f2) and Lemma 2.2 we deduce that

(I(ou™ +1u),ouy > (I}(ou"),ou™)
=o? ||u+||17 + o ||u+||q -1 flouHoutdx — o lut|%dx
Vip Viq RN RN
> o’ ||u+||p + o ||u+||q — deo? lu*|Pdx
V.p Vg RN

—AC.o® | |t Sdx - o | |utdx
RN RV

> (1-2Ce) o [lu*[[}, +o* [u[[l, — ACC, + o ][ 3.1)
Similarly, we have that
I(ou™ +1u™),tu" )y > (Iy(tu™), Tu™)

> (1-aCe) o [}, +o* [ufl, — ACC. + O [ (32)

Choose & > 0 such that (1 — ACe) > 0. Since p < g < ¢, there exists r > 0 small enough such that

L(ru* +tu”),ru*)y > 0 forall 7> 0 (3.3)
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and
I(ou" +ru),ru”) >0 forall o > 0. (3.4)
On the other hand, by (f3), there exist Dy, D, > 0 such that
F(t) > Dt — D, fort > 0. (3.5)

Then we have

' (ou" +7u”),ou)

<o f @) O f o @)~ OGP o)
CORCY CORCY

|X _ y|N+ps i |.X _ y|N+ps
- _ + p-1 + + gt q
. f [T (x) |x0-uy(|£|ps out(y) dxdy + o f |ut liX) ylzﬂ(,f)l dxdy
CORIC) - (CORICY -
+ o q-1 +
+f lou™ (x) —Tu (I ou (x)dxdy
(V) x(&) |x — ylV+es
.\ f () w1 ou'0) )
(RV)_x(RY) |x — y[N+ee

+ o? f V(x) |u+|p dx + o f V(x) |u+|q dx — /1D1U9f |u+|9 dx + AD, |A+ ,
RN RN A
where A* C supp (") is measurable set with finite and positive measure |A*|. Due to the fact § > p,
for R sufficiently large, we get
(I'(Ru* +7u™),Ru*) < O for all T € [r,R]. (3.6)

Similarly, we get
(I'(cu” + Ru”),Ru") < 0 for all o € [r,R]. (3.7)
Hence, by virtue of Miranda’s Theorem [31], and taking (3.3), (3.4), (3.6) and (3.7) into account, we
can see that there exists (o, 7,) € [, R] X [r, R] such that T,,(c, 7) = (0,0), i.e., o,u™ + T,u” € M,.
Step 2: Now we prove the uniqueness of the pair (o, 7,,).
Case1: u e M,.
If u € M,, we have that

) u* (I
P f (e Ty f(RN)x(RNL FENTETa

Ju* ()| f Jut )N
—————dxdy — dxd
f(RN) (@), = m T ey, ey

f | (x) —u” (y)lp_1”+(x)dxdy+f A 0 xdy  (3.8)
(7Y), x(2) () x(=)

+

|x — y[Vers |x — y|Vers
.\ f ') O WD) f ) —ut O G)
(RY), x(RN)_ lx — y|Vres (RV)_x(RN) |x — y|Nras

=A| f)u"dx+ f it |% dx
RN

RN
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and

P |y lu” ()l f I’
— —————dxdy — ————dxd
bl + el = [ s [ s

™ (x)|? f lu=(y)|?
- —— N dxdy - ————dxd
j;RN)_X(RN)+ e =y (rY) x(&V)_ X — yINFas g

.\ f W) O @)y f ')~ I O
(=) x(=). (), ().

lx — yVre | — y[Vees
.\ f = (x) — ur ) (—u (x)) dxdy + f ut (x) — =W (—u () dxdy
(RY)_x(R)_ |x — y|Vras (RN, x(RY)._ |x — y|¥ras

:ﬂf f(u)udx+f ™| dx.
RN RN
(3.9

We will show that (o, 7,) = (1, 1) is the unique pair of numbers such that o, u™ + 7,u”™ € M,. Let
(o, T,) be a pair of numbers such that o, u™ + T,u~ € M, with 0 < o, < 7,, then one can see

+ P + p
o’ |u+||€ + 0,1 |u+||i]/ -t f %dxdy -t f %dxd
P . (=), x(rY)_ e = yNP (=V)_x(my), e = yNr
+ q + q
co [ - O
CORTCONEIR I CORCONEIR I
. f ot () — T I gt @)
X

(=), x(RV)_ lx =y g
. f [ (0 =t OI"™ T Q) iy

(RV)_x(RY), |x — y[Veps
.\ f ot (0) = T I ot () "

(=), x(RN)_ |x — y|Vras
. f [ (0 =t OI” o () oy

(R¥)_x(RV), |x — ylN+as

= /lf f (o) outdx + o, % lut|%dx
RN RN
(3.10)
and
- p - 4
.0 |u_||1; + 7,7 |u_||§1/ -1.° f BUNC/ (lel dxdy - 1,0 f O (YZJ dxd
P o (®¥)_x(rv), X = yNre (=), x(r¥)_ X = yVPe

_ q - q
-7,7 f %dxdy -1,7 f %dxdy
(&) x(&y), o=y (&) x(z)_ =y

.\ f [t (x) = o I (—7,u7(x)) dxdy
(RY)_x(Y),

|x — y[Veps
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+

f |m+m—muwvwrm@»
(RY), x(BY)._

|x — y[Veps

+f‘ [t (0 — ot W (T ()
(=) x(=),

b =y (3.11)
+j‘ ot () — T I (T ()
(RV), x(BN)_ |x — y[V+es
= /lf f(ru)Tu dx+ 7, lu~| B dx.
RN RN
Since 0 < 0, < 1, it follows from (3.11) that
— —||P —19
w7 [l + I,
_Uwﬂj‘ uqu’dﬂw_quvf OV
(&) x(), b=y (m) x(m)_ b=y
‘f meww—f O
(BY)_x(m), lx = y[V*e (&%) x(®v)_ X = yIVres
+T¢qf‘ () —w I (Cu ()
T @) (@) lx = y[Vers
+ij‘ ()~ O O (3.12)
T @) <) lx — ylNeps

+j‘ () —w I (cu @)
(RY)_x(®V), |x — y[N+es

+f lut (x) —u I (—u (y))
(RV), x(RY)_ |x — y|N+as

TU) T, U . .
> 1 de + 1,079 lu™|%dx.
RN 7,4 RN

Ifr, > 1,by (3.9) and (3.12), we get

_ _ lu(x)I” f ()l
0l - Oy — MO xd
(T )[”u ”V,p ﬂRN)X(RN)+ |x _y|N+ps xay (RN) X(RNL |x _y|N+ps X

| (x) — +@W%uu»

Y|
+ (T ) (RN)_X(RN)+ |)C y|N+ps
+ (- Df ) = O O,
' (2), x(2)_ =y
> 1 (f(TuM3 _ f(uj )Iu—lqu+ (Tutﬁ—q _ 1)f |u—|q§dx.
Nl |? || RV

The left side of the above inequality is negative, which is absurd because the right side is positive.
Therefore, we conclude that0 < o, < 7, < 1.
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Similarly, by (3.10) and 0 < o, < 7,, we have that

+( 4\ [P *WIP
(o7 1>[||u+||’;,, - f MCOE gy - f WOy
P Jmvy () = yIvr (=v)_x(rv), X = yI"*P

ut (x) — = P wt(x) p

+ (o7 1) xd
(RY), x(RV)_ lx =y '
- — (P
P, ) =W O )
),
+ +
< [ D) Ty gy f |9 dx,
o e R

This fact implies that o, > 1. Consequently, o, = 7, = 1.
Case2: u ¢ M,.
Suppose that there exist (o1, 7;), (072, 72) such that

u = 51M+ +?1M_ (S M,{ and Uy .= Ezbﬁ +?2M_ € M,{ .

Hence,

which 1mphes E] = 52, ?1 = ?2.
Step 3: We assert that (o, 7,) is the unique maximum point of ¢, on [0, +00) X [0, +00). In fact,
by (f3) we can see that

B 1 _ 1 _ _
Lou* +1u”) = ; ||O'Lt+ +TuU ||;p + 5 ||mfr +TU ||(‘]/’q - ALN F(ou* + tu7)dx

1 .
- — | lou" +71u|"dx
qs JRN
1 1 o . 79 .
< - ||O'u+ + Tu_”f/ + = ||0'u+ + Tu_”i]/ - — f u*|Bdx — — f lu™|%dx,
P Pop 4 gy Jry s JrN
which implies that lim, ;e ¢4(0, T) = —oo due to g¢ > q. Noticing that o, u™ + T,u” € M,, we

conclude that (o, 7,) is the unique critical point of ¥, in (0, +0) X (0, +00). Hence, it is sufficient to
check that a maximum point cannot be achieved on the boundary of [0,+c0) X [0, +c0). By
contradiction, we assume that (0,7;) is a maximum point of ¢, with 7; > 0. Then, arguing as
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Lemma 2.2, we have
(o, 1) = % ||O'Lt+ + Tll/l_”ip + é ||0'u+ + Tll/t_”?/’q - /ILN F(ou")dx

o . 7,4 )
- ﬂf F(ryu )dx — — f lu|%dx — 1* | dx
RY qs Jrv qds JRN
a?b o1 o .
> ””Jr”f/ +— ||u+||(‘1/ - ﬂf F(ou™)dx — —*f |t |% dx (3.13)
D P q q RN 7 Jun
p

T _ Tq _ ~ T(I: .
i P ||qv,q—ﬂfRN Fou)dx = - jl;N [ dx

q
= lﬁu(O,Tl)'*‘%(O',O)-

On the other hand, by the growth condition (f;) and (f,), one can easily check that ¢, (o, 0) > O for o
sufficiently small. Combining this with (3.13), we see that

U, (0,71) <, (0,71) + 4, (0,0) <, (0, 1)

if o 1s small enough, which yields a contradiction. Similarly, ¢, can not achieve its global maximum
point at (o7, 0), where oy > 0. As a result, we complete the proof of Lemma 3.1. O

Lemma 3.2. For any u € Xy with u* # 0, such that (I'(u), u*) < 0, the unique maximum point of W, in
[0, +00) X [0, +00) satisfies O < o, T, < 1.

Proof. If o, = 0 or 7, = 0, according Lemma 3.1, i, can not achieve maximum. Without loss of
generality, we assume o, > 7, > 0. Since o,u” + 7,u” € M,, there holds

+( [P )P
[l = o f MO gy — o f Oy
o (=V), x(rY)_ = yNPe (=V)_x(my), e =yt

+( )[4 ()¢
o f Nty — o, f WOy
(&) x(z)_ =y (&) x(&), o=y

. f ot (x) = T I orut (x) dxdy
(RN, x(RY)_

o’

+||P q
lu ”v,p + oy

|x — y[V+ps
- _ + p-1 +
N f lT,u™(x) — ouu (;+)I ot (y) dxdy
(V) _x(RM), lx = y[*+P
+ _ = (|91 +
N f o u* (x) — T,u (zzl ot (x) dxdy
(RV), x(RY)_ |x — y¥ree
- _ + g-1 +
N f I (x) — ou (Ny+)| o u*(y) dxdy
() _x(BY), e =yl

RN RN
(3.14)
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On the other hand, by (/;(u), u™) < 0, we have

lut ()| |u* (y)I”
el el - f () x(BY)._ By f(RN)x(RNL ey

ju ()|’ f (I
————dxdy - ————dxd
f(R”) x(my) 1=y “ (&) <), b=y e

+ -1+ - u* ! ut
+f ut(x) — I (x)dxdy+f W) — WO WD)y e 315
(RY), x(”N) (BRY)_x(RV),

|x — y¥ers |x — y¥ep

.\ f ')~ O @) f ) —u I )
(89) x(2Y)_ e =y (=) x(=Y), e = ypee

fW)utdx + f ™% dx.

RN RN

Then it follows (3.14) and (3.15) that

_ ot (x)|” | (y)I”
P9 _ 1 P — f ——dxd —f ——dxd
(o )(Hu “V’p (RV), x(RN)_ |x — y|N*ps e (BRY)_x(RY), |x — y|N*ps " y]

ut(x) — uw (I ut

+ (ol 1-1)
(®Y), x(RY)_ lx = y|Veps (3.16)
—utomP )
- ) @) = O o)
(RV)_x(=Y), lx — y|¥pe
+ + . i}
> f(o-u 2 f(u 3)|M+|qu + (O.Zs_q _ 1)f |u+|qxdx.
BV o ut T fut |t N
In view of (f;), we conclude that o, < 1. Thus, we have that 0 < o, 7, < 1. O
Lemma 3.3. There exists p > 0 such that ||u*|| > p for all u € M,.
Proof. For any u € M,, by (f1), (f>) and the Sobolev inequalities, we have that
£||P +||9 £) o+ +1q"
il Il < [ pyuaxs [ werias
< AeC| ||ui||[‘1p + AC,Cyllu®||% + Csllu|%.
Thus we get
Collully,, + llully,, < Callull”, (3.17)

where Cjj = (1 — 1eC)), 52 = (C5 + AC,C,) with C is a Sobolev embedding constant. If 0 < ||u|| < 1,
then [|ully,p, |lullv, < 1 and by order relations between p and g and by (3.17) we have

q
7" q 7" ’ q q
Clult? < € (llullyy + llllvg)” < € (lelty,, + Il )

SCéllullp +lully,, < Callull”,

where C’ = min {C(’), 1} and C” = . Hence, there exists a positive radius p; > 0 such that ||u|| > p;
1

with p; = (%)qq Clearly we can reason analogously if ||u|| > 1 so that for some p > 0 and for every

ue My, we getp < |lull. O
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Lemma 3.4. Let ¢, = inf,epq, 11(u), then we have that lim,_,, ¢, = 0.

Proof. Since u € M,, we have <I/’1(u), u> = 0 and then

1
Li(u) = I)(u) - 3 (I (u), u)

oy (11 (3.18)
2 50 lully,, + P lully,

thus /, is bounded below on M, which implies c, is well-defined.
For any u € Xy with u* # 0, by Lemma 3.1, for each 4 > 0, there exists o, 7, such that o u* +
T,u” € M,, we have

0<cy=infLi(u) < I (ou" +1u")

< l ||O'M+ + TAM_||I‘1p + é ||0'/lu+ + U”_”?&q - fF(mm + T )dx

p
RN

1 + K
-— |U4u + T U | dx

qs JrN
2r-1

< —a ||y, + —Ta" s, + —wq 7, + —Tﬂ 1y, -

p

Next, we will prove that o, — 0 and 7, — 0 as 1 — oo.
Let Q, = {(03, 7)) € [0,4+00) X [0, +00) : T, (073, 72) = (0,0),2 > 0}. Due to ou* + Tau~ € My,
there holds
o f Ju[* dx + 7% f Ju|* dx + A f flo ) o ut)dx + A f Fu )T )dx
RV RV RV RV
= ||0',1u+ + T}u_”[;’p + ||0',1u+ + T,lu_”;q

-1 +||? -1 -1|P -1 +]|4 -1 -4
<27 |y, + 277 oy, + 20 ol + 27 |
<2770 ||lu V,p+2 L |[|[U V,p+2 o, U V,q+2 TL (U Vg

Therefore, Q, is bounded in R?. Let {1,} C (0, o) be such that A, — oo as n — oo. Then there exist o7
and 7 such that (o, 7a,) — (07, T) as n — co.

Now, we claim oy = 79 = 0. By contradiction, suppose that op > 0 or 79 > O by o u™ + 7, u” €
M,,, then for any n € N, there holds

+ —||P + -1
||O'/1”I/l + Ty, U ||V,p + ||O'/1nbl + Ty U ||V,q

. (3.19)
= A f floaut +Tau ) ou’ +7u)dx + f lopu + 7,u " dx.
RN RN

Thanks to oy,u* — oou’ and 7, u~ — 7ou™ in Xy, (f1), (f2) and the Lebesgue dominated convergence
theorem, we deduce that

f flou" + 1y u ) oyu +1)u )dx — f floou™ + ou ) oou™ + Tou")dx > 0 (3.20)
RV RV

as n — oo. It follows from 4, — oo and (3.20) that the right hand side of (3.19) tends to infty, which
contradict with the boundness of {o-, u*™ + 7, u”} in Xy. Hence, oy = 79 = 0. As a result, we conclude
that liml_m Cy = 0. O
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Lemma 3.5. There exists A* > 0 such that for all 1 > A%, the infimum c, is achieved.

Proof. By the definition of ¢, = inf,cr, [2(u), there exists a sequence {u,} C M, such that

lim 1; (u,) = c,.
Obviously, {u,} is bounded in Xy. Up to a subsequence, still denoted by {u,}, there exists u € Xy such
that u, — u weakly in Xy. Since the embedding X, — L"(RY) is compact for all r € [p, q;), we have
wt — u* in L' (RV) for all 7 € [p, q}), u(x) - u*(x) ae. x € RY.
N
Denote 6 := £S5, according to Lemma 3.4, there is A* > 0 such that ¢, < ¢ for all 4 > A*.

NOa >
Fix 1 > A*, it follows from Lemma 3.1 that I, (ocu, + Tu;) < I, (u,) for all o, 7 > 0. Then by using

Brézis-Lieb type Lemma 2.3 and the Fatou’s Lemma, it follows that
liminf I, (ou, + Tu,)

(1 1 1 .
= hnm_i)?f(;”a”; + Tuglll‘;p + C—1||0'u:1r + Tuglll‘l,,q — ;Iau; +Tu;, ZZ) - /lfN F(ou, + tu,)dx
s R

.. 1 1
= hnln_iilf(I—?HO'M;r +1u, — (ou* + TM_)HI‘ZP + 5||0'u;r +1u, — (ou™ + Tbt_)”?,,q)
ot T |
lim |uf — u*|% - lim |u, —u”|% — —|ou* +Tu”
* p—ooo qs * pooco qs *
q qs q

*
qs
*

qs

N

1 1
+ —|lou* + Tu_llf,p + —|lou* + TM—||§I/q - /lf F(ou! + tu,)dx
V4 ’ q ’ RN

1 1
- + Y B =l — ot P+ e — - 11P
=L(ou" +71u)+ 31_&10 (pllaun ou'lly, + pllTun Tu ”V,p)

n—oo

.1 1 1
+ llmlnf(—llau; +1u, — (ou™ + Tu_)llf;p - —l|lou - 0'u+||€p - —l|lru;, - Tl/t_”ep)
p ’ p ’ p ’

1 . N 1
. (1 B g 1 g
+ ’}1_2)10 (qHO'”n ou ”V,q + pllrun TH ||V,q

1 _ _ 1 1, _ _
+ 11m1nf(—||0'u;r +1u, = (ou” + rO)lly, — =llow, —ou'llf,, — ~llru, — 7u II“I,q)
q T q Tq |

n—oo

O—‘]? T4 b

- — lim |u} —u*| — — lim |u, —u"|";
q: n—oo ds q? n—oo 9qs
1 1 s 1 1 745
> I,{ (O'I/t+ + Tl/l_) + —0'pA1 + —O'qu — —*Bl + —TpAz + —TqA4 - —*Bz,
p q qs p q qs
where » » .
_ 1 + ot — 1 - - — 1 + ot
A= lim [y =y, Ap = tim o o]l A = Tim - o7
. _ _19 . qs . - — |45
Ay = lim un—u||vq, B, = lim u:[—u+q*, B, = lim un—u|q*.
n—o00 R n—oo s n—00 s
Hence, we can see that for all o > 0 and 7 > 0, there holds
1 1 s 1 1 745
C,121)(O'M++Tu )+—O'pA1+—O'qA3— " Bl+—TpA2+—TqA4— *Bz. (321)
p q qs 4 q qs
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Now we divide the proof into three steps.
Step 1: We prove that u* # 0. Here we only prove u* # 0 since u~ = 0 is similar, by contradiction, we
suppose u* = 0. Then we have the following two cases.

Case 1: B, = 0.If A} = A3 = 0, thatis, u; — u* in Xy. According to Lemma 3.3, we obtain
lu*|| > O, which contradicts u* = 0. If A; or A; > 0, By (3.21) we get %o'pAl + %QA3 <cyforallo >0,
which is a contradiction.

=

Case 2: B, > 0. According to definition of §,, we have that § := S, < +( A1 )%, by direct
(B)) %
calculation, we have that
Ky A O-q O—‘l; O-p O-q 0-11}“
—(——)% = max{—A; - — B} <max{—A; + —A; - —B}.
N (B))® o0 g qi 20 p q q;

Since ¢; — 0 as A — oo, there exists 4* > 0 such that for all A > A*,c, < 6. Then, without loss of
generality, we can assume ¢, < 6. Choosing 7 = 0, by (3.21) it follows that

O-q O-q.t 0-17 O-q O—‘];
6 < max{—A; - —B;} < max{—A; + —A; -

720" ¢ q 720" p q q

B} <o,

which is impossible. From the above discussion, we have that u* # 0. Similarly, we obtain u~ # 0.
Step 2: we prove that B, = 0, B, = 0. We just prove B; = 0 (the proof of B, = 0 is analogous). By
contradiction, we suppose that By > 0.

Case 1: B, > 0, Let 0 and 77 satisfy

Yoek 5 6:4? p q qy
—1A1 + —1A3 — —iBl = max{o-—Al + O-—Ag — g Bl}
p q s q

>0

and

p q qs =0 (p q qs

According to [0,0] x [0,7;] is compact, there exists (o, 7,) € [0,0] X [0,71] such that ¢, (o7, 7,) =

Max ;. re[0.7]x[07] Yul0 7).
In the following, we prove that (o, 7,) € (0,07) X (0, 7;). Obviously, if 7 is small enough, we have

=P = =45 :
T T T Tp Tq qu
{—IAQ + —1A4 - Bz} = max{—Az + —Ay — B, ;.

V(o 0) < Li(ou" )+ L (tu”) < L (ou" +1u”) = ¢, (0,1), Yoel0,0].

Hence, there exists 7y such that ¥, (o, 0) < ¥, (0, 79), for all o € [0, ]. That s, (o7, 7,) € [0,071]%{0}.
Similarly, one can prove that (o, 7,) € {0} X [0,71].
On the other hand, we can easily deduce that

P q qs
A+ A -8 >0, 0 €(0,7] (3.22)
P g g
and .
P q qs
M+ ZA - By, Te 0T (3.23)
P a T q
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Then, for all o € (0,0] and 7 € (0,7;], we get

*

or o ols P q g5
0 < —1A1 +—1A3——iBl +T—A2+T—A4—T*Bz,
p q qs p q q
Eed Eat 7% p q qs
5S—1A2+—1A4— lle+O-—A1+O-—A3—O-*Bl.
p q qs p q q

Together with (3.21), we obtain (0, 7) < 0, ¢,(01,7) <0, for all o € [0,0] and 7 € [0,7], which
is absurd. Therefore, (o, 7,) ¢ [0,0,] X {71} and (o, 7,) € {0,0,} X [0, 73] .

In conclusion, we get (o,,7,) € (0,07) x (0,77). Hence, ou* + r,u= € M, So,
combining (3.21), (3.22) with (3.23), we have that

o, 7,9

1 1
” Bl + —TMPAZ + —Tqu4 — -
qs p q qs

1 1
2oy +Ttu)+—0, A+ -0,A5 - B,
P q

> (o™ +1,u7)>cy.

Therefore, we have a contradiction.
Case 2: B, = 0. In this case, we can maximize in [0, 7] X [0, 00). Indeed, it is possible to show
that there exists 7y € [0, o] such that I,(cu™ + Tu~) < 0 for all (o, 1) € [0, 0] X [Ty, o). Hence, there

exists (o, 7,) € [0,07] X [0, c0) that satisfies v, (o, T,) = max  Y,(o, 7).
o€[0,511x[0,00)

Following, we prove that (o, 7,) € (0,7) X (0, ).

Indeed, since ¥, (0, 0) < ¢, (0, 1) for o € [0, 771] and 1 is small enough, we have (o, 7,) ¢ [0, 0] X
{0}. Analogously, we have (0, 7,) € {0} X [0, c0). On the other hand, for all T € [0, c0), it is obvious
that

—p —q —q
foz P q
6S—IA1+—1A3— iBl+T—A2+T—A4.
p q qs p q

Hence, we have that ¢,(cy, 7) < 0 for all T € [0, o), Thus, (0, 7,) ¢ {01} X [0, ). In summary, we
have (o, 1,) € (0,07) X (0, ), namely, o-,u* + T,u~ € M,. Therefore, according to (3.22), we have
that .
o, 0
qs

1 1 1
c,>2L(cu" +Tu)+—0,LA + -0, A3 — B, + —1,/A, + —1,7A4
P P q

>0 (o +1,u7) > cy,

which is a contradiction.
Therefore, from the above discussion, we deduce that B; = B, = 0.
Step 3: we prove that ¢, is achieved. Since u* # 0, by Lemma 3.1, there exist o, 7, > 0 such that

u=ou" +1,u €M,

Furthermore, By = B, = 0 and Fatou’s Lemma implies (/(«),u*) < 0. By Lemma 3.2, we obtain
o4, Ty < 1. Since u, € M,, then according to Lemma 3.1 there holds

Lo, +tu) < L(u) +u)) = 1(uy,).
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Due to 0,7, < 1, arguing as Lemma 2.2, one has |lo,u™ + Tuu‘llf,p < ||u||f,p. Then by (f3), Fatou’s
Lemma and a straightforward calculation, we deduce that

1
ca < L(u) - —<Ii@,il->

1 1 1 — 1 1 .
- G- g, +4 | [—f(ii)u—F(iD dev - [ s
p q N1q q 45 Jrv
1 1 1
=(— - lout +1u ||p + /lf [—f(auu+)0'Mu+ - F(O'ulf)] dx
P q RN | 4
+ /lf [ fru)ru — F(ru)|dx + (— - —) |o,u Iq dx
RN qs Jrv

+(—— —)f o074 dx

< (— - —)Ilullp + ﬂf [—f(u)u - F(u)
RN | 4

1 1 .
dx + (- - —*)f |ue|?sdx
q qs RN

1
< liminf [IA () — = (I (uy) s un ) | < ca.
n—oo q

Therefore, o, = 7, = 1, and c, is achieved by u, := u* + u~ € M,. This ends the proof of Lemma 3.5.
O

4. Proof of Theorem 1.1

Proof of Theorem 1.1. Since u,; € M,, we have (I'(u),u}) = {I}(u)),u;) = 0. By Lemma 3.5, for
(o,7) € (R* xR*)\ (1, 1), we have

L(ouy +tuy) < L) +uy) = c,. 4.1)

Now we prove u, is a solution of (1.1). Arguing by contradiction, we assume that I’ (u;) # 0, then
there exists 6 > 0 and x > 0 such that

|1,0)| > &, forall |Iv—u,l < 36.
Define D :=[1 -6;,1 +6;] X[l =6;,1 +6;]andamap g : D — Xy by
glo, ) i=ow" +1w,

where 6; € (0, %) small enough such that ||g(o, 7) — w|| < 36 for all (o, 7) € D. Thus, by virtue of
Lemma 3.5, we can see that

I(g(1,1)) = c,, I(g(o, 1)) < c, forall (o, 7) € D\{(1, 1)}.
Therefore,
B = (m)ax I(g(o, 1)) < cy.
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By using [38, Theorem 2.3] with
Ss={veX:|v-ul <6}

and ¢ := c,. Then, choosing ¢ := min{—_ —}, we deduce that there exists a deformation n €
C([0, 1] X Xy, Xy) such that:

() n(t,v) =vifveg I ([c, — 26, ¢, + 2¢g));
(i) I(n(1,v)) < c; —eforeachv e Xy with |[|[v —u|| < d and I,(v) < ¢, + &;
(iii) I(n(1,v)) < Iy(v) for all u € Xy.

By (ii) and (iii) we conclude that

max I,(n(1, g(o, 7)) < ca. (4.2)

(o,m)eD
Therefore, to complete the proof of this Lemma, it suffices to prove that
n(1,g(D)) N M, # 0. (4.3)

Indeed, if (4.3) holds true, then by the definition of ¢, and (4.2), we get a contradiction.
In the following, we will prove (4.3). To this end, for (o, 7) € D, let v(o, 1) :=n(l, g(o, 1)) and

Yo(o, 1) =L} (8(0 1)), uy), AL (g(0m, 7)), uy))

=l (oup +Tuy), ub), (oul + Tuy), u7)) = (pi(a, 1), oX(0, 7))

and

1 1
Yi(o,1): = (= (y(o,1), (¥(o, 1)), =L (y(0, 7)), (Y(0, T))7)).
(o8 T

Firstly, let us denote

A, =

f Jua(x) = waIP~uy () = w (P
R2N

|X _ y|N+ps

a’xa’y+f V(x)|uj|Pdx,
RN

_ q-21,,+ _ gt 2
A, = f lua(x) — ua(y)l |;id(?c) )l dxdy +f V() |%dx,
RZN |x _ yl +qs RN
lua(x) = w2y (x) = uy )P -
B, := LZN P —yINjPS A" dxdy + LN V(x)lu;|Pdx,
_ 2= (x) = u- (V)
Bq - f |M/l(x) M/l()’)l |M/1(x) M/l(y)l dxdy +f V(X)lu/_llqu,
RN |x _ y|N+q3 RN
¢, = f 1a() — G2y () — 1w, ONEE) — w30
R2N lx — y|N+ps

C, = f | (x) — a2 (u7 (%) = u; ()W (x) — u;(y))dxdy,
R2N

lx — ylV+es
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b

D, = f lee2(x) — ua (V)P _Z(Mj(ic) —N it{()’))(u}(x) —uy(y) dxd
R2N |x y| 14

D, = f Jua(x) — w12 (w5 (x) = () (u; (%) — () dxd
R2N

b

lx — yVres
a, = /lf f’(”;)mﬂzd% a = /lf fu,"dx,
RN RN
b= [ ftray b= [ i,
RV RN
cp = || % dx, cy = lu, | dx.
RN RN

Clearly, C, =D, >0,C, =D, >0,A,,A,, By, B, > 0 and notice that u, € M,, we can see that
A, +C,+A,+Cy=ay +cy, B,+D,+B,+ D, =b; +c;. 4.4)

Moreover, (f;) guarantees
a; > (g — Day, by > (g — Db,. 4.5)
Then by direct computation, we have

de, \
%(1, D=p@-DA,+(@-1DA;,—a —(qg;— 1)c; <0,

o2 (4.6)
~(1,1)=(p-1DB,+(q—1)B;— b, —(q; — 1)c2 <0
ot
and ) )
oy, dp,
(L) = 241 D) = (p = )C, + (g = DC, = (p = DD, + (g = DD, (4.7)
Let
‘p‘l’((gw)h 1 Sag((fj)h 1
M= sai(g,r)l C g,
ot 1,1 ot |l,l
So we have

detM = [(p— DA, + (g — DAy —ar = (g5 = Der| - [(p = DB, + (g — DB, = by — (¢} — Dca
-l =1C, +@-1C||(p - DD, + (g - DD,
> (g = Dax+ (g} = Der = (p— DA, = (g = DA,|-
(@ = 1)b2 + (g, = De2 = (p = DB, = (g - DB
- [(p=1C,p + (g = DC,|[(p - DD, + (g = DD, | (4.8)
= (@ - P4, + (- 1C, + (g - DCy(q; - @ei |-
|(@=P)B, + (g — 1D, + (g - DD,y + (g} — g)ca
-l =1C, +@-1C||(p- DD, + (g - DD,
> 0.

AIMS Mathematics Volume 8, Issue 6, 13325-13350.



13347

Since Wy(«,B) is a C' function and (1,1) is the unique isolated zero point of ¥y, by using the degree
theory, we deduce that deg(Yy, D, 0) = 1. Furthermore, combining (4.2) and (a), we get

g(o, 1) =7y(o, 1) on dD.

Consequently, we deduce that deg(‘¥y, D,0) = 1. Therefore, ¥,(c,79) = 0 for some (0, 79) € D so
that

n(1, g(co,70)) = y(00,70) € My,

which is contradicted to (4.2). From the above discussions, we deduce that u, is a sign-changing
solution for the problem (1.1).

Next, we prove that the energy of u, is strictly larger than two times the ground state energy.

Similar to proof of Lemma 3.1, there exists A7 > 0 such that for all A > A7 > 0, there exists v € N
such that I;(v) = ¢* > 0. By standard arguments, the critical points of the functional 7, on N, are
critical points of I, in Xy, we obtain (I’ (v),v) = 0, that is, v is a ground state solution of (1.1).

According to Theorem 1.1, we know that the problem (1.1) has the least energy sign-changing
solution u, when A4 > A*. Denote A := max{A", A7}. As Proof of Lemma 3.5, there exist o > 0 and
Ty; > 0 such that

opuy € Ny, t-uy € Ny

Furthermore, Lemma 3.2 implies that Oyt Tu; € O,1).
Therefore, in view of Lemma 3.1, we have that

2¢ < L(oruy) + Lt uy) < Liogsuy +7,0uy) < Li(uy + uy) = cq.

The proof is complete. O
5. Conclusions

This paper considers the least energy sign-changing solution for a class of fractional
(p, q)-Laplacian problems with critical growth in R¥. We use constrained variational methods,
quantitative deformation lemma and Brouwer degree theory to prove that the above problem has a
least energy sign-changing solution u, if A is large enough. Moreover, we show that the energy of u,
is strictly larger than two times the ground state energy.
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